

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

Objective

This code example demonstrates a proximity sensor and CapSense[®] tuner using the PSoC Creator™ CapSense Component with PSoC[®] 4.

Requirements

Tool: PSoC Creator 4.3

Programming Language: C (Arm® GCC 5.4.1)

Associated Parts: All PSoC 4 family devices that have a CapSense Component

Related Hardware: CY8CKIT-042-BLE-A Bluetooth® Low Energy 4.2 Compliant Pioneer Kit

Overview

This code example contains a PSoC Creator project that uses a proximity sensor from the CapSense Component. An LED is controlled by the proximity sensor. As you move closer to the proximity sensor, a red LED gets brighter; as you move farther away the LED gets dimmer. The range of the proximity sensor depends on the size and shape of the wire loop made in the Hardware Setup section.

Hardware Setup

1. Create a loop with one of the wire jumpers found in the PSoC kit and attach it to pin P2[0] as seen in Figure 1.

Figure 1. Wire Loop for Proximity Detection (Pioneer Kit 042-BLE-A example)

Software Setup

There is no software setup.

Operation

- 1. Plug the CY8CKIT-042-BLE-A kit board into your computer's USB port.
- 2. Build the project and program it into the PSoC 4 device. Choose **Debug** > **Program**. For more information on device programming, see *PSoC Creator Help.*
- 3. Move a hand slowly closer to the wire loop and confirm that the LED grows brighter.
- 4. Move a hand slowly away from the wire loop and confirm that the LED gets dimmer.
- 5. Right-click the CapSense Component and select Launch Tuner. Click Connect, select I2C, and then click Start. Ensure that the data rate is set to 400 kbps. Go to the Graph View tab. Confirm that as you move closer to the sensor the raw count increases, and as you move away from the sensor the raw count decreases. For more information, check the CapSense datasheet under Related Documents.

Design and Implementation

The CapSense Component uses capacitive sensing to return a 15-bit value called a diff value. The PWM is set up to take a 16-bit value, so the CapSense diff value is scaled to a 16-bit value and shifted up by 500. This value is then used to control the PWM to make the LED brighter or dimmer.

CapSense Proximity

In the CapSense_Proximity code example, the following functions are performed:

- 1. Initialize and start all hardware components.
- 2. Link the EZI2C to the CapSense data structure.
- 3. Scan the proximity sensor.
- 4. Process the diff value by scaling it to the PWM max compare value. The diff value returns the difference between the raw count and the baseline. The baseline stays around 85% of the maximum raw count, which means that the returned maximum diff value is about 15% of the raw count. The value is then multiplied by 25 to scale to the PWM value and shifted by 500 so that at low diff values the duty cycle is high enough to turn the LED ON.
- 5. Change the PMW duty cycle according to the proximity sensor value, changing the brightness of the LED.
- 6. Send all data to the CapSense tuner.
- 7. Scan the proximity sensor and return to step 4.

Figure 2 shows the top-design of the CapSense_Proximity Creator Project.

Figure 2. CapSense_Proximity Top Design Schematic

Components and Settings

Table 1 lists the PSoC Creator Components used in this example, how they are used in the design, and the non-default settings required so they function as intended.

Table 1. PSoC Creator Componer	its
--------------------------------	-----

Component	Instance Name	Purpose	Non-default Settings
CapSense	CapSense	Gather and process all data from proximity sensor	For Proximity settings, see Figure 3 For General settings, see Figure 4 For CSD settings, see Figure 5 For Widget details, see Figure 6
EZI2C	EZI2C	Transmits data from the selected kit to the tuner	Under EZI2C Basic change the Data Rate to 400 kbps, and change the Sub-Address Size to 16
PWM	PWM	Controls the duty cycle of the Red LED	Under PWM change the Interrupt On terminal count to OFF, and change the Compare value to 0

С	onfigure	'CapSense_P4'				?	\times
2	Load co	nfiguration 🛛 🛃 Save co	onfiguration 🖻 Export R	egister	Мар		
1	Name: CapSense						
	Basi	ic Advanced Built-i	n				4 Þ
	🛧 Mo	ve up 🔸 Move down	🗙 Delete 🖸	SD tunir	ng mode: Manual tuning		~
	Туре	Name	Sensing mode	Sensir	ng element(s)	Finger capac	itance
	Ω.	Proximity0	CSD (Self-cap)	1	Proximity Sensor(s)	N/A	
	+						
	Sensor	resources					
	CSD ele	ctrodes: 1 CSX ele	ctrodes: 0 Pins requi	red: 3	Pins available: 38		
-							
	Datas	sheet	L	0	OK Apply	Cano	el

Figure 4. General Settings

Configure 'CapSense_P4'		?	×	
🚔 Load configuration 🛛 🚽 Save configuration 📄 Export Register Map				
Name: CapSense				
Basic Advanced Built-in			4 ۵	
General CSD Settings CSX Settings Widget De	stails Scan Order			
Regular widget raw count filter type Enable IIR filter (First order) IIR filter raw count coefficient: 128 Enable median filter (3-sample) Enable average filter (4-sample) Proximity widget raw count filter type Enable IIR filter (First order) IIR filter raw count coefficient: 32 Enable median filter (3-sample) Enable median filter (4-sample)	Baseline IIR filter settings Regular widget baseline coefficient: 1 Proximity widget baseline coefficient: 1 Enable sensor auto-reset Enable self-test library Enable multi-frequency scan		<	
Datasheet	OK Apply	Cance	ł	

Note: The Proximity sensor is sensitive; the filters are used to keep the raw count from jumping a large amount.

Figure	5.	CSD	Settings
--------	----	-----	----------

Configure 'CapSense_P4'		? >
逽 Load configuration 层 Save co	nfiguration è Export Register Map	
Name: CapSense		
Basic Advanced Built-ir		41
General CSD Settings CSX Set	ings Widget Details Scap Order	
Scan settings	Enable shield electrode	^
Modulator clock frequency (kHz)	Enable shield tank (Csh) capa	citor
Actual frequency (kHz):	16000 Csh initialization source: Vr	ef 🗸
Sense clock source:	Auto \checkmark Shield electrode delay: N	o Delay 🗸
Enable common sense clock	Number of shield electrodes: 1	÷
Sense clock frequency (kHz)	Set per widget 🗸	
Actual frequency (kHz):	N/A	
Inactive sensor connection:	Ground ~	
IDAC sensing configuration:	IDAC sourcing \sim	
Enable IDAC auto-calibration		
Enable compensation IDAC		~
Datasheet	OK Apply	Cancel

Figure 6. Widget details

Basic Advanced	Built-in				٩
General CSD Settings C	SX Settings W	idget Details Scan Order			
Widget/Sensor list:	W	lidget/Sensor parameters:			
Proximity0 (CSD)	\sim	Widget Hardware Parameter	5		
Proximity0_Sns	0	Sense clock frequency (kHz)	3000		
		Actual sense clock frequency (kH	4000		
		Scan resolution	15 bits		
		Modulator IDAC	Auto-calibrated		
	~	Widget Threshold Parameter	5		
		Proximity threshold	20		
		Touch threshold	200		
		Noise threshold	15		
		Negative noise threshold	15		
		Low baseline reset	30		
		Hysteresis	2		
		ON debounce	3)	
	Se Se	ON debounce ense clock frequency (kHz) the sense clock frequency for the	3 e CSD widget.	J	

For information on the hardware resources used by a Component, see the Component datasheet.

Reusing This Example

The kits listed in Table 2 can be used with minimal changes; ensure that:

- 1. Use one of the six listed kits.
- 2. Ensure all pins are unlocked in the Design Wide Resources tab.
- 3. Connect the wire loop as seen in Figure 1 to the pin in Table 2.

Table 2. Proximity Sensing Pin Input

Kit Selection	Part Number	PIN
CY8CKIT-040 PSoC 4 Pioneer kit	CY8C4014LQI-422	P2[0]
CY8CKIT-042 PSoC 4 Pioneer Kit	CY8C4245AXI-483	P0[4]
CY8CKIT-042-BLE-A Bluetooth [®] Low Energy 4.2 Compliant Pioneer Kit	CY8C4248LQI-BL583	P2[0]
CY8CKIT-044 PSoC 4 M-Series Pioneer Kit	CY8C4247AZI-M485	P3[7]
CY8CKIT-041-40XX PSoC 4 S-Series Pioneer Kit	CY8C4045AZI-S413	P1[6]
CY8CKIT-041-41XX PSoC 4100S CapSense Pioneer Kit	CY8C4146AZI-S433	P1[6]

To port the code to a new device, in PSoC Creator, select **Project** > **Device Selector** and change to the target device.

Before porting this example to another device, note the following:

- 1. Not all PSoC 4 devices support CapSense, EZI2C, and PWM Components.
- 2. Pinouts change from device to device. Some pins may need to be moved. See the **Pin Layout** tab in PSoC Creator

For more information on how to incorporate CapSense with proximity sensing into a design see the two related app notes AN85951 – PSoC 4 and PSoC 6 MCU CapSense Design Guide and AN92239 – Proximity Sensing with CapSense.

In some cases, a resource used by a code example (for example, a Universal Digital Block) is not supported on another device. In that case, the example will not work. If you build the code targeted at such a device, you will get errors. See the device datasheet for information on what a device supports.

Related Documents

For a comprehensive list of PSoC 3, PSoC 4, and PSoC 5LP resources, see KBA86521 in the Cypress community.

For a comprehensive list of PSoC 6 MCU resources, see KBA223067 in the Cypress community.

Application No	otes			
AN79953 – Getting Started with PSoC® 4		Describes PSoC 4 devices and how to build your first PSoC Creator project		
AN85951 – PS CapSense Des	oC 4 and PSoC 6 MCU ign Guide	Describes how to tune and use the CapSense Component		
AN92239 – Pro	eximity Sensing with CapSense	Describes how to design a proximity sensor and tune it to achieve a greater proximity sensing distance		
Code Example	9S			
CE210489 – Low Power CapSense Proximity Sensor		Shows how to use the CapSense proximity sensor with low power		
PSoC Creator Component Datasheets				
CapSense	CapSense Component datasheet for more information			
TCPWM	TCPWM Component datasheet for more information			
EZI2C	EZI2C Component datasheet for more information			
Device Docum	entation			
PSoC 4 Datash	PSoC 4 Datasheets PSoC 4 Technical Reference Manuals			
Development Kit Documentation				
PSoC 4 Kits				
Tool Documer	Tool Documentation			
PSoC Creator Look in the Downloads tab for Quick Start and User Guides				

Document History

Document Title: CE225691 - PSoC 4 CapSense Proximity

Document Number: 002-25691

Revision	ECN	Submission Date	Description of Change
**	6418147	2/7/2019	New code example
*A	6896862	6/15/2020	Minor updates to document and code example.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor An Infineon Technologies Company 198 Champion Court San Jose, CA 951<u>34-1709</u>

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software (pypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware solely for use with Cypress. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any daim, damage, or other liability arising from any use of

written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.