

64-Mbit (4M × 16) Static RAM

Features

- Very high speed ☐ 55 ns
- Wide voltage range ☐ 2.2 V to 3.6 V
- Ultra-low standby power
 - Typical standby current: 8 μA
 - Maximum standby current: 48 μA
- Ultra-low active power
 - □ Typical active current: 15 mA at f = 1 MHz
- Easy memory expansion with $\overline{\text{CE}}_1$, CE_2 and $\overline{\text{OE}}$ features
- Automatic Power Down when deselected
- CMOS for optimum speed and power
- Available in Pb-free 48-ball FBGA package

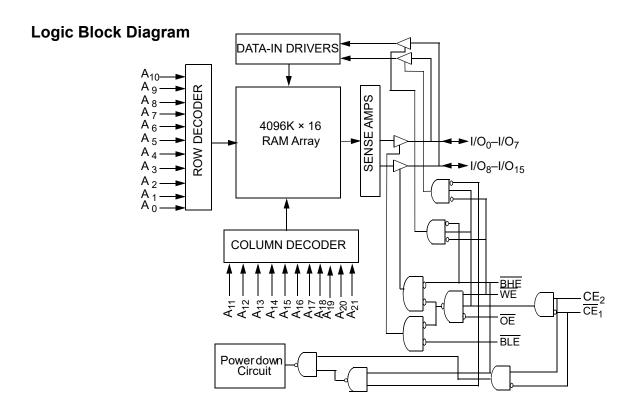
Functional Description

CY62187EV30 is a high-performance CMOS static RAM organized as 4M words by 16 bits. This device features an advanced circuit design to provide ultra-low active current. It is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular phones.

The device also has an Automatic Power Down feature that significantly reduces power consumption by 99 percent when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW or both $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a High-Z state when: deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW, CE_2 HIGH and $\overline{\text{WE}}$ LOW).

To write to the device, take Chip Enables $(\overline{CE}_1 \text{ LOW})$ and $CE_2 \text{ HIGH}$) and Write Enable (\overline{WE}) input LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0 \text{ through } I/O_7)$, is written into the location specified on the address pins $(A_0 \text{ through } A_{21})$. If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8 \text{ through } I/O_{15})$ is written into the location specified on the address pins $(A_0 \text{ through } A_{21})$.

To read from the device, take Chip Enables $(\overline{CE}_1 \text{ LOW})$ and $CE_2 \text{ HIGH}$) and $CE_2 \text{ HIGH}$) and $CE_2 \text{ OE}$) LOW while forcing Write Enable (\overline{WE}) HIGH. If BLE is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If \overline{BHE} is LOW, then data from the memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 12 for a complete description of read and write modes.

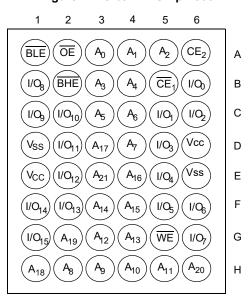

For a complete list of related documentation, click here.

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600

Revised October 24, 2019

Contents


Pin Configuration	4
Product Portfolio	
Maximum Ratings	5
Operating Range	
Electrical Characteristics	5
Capacitance	
Thermal Resistance	6
AC Test Loads and Waveforms	6
Data Retention Characteristics	
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering information	1 ర
Ordering Code Definitions	13
Package Diagram	14
Acronyms	15
Document Conventions	15
Units of Measure	15
Document History Page	16
Sales, Solutions, and Legal Information	20
Worldwide Sales and Design Support	20
Products	20
PSoC® Solutions	20
Cypress Developer Community	20
Technical Support	

Pin Configuration

Figure 1. 48-ball FBGA pinout

Product Portfolio

							Power D	issipation		
Product	V _{CC} Range (V)			Speed	Speed Operating I _{CC} (mA)				- Standby I _{SB2} (μA)	
Floudet			(ns)	f = 1 MHz		f = f _{Max}				
	Min	Typ ^[1]	Max		Typ ^[1]	Max	T yp ^[1]	Max	Typ ^[1]	Max
CY62187EV30LL	2.2	3.0	3.6	55	15	38	45	55	8	48

Note
1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage Temperature-65 °C to +150°C Ambient Temperature

with Power Applied-55 °C to +125°C

Supply Voltage

to Ground Potential-0.3 V to V_{CC(max)} + 0.3 V

DC Voltage Applied to Outputs

in High Z State $^{[2, \, 3]}$ -0.3 V to $V_{CC(max)}$ + 0.3 V

DC Input Voltage $^{[2,\;3]}$ –0.3 V to V _{CC (max)} + 0.3 V	V
Output Current into Outputs (LOW)20 m/s	Α
Static Discharge Voltage (per MIL-STD-883, Method 3015)	V
Latch-up Current> 140 m/	4

Operating Range

Device Range		Ambient Temperature	V cc ^[4]	
CY62187EV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V	

Electrical Characteristics

Over the Operating Range

Doromotor	Description	Toot Conditions		55 ns		
Parameter	Description	Test Conditions	Min	Typ ^[5]	Max	Unit
V _{OH}	Output HIGH voltage	$2.2 \text{ V} \le \text{V}_{CC} \le 2.7 \text{ V}$ $I_{OH} = -0.1 \text{ m/s}$	2.0	-	_	V
		$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}$ $\text{I}_{OH} = -1.0 \text{ m/s}$	2.4	-	-	V
V _{OL}	Output LOW voltage	$2.2 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}$ $\text{I}_{\text{OL}} = 0.1 \text{ mA}$	_	_	0.4	V
		$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$ $\text{I}_{\text{OL}} = 2.1 \text{ mA}$	-	-	0.4	V
V_{IH}	Input HIGH voltage	$2.2 \text{ V} \leq \text{V}_{\text{CC}} \leq 2.7 \text{ V}$	1.8	_	V _{CC} + 0.3	V
		2.7 V ≤ V _{CC} ≤ 3.6 V	2.2	_	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage	2.2 V≤ V _{CC} ≤ 2.7 V	-0.3	_	0.6	V
		2.7 V ≤ V _{CC} ≤ 3.6 V	-0.3	_	0.8 ^[6]	V
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$	-1	_	+1	μА
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, output disabled	-1	_	+1	μА
I _{CC}	V _{CC} operating supply current	$f = f_{Max} = 1/t_{RC}$ $f = 1 \text{ MHz}$ $V_{CC} = V_{CC(max)}$ $I_{OUT} = 0 \text{ mA}$	() –	45	55	mA
		f = 1 MHz I _{OUT} = 0 mA CMOS levels	_	15	38	mA
I _{SB2} ^[7]	Automatic CE power down current — CMOS inputs	$\overline{\text{CE}_1} \ge \text{V}_{\text{CC}} - 0.2 \text{V} \text{ or } \text{CE}_2 \le 0.2 \text{V} \text{ or}$ (BHE and BLE) $\ge \text{V}_{\text{CC}} - 0.2 \text{V}$, $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{V} \text{ or } \text{V}_{\text{IN}} \le 0.2 \text{V}$, $\text{f} = 0.2 \text{V}$		8	48	μА

Notes

- V_{IL(min)} = -2.0V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a 100-μs ramp time from 0 to V_{CC} (min) and 200-μs wait time after V_{CC} stabilization.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Under DC conditions, the device meets a V_{IL} of 0.8 V. However, in dynamic conditions, the input LOW Voltage applied to the device must not be higher than 0.7 V.
 Chip Enables (CE₁ and CE₂), Address Pins A₂₀, A₂₁ and Byte Enables (BHE and BLE) need to be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance

Parameter [8]	Description	ption Test Conditions		Unit
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	25	pF
C _{OUT}	Output capacitance		35	pF

Thermal Resistance

Parameter [8]	Description	Test Conditions	FBGA	Unit
θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	73.0	°C/W
θ JC	Thermal resistance (junction to case)		10.9	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

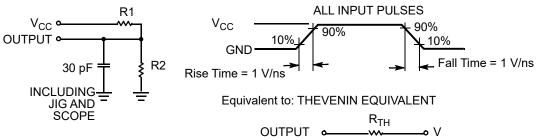
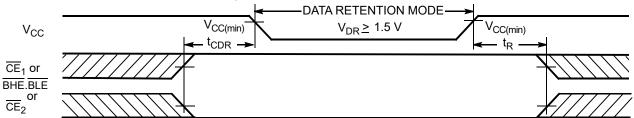


Table 1. AC Test Loads

Parameter	2.5 V	3.3 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note

^{8.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	_	-	V
I _{CCDR} [10]	Data retention current	V_{CC} = 1.5 V, $\overline{CE_1} \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V or}$ (BHE and BLE) $\ge V_{CC} - 0.2 \text{ V}$, $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	-	-	48	μА
t _{CDR} ^[11]	Chip deselect to data retention time		0	_	_	ns
t _R ^[12]	Operation recovery time		55	-	-	ns

Data Retention Waveform

^{9.} Typical values <u>are</u> included for reference only and are not guaranteed <u>or tes</u>ted. <u>Typical</u> values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C. 10. Chip Enables (CE₁ and CE₂), Address Pins A₂₀, A₂₁ and Byte Enables (BHE and BLE) need to be tied to CMOS levels to meet the I_{SB2}/I_{CCDR} spec. Other inputs can

^{11.} Tested initially and after any design or process changes that may affect these parameters.

^{12. &}lt;u>Full device</u> operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

13. <u>BHE</u> is the AND of both <u>BHE</u> and <u>BLE</u>. The chip is deselected by either disabling the Chip Enable signals or by disabling both <u>BHE</u> and <u>BLE</u>.

Switching Characteristics

Over the Operating Range

Parameter [14]	Description	55	ns	I I mit
Parameter [14]	Description	Min	Max	Unit
Read Cycle			•	_
t _{RC}	Read cycle time	55	_	ns
t _{AA}	Address to data valid	-	55	ns
t _{OHA}	Data hold from address change	4	_	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	-	55	ns
t _{DOE}	OE LOW to data valid	-	25	ns
t _{LZOE}	OE LOW to low Z ^[15]	5	_	ns
t _{HZOE}	OE HIGH to High-Z ^[15, 16]	-	20	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to low Z ^[15]	10	_	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High-Z ^[15, 16]	-	20	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power up	0	_	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power down	-	55	ns
t _{DBE}	BLE/BHE LOW to data valid	-	55	ns
t _{LZBE}	BLE/BHE LOW to low Z [15]	10	_	ns
t _{HZBE}	BLE/BHE HIGH to High-Z [15, 16]	-	20	ns
Write Cycle [17, 1	8]			
t _{WC}	Write cycle time	55	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	45	_	ns
t _{AW}	Address setup to write end	45	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	40	_	ns
t _{BW}	BLE/BHE LOW to write end	45	_	ns
t _{SD}	Data setup to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High-Z ^[15, 16]	_	20	ns
t _{LZWE}	WE HIGH to low Z ^[15]	10	_	ns

^{14.} Test conditions for all parameters other than High-Z parameters assume signal transition time of 1 V/ns, timing reference levels of V_{TH}, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 2 on page 6.

15. At any temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.

16. t_{HZOE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outp<u>uts enter</u> the High-Z state.

17. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write

^{18.} The minimum write cycle pulse width for Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) should be equal to the sum of t_{SD} and t_{HZWE} .

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled) [19, 20]

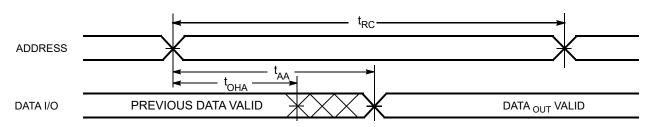
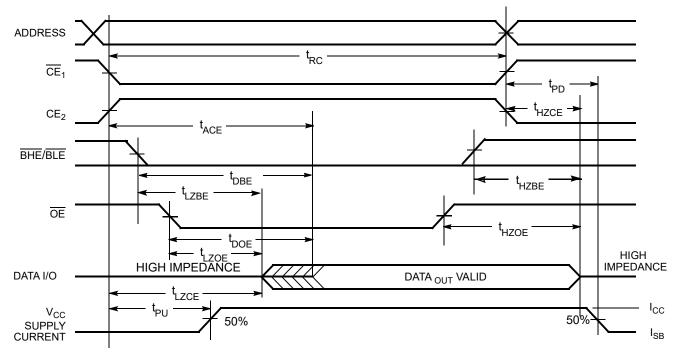
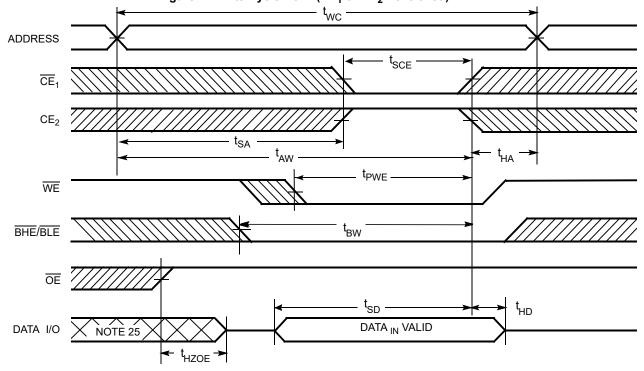



Figure 5. Read Cycle No. 2 (OE Controlled) [20, 21]

^{19.} The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{|L}$, \overline{BHE} and/or $\overline{BLE} = V_{|L}$, and $CE_2 = V_{|H}$. 20. WE is HIGH for read cycle.


^{21.} Address valid prior to or coincident with $\overline{\text{CE}}_1$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ transition LOW and $\overline{\text{CE}}_2$ transition HIGH.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[22,\ 23,\ 24,\ 25]}$ **ADDRESS** ^tSCE CE₁ CE₂ t_{HA} t_{PWE} WE BHE/BLE t_{BW} t_{HD} DATA IN VALID DATA I/O XŃÒTÉ 25

Figure 7. Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [22, 23, 24, 25]

Notes

- 22. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 23. Data I/O is High-Z if $\overline{OE} = V_{IH}$.
- 24. If $\overline{\text{CE}}_1$ goes HIGH and $\overline{\text{CE}}_2$ goes LOW simultaneously with $\overline{\text{WE}} = V_{\text{IH}}$, the output remains in the High-Z state.
- 25. During this period the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[26,\ 27,\ 28]}$

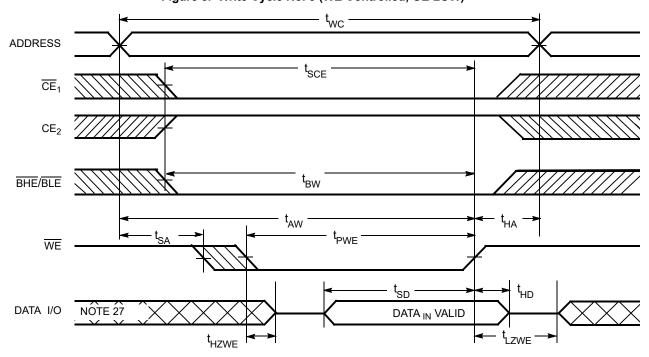
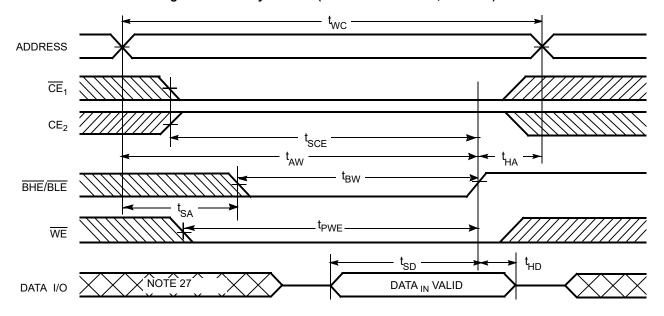
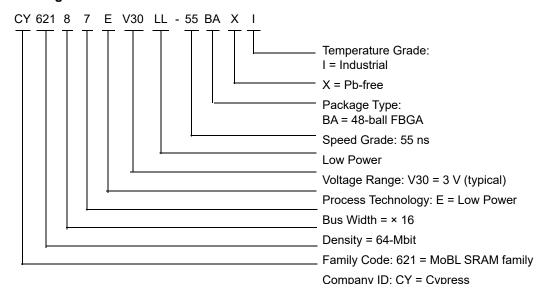



Figure 9. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [26, 27]

- 26. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE = V_{IH}, the output remains in the High-Z state.
 27. During this period the I/Os are in output state and input signals should not be applied.
 28. The minimum write cycle pulse width should be equal to the sum of t_{sD} and t_{HZWE}.

Truth Table

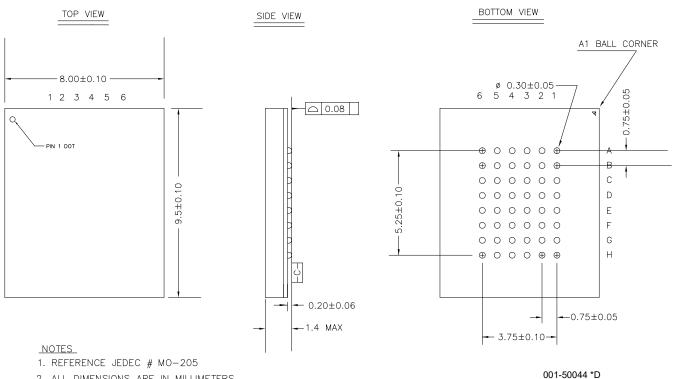
CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs Outputs	Mode	Power
Н	X ^[29]	Х	Х	X ^[29]	X ^[29]	High-Z	Deselect/Power Down	Standby (I _{SB})
X ^[29]	L	Х	Х	X ^[29]	X ^[29]	High-Z	Deselect/Power Down	Standby (I _{SB})
X ^[29]	X ^[29]	Х	Х	Н	Н	High-Z	Deselect/Power Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	High-Z (I/O ₈ –I/O ₁₅); Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); High-Z (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	High-Z (I/O ₈ –I/O ₁₅); Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); High-Z (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	Н	Н	Н	L	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High-Z	Output Disabled	Active (I _{CC})


Note
29. The 'X' (Don't care) state for the Chip Enables and Byte Enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62187EV30LL-55BAXI	001-50044	48-ball FBGA (8 × 9.5 × 1.4 mm) Pb-free	Industrial

Ordering Code Definitions



Document Number: 001-48998 Rev. *N

Package Diagram

Figure 10. 48-ball FBGA (8 × 9.5 × 1.4 mm) BK48L Package Outline, 001-50044

2. ALL DIMENSIONS ARE IN MILLIMETERS

Acronyms

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CMOS	Complementary Metal Oxide Semiconductor		
CE Chip Enable			
FBGA Fine-Pitch Ball Grid Array			
I/O Input/Output			
OE	Output Enable		
SRAM Static Random Access Memory			
WE Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μA	microampere			
mA	milliampere			
ms	millisecond			
ns	nanosecond			
Ω	ohms			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Revision	ECN	Submission Date	Description of Change
**	2595932	10/24/2008	New data sheet.
*A	2644442	01/23/2009	Updated Package Diagram: Removed spec 001-49341 Rev. **. Added spec 001-50044 Rev. **.
*B	2672650	03/12/2009	Added 55 ns speed bin related information in all instances across the document. Updated Product Portfolio: Changed maximum value in V_{CC} range from 3.6 V to 3.7 V. Changed typical value of "Operating I_{CC} " from 2.5 mA to 3.5 mA at f = 1 MHz corresponding to 70 ns speed bin. Changed maximum value of "Operating I_{CC} " from 4 mA to 6 mA at f = 1 MHz corresponding to 70 ns speed bin. Changed typical value of "Operating I_{CC} " from 33 mA to 28 mA at f = f_{MAX} corresponding to 70 ns speed bin. Changed maximum value of "Operating I_{CC} " from 40 mA to 45 mA at f = f_{MAX} corresponding to 70 ns speed bin. Updated Electrical Characteristics: Changed typical value of I_{CC} parameter from 33 mA to 28 mA at f = f_{MAX} corresponding to 70 ns speed bin. Changed maximum value of I_{CC} parameter from 40 mA to 45 mA at f = f_{MAX} corresponding to 70 ns speed bin. Changed typical value of I_{CC} parameter from 2.5 mA to 3.5 mA at f = 1 MHz corresponding to 70 ns speed bin. Changed maximum value of I_{CC} parameter from 4 mA to 6 mA at f = 1 MHz corresponding to 70 ns speed bin. Updated Note 7. Updated Note 7. Updated Note 7. Updated Switching Characteristics: Changed minimum value of I_{CC} parameter from 45 ns to 50 ns corresponding to 70 ns speed bin. Changed minimum value of I_{CC} parameter from 30 ns to 35 ns corresponding to 70 ns speed bin. Updated Package Diagram: Changed Hands Package Diagram: Changed 48-ball FBGA package dimensions from "8 × 9.5 × 1.6 mm" to "8 × 9.5 × 1.4 mm". spec 001-50044 – Changed revision from ** to *A.
*C	2737164	07/13/2009	Changed status from Preliminary to Final. Updated Product Portfolio: Changed typical value of "Operating I_{CC} " from 3.5 mA to 4 mA at f = 1 MHz corresponding to 55 ns and 70 ns speed bins. Changed typical value of "Operating I_{CC} " from 35 mA to 45 mA at f = f_{max} corresponding to 55 ns speed bin. Changed typical value of "Operating I_{CC} " from 28 mA to 35 mA at f = f_{max} corresponding to 70 ns speed bin.

Document History Page (continued)

Document Title: CY62187EV30 MoBL [®] , 64-Mbit (4M × 16) Static RAM Document Number: 001-48998			
Revision	ECN	Submission Date	Description of Change
*C (cont.)	2737164	07/13/2009	Updated Electrical Characteristics: Updated details in "Test Conditions" column of V_{OH} , V_{OL} , V_{IH} , V_{IL} parameters (Included V_{CC} range). Changed maximum value of V_{IL} parameter from 0.8 V to 0.7 V corresponding to Test Condition " V_{CC} = 2.7 V to 3.7 V". Changed typical value of I_{CC} parameter from 35 mA to 45 mA at $f = f_{max}$ corresponding to 55 ns speed bin. Changed typical value of I_{CC} parameter from 28 mA to 35 mA at $f = f_{max}$ corresponding to 70 ns speed bin. Changed typical value of I_{CC} parameter from 3.5 mA to 4 mA at $f = 1$ MHz corresponding to 55 ns and 70 ns speed bins. Updated Capacitance: Changed maximum value of C_{IN} parameter from 20 pF to 25 pF. Changed maximum value of C_{OUT} parameter from 20 pF to 35 pF. Updated Thermal Resistance: Replaced TBD with values for 48-ball FBGA package. Updated AC Test Loads and Waveforms: Updated Table 1: Included V_{CC} range for V_{TH} parameter. Updated Switching Characteristics: Changed minimum value of t_{LZBE} parameter from 5 ns to 10 ns. Updated Truth Table: Added Note 29 and referred the same note in "X" in " \overline{CE}_1 " and " \overline{CE}_2 " columns.
*D	2765892	09/18/2009	Removed 70 ns speed bin related information in all instances across the document. Updated Product Portfolio: Changed maximum value of "Operating I_{CC} " from 6 mA to 9 mA at f = 1 MHz corresponding to 55 ns speed bin. Updated Electrical Characteristics: Changed typical value of I_{CC} parameter from 4 mA to 7.5 mA at f = 1 MHz corresponding to 55 ns speed bin. Changed maximum value of I_{CC} parameter from 6 mA to 9 mA at f = 1 MHz corresponding to 55 ns speed bin. Completing Sunset Review.
*E	3177000	02/18/2011	Updated Features: Changed value of "Typical Active Current" from 4 mA to 7.5 mA. Updated Pin Configuration: Fixed typo in Figure 1 (Renamed "48-Ball VFBGA" as "48-ball FBGA"). Updated Product Portfolio: Changed typical value of "Operating I _{CC} " from 4 mA to 7.5 mA at f = 1 MHz corresponding to 55 ns speed bin. Updated Electrical Characteristics: Updated details in "Test Conditions" column of I _{SB2} parameter (Included BHE and BLE to reflect Byte power down feature). Updated AC Test Loads and Waveforms: Updated Table 1. Updated Data Retention Characteristics: Updated details in "Test Conditions" column of I _{CCDR} parameter (Included BHE and BLE to reflect Byte power down feature). Changed minimum value of t _R parameter from t _{RC} to 55 ns. Added Ordering Code Definitions under Ordering Information. Updated Package Diagram: spec 001-50044 – Changed revision from *A to *C.
*E (cont.)	3177000	02/18/2011	Added Acronyms and Units of Measure. Changed all instances of IO to I/O. Updated to new template.

Document History Page (continued)

Document T Document I	Fitle: CY6218 Number: 001-	7EV30 MoBL [®] , (48998	64-Mbit (4M × 16) Static RAM	
Revision	ECN	Submission Date	Description of Change	
*F	3282088	06/14/2011	Updated Functional Description: Removed the note "For best practice recommendations, refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com website" and its reference Updated Electrical Characteristics: Changed maximum value of V_{IL} parameter corresponding to Test Condition "2.7 V $V_{CC} \! \leq \! 3.7$ V" from 0.7 V to 0.8 V. Added Note 6 and referred the same note in maximum value of V_{IL} parameter. Updated to new template.	
*G	3785005	10/18/2012	Minor text edits. Updated Package Diagram: spec 001-50044 – Changed revision from *C to *D. Completing Sunset Review.	
*H	4101127	08/21/2013	Updated Switching Characteristics: Added Note 14 and referred the same note in "Parameter" column. Updated to new template. Completing Sunset Review.	
*	4114808	09/12/2013	Updated Electrical Characteristics: Updated Note 7. Updated Data Retention Characteristics: Updated Note 10.	
*J	4576478	11/21/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Switching Characteristics: Added Note 18 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 28 and referred the same note in Figure 8.	
*K	4990839	10/27/2015	Updated Thermal Resistance: Replaced "2-layer" with "four-layer" in "Test Conditions" column. Changed value of θ_{JA} parameter corresponding to FBGA package from 59.06 °C/W 42.35 °C/W. Changed value of θ_{JC} parameter corresponding to FBGA package from 14.08 °C/W 6.25 °C/W. Updated to new template. Completing Sunset Review.	
*L	5962070	11/09/2017	Updated logo and Copyright.	
*M	6315678	09/27/2018	Updated Maximum Ratings: Changed value of Latch-up current from "> 200 mA" to "> 140 mA". Updated Operating Range: Replaced "2.2 V to 3.7 V" with "2.2 V to 3.6 V" under "V _{CC} " column. Updated Electrical Characteristics: Changed typical value of I _{CC} parameter from 7.5 mA to 15 mA corresponding to Te Condition "f = 1 MHz". Changed maximum value of I _{CC} parameter from 9 mA to 18 mA corresponding to Te Condition "f = 1 MHz".	
*M (cont.)	6315678	09/27/2018	Updated Thermal Resistance: Changed value of Θ_{JA} parameter corresponding to FBGA package from 42.35 °C 76.7 °C/W. Changed value of Θ_{JC} parameter corresponding to FBGA package from 6.25 °C 10.9 °C/W. Updated Switching Characteristics: Changed minimum value of t_{OHA} parameter from 6 ns to 4 ns. Updated to new template.	

Document History Page (continued)

Document Title: CY62187EV30 MoBL [®] , 64-Mbit (4M × 16) Static RAM Document Number: 001-48998			
Revision	ECN	Submission Date	Description of Change
*N	6713141		Updated product portfolio In Electrical Characteristics, updated I _{CC} @ 1 MHz maximum and I _{SB2}

Document Number: 001-48998 Rev. *N

Wireless Connectivity

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In depth of the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or properly damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk De

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.