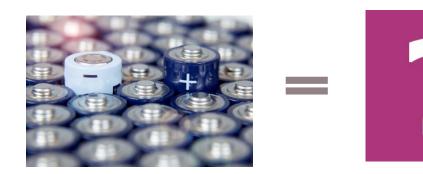
Battery formation: a crucial step in the battery production process

Agenda

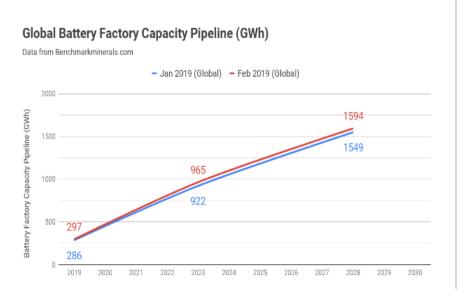
- 1 Introduction
- What is battery formation (BF)
- Battery formation power systems
- 4 Summary


Agenda

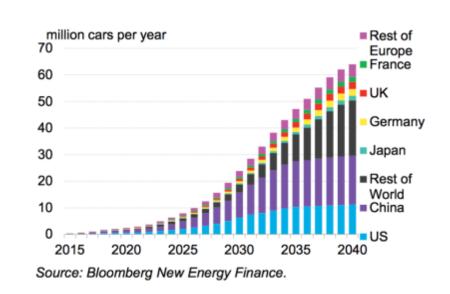
- 1 Introduction
- What is battery formation (BF)
- 3 Battery formation power systems
- 4 Summary

Battery matters, now more than ever

We are more and more surrounded by battery powered devices and electrical **vehicles**.



But what does it really take to make a battery? Moreover, what are the **requirements and challenges in the battery production process?**

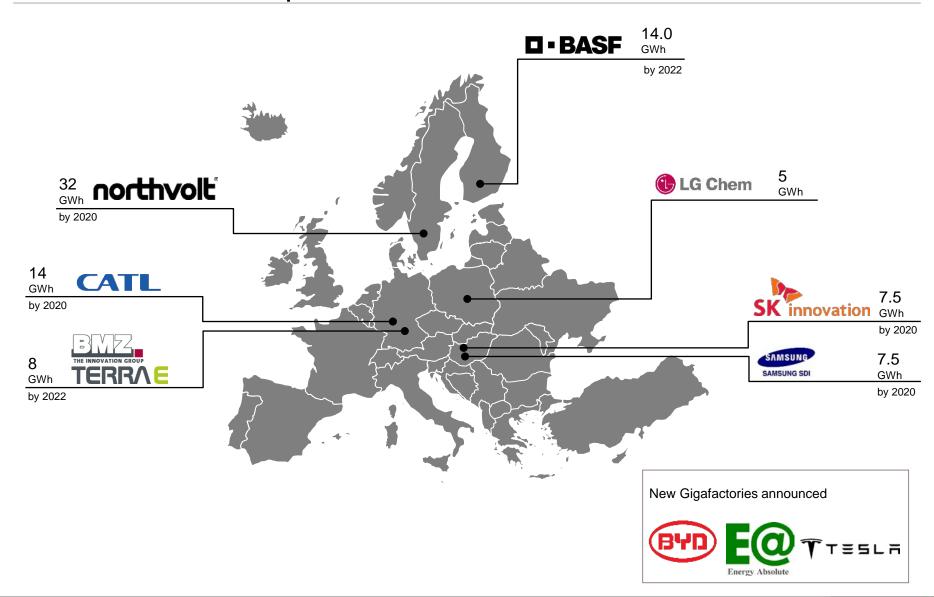


World powered by batteries

- Increase in the number of battery power devices and electric vehicles
 (EVs) in the following years will also propel the need for more batteries
- Today's production capacity of roughly 300 GWh is predicted to increase to 1.6 TWh
 - Increasing global demand for batteries

2 Rising number of EV

Infineon Proprietary


Current situation Increasing production with key market in Asia

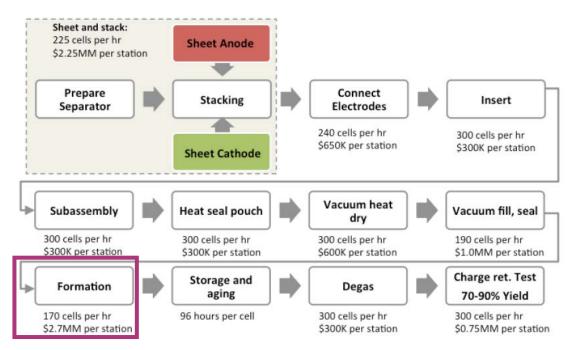
Future shift to Europe



Agenda

- 1 Introduction
- What is battery formation (BF)
- 3 Battery formation power systems
- 4 Summary

Battery formation – a critical step in the battery production process



- Essential stage every battery needs to undergo in the manufacturing process to become a functional unit
- Activation of chemical material by initially charging and discharging of newly assembled cell/pack over high accuracy in current and voltage (i.e. formation)
- The formation cycle is a time consuming process since each cell must be monitored separately, e.g. bottleneck in production
- > Capital and cost intensive stage in battery production process

Battery formation (BF) – a critical step in the battery production process

- Essential stage every battery needs to undergo in the manufacturing process to become a functional unit
- Activation of chemical material by initially charging and discharging of newly assembled cell/pack over high accuracy in current and voltage (i.e. formation)
- The formation cycle is a time consuming process since each cell must be monitored separately, e.g. bottleneck in production
- > Capital and cost intensive stage in battery production process

BF challenges and requirements

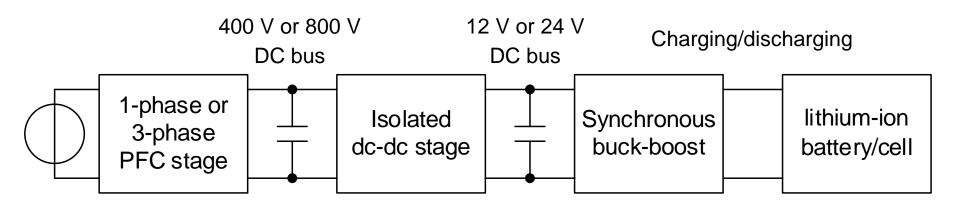
The BF process demands large amounts of energy and the system is running 24/7, resulting in three major requirements for battery formation applications, which are:

1 High power density

2 High system reliability

3 Energy recycling

As market leader in power semiconductors, Infineon is in a comfortable position to address these challenges and help customers to reach these goals.

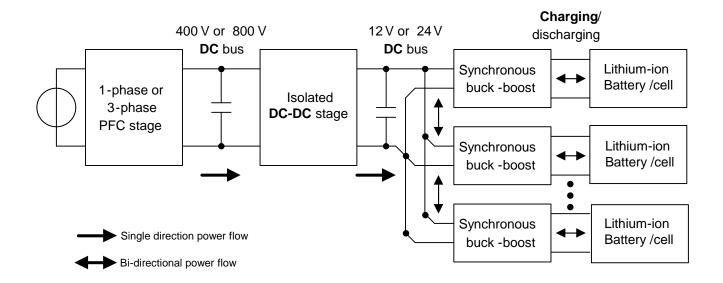


Agenda

- 1 Introduction
- What is battery formation (BF)
- Battery formation power systems
- 4 Summary

Block diagram of a formation power system

Stage	Description
PFC	PFC stage as an interface to the AC grid, single-phase and three-phase input voltage, unidirectional or bidirectional power transfer depends on system design
DC-DC	Provides galvanic isolation and step down 400 V (single-phase) to middle voltage, i.e., 100 V, 48 V, 24 V, or 12 V, based on tested battery voltage. Feature contains unidirectional or bidirectional power transfer.
Syn. Buck-boost	Key stage for battery function testing, provides 10 A, 20 A, 30 A or even 60 A sink and source capability. Required very precise battery voltage and battery current measurement. Bidirectional power transfer is must.
Battery/cell	Usually is Li-ion type battery. The battery cell voltage is 3.7-4.2 V or battery pack (12-48 V). Sometimes, the battery pack voltage can go up to 96 V.


Battery formation systems

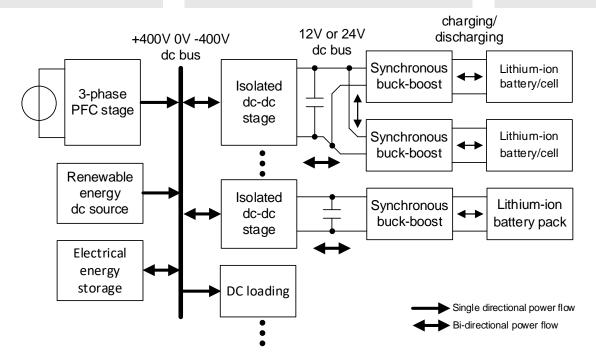
Most common power stages used in battery formation equipment

Unidirectional system

Semi bidirectional system

Bidirectional system

- PFC stage and isolated DC-DC stage are unidirectional power flow
- SR buck-boost converter is bidirectional power flow
- Discharge energy send to other SR buck-boost converter for charging
 - the discharge energy may not be completely recycle


Battery formation systems

Most common power stages used in battery formation equipment

Unidirectional system

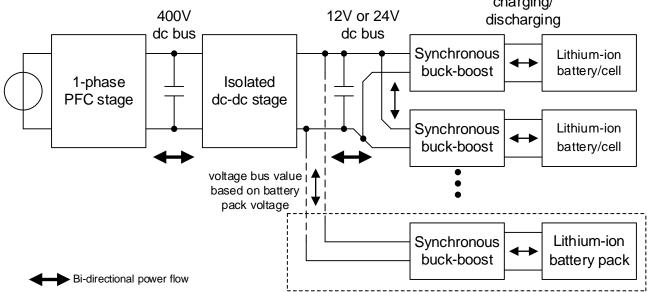
Semi bidirectional system

Bidirectional system

- PFC stage is unidirectional, isolated DC-DC stage, and SR buck-boost stages are bidirectional
- System power ~10 kW-30 kW, connecting several few kilowatts bidirectional isolated DC-DC stages

Copyright © Infineon Technologies AG 2019. All rights reserved.

HV bus is an interface for energy recycling


Battery formation systems

Most common power stages used in battery formation equipment

Unidirectional system

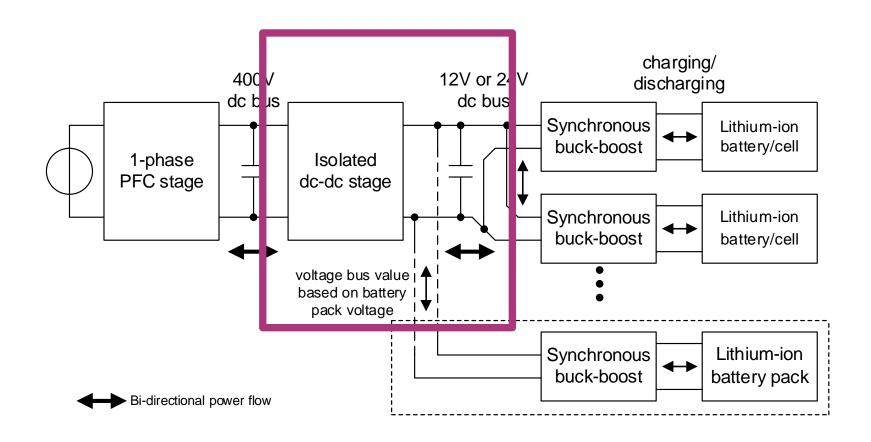
Semi bidirectional system

charging/

- PFC stage, isolated DC-DC stage, and SR buck-boost stages are bidirectional power flow
- Charging and discharging power levels are few kilowatts
- SR buck-boost converters charge and discharge at the same time to maximize recycling energy efficiency
- The system also possible to test high power battery pack

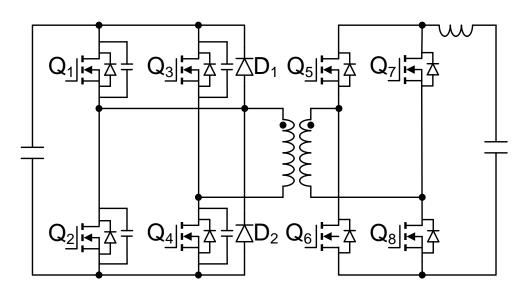
Infineon's solutions to Battery formation

AC/DC Stage: Bi-directonal converter				
Power	Stage	CoolMOSTM & IGBT	Driver	
2 KW	PFC	IPW60R090CFD7 TrenchtopTM H5		
4KW	rro	IPW60R040CFD7 TrenchtopTM H5	2EDFx 2EDSx 2EDNx	
2 KW	Isolated	IPW60R105CFD7	1EDIX	
4KW	DC/DC_Primary Side	IPW60R090CFD7		
Auxiliary power supply		CoolSET TM 5 - ICE5QR4780AZ		
Microcontroller		XMC 4000 family		


Isolated DC-DC Secondary side*					
Vout	MOSFET Breakdown Voltage	SMD package OptiMOSTM 6 & OptiMOSTM 5			
		D2PAK	SS08	TOLL	D2PAK-7
12 V	40 V	IPB015N04L $G(1.5m\Omega)$	BSC007N04LS6(0.7 mΩ)	IRL40T209(0.7mΩ)**	IPB011N04L(1.1mΩ)
24V	60V	IPB019N06L3 G (1.9 mΩ)	BSC012N06NS(1.2 mΩ)	IPT007N06N(0.75mΩ)	IPB014N06N(1.4mΩ)
48 V	100 V	IPB020N10N5 (2.0 mΩ)	BSC027N10NS5 (2.7mΩ)	IPT015N10N5(1.5mΩ)	IPB017N10N5(1.7mΩ)
	150 V	IPB048N15N5(4.8mΩ)	BSC093N15NS5 (9.3mΩ)	IPT059N15N3(5.9mΩ)	IPB044N15N5(4.4mΩ)
96 V	200 V	IPB107N20N3 (10.7 mΩ)	BSC220N20NSFD(22 mΩ)	IPT111N20NFD(11.1mΩ)	
	Drivers	1EDN7550B 2EDF7275X			
Microcontroller		XMC 4000 family			

Non Isolated Bidirectional DC/DC stage*							
Vin MOSFET Breakdow Voltage	MOSFET Breakdown	SMD package OptiMOSTM 6 & OptiMOSTM 5				Through the hole package OptiMOStm & StronIRFET	
		D2PAK	SS08	TOLL	D2PAK-7	TO220	T0247
12 V	30 V	IRLS3813PbF (1.95mΩ)	BSC011N03LS(1.1 m Ω)	IPT004N03L(0.4mΩ)	IPB009N03L(0.95mΩ)	IRLB3813(1.95mΩ)	IRFP3703 (2.8mΩ)
24 V	40V	IPB015N04L G (1.5mΩ)	BSC007N04LS6(0.7 mΩ)	IRL40T209(0.7mΩ)**	IPB011N04L(1.1mΩ)	IRLB3034 (2.0mΩ)	IRFP7430PBF(1.3mΩ)
24 V	60V	IPB019N06L3 G (1.9 mΩ)	BSC012N06NS(1.2 mΩ)	IPT007N06N(0.75mΩ)	IPB014N06N(1.4mΩ)	IPP020N06N(2.0mΩ)	IRFP7530(2.0mΩ)
48 V	100V	IPB020N10N5 (2.0 mΩ)	BSC027N10NS5 (2.7mΩ) BSC093N15NS5 (150V, 9.3mΩ)	IPT015N10N5(1.5mΩ)	IPB017N10N5(1.7mΩ)	IPP023N10N5(2.3 mΩ)	IRF100P219(1.7 mΩ)
96 V	200V	IPB107N20N3 (10.7 mΩ)	BSC220N20NSFD(22 mΩ)	IPT111N20NFD(11.1mΩ)		IPP110N20N3(11 mΩ)	IRF200P222(6.6 mΩ)
	Driver 1EDN7550B 2EDF7275X						

^{*} Best in class products for given package ** StrongIRFET


Bidirectional system: isolated HV DC/DC stage

Isolated bidirectional DC-DC demonstration board

Copyright © Infineon Technologies AG 2019. All rights reserved.

Specification:

V_{in}: 360-420 V_{dc} (400 V nom.)

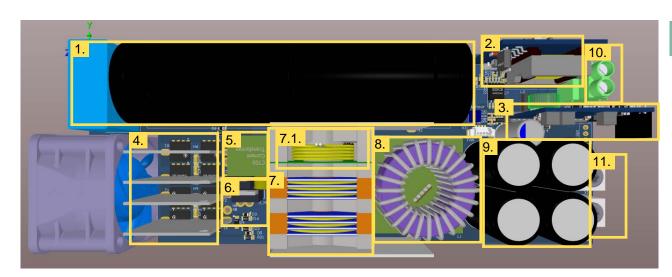
V_{out}: 40-60 V (54.5 V nom.)

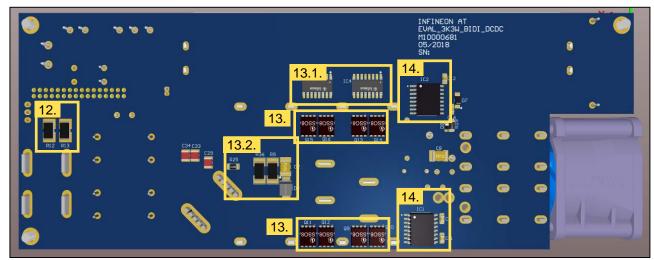
• P_{out}: 3300 W

2019-06-28

Topology: ZVS PSFB

Power density: 96 W/in³ (without fan)


Peak efficiency: 98.07% at charging mode (with bias supply)


Peak efficiency: 97.57% at discharging mode (with bias supply)

HV & LV bus voltage	Designator	Part number
HV bus 400 V	Q ₁ -Q ₄	IPL60R075CFD7 two pieces in parallel
	D ₁ -D ₂	IDH08G65C6
	Driver IC Q ₁ -Q ₄	2EDS8265H
LV bus 12 V	Q ₅ -Q ₈	BSC007N04LS6 four pieces in parallel
LV bus 24 V	Q ₅ -Q ₈	BSC025N08LS5 four pieces in parallel
LV bus 48 V	Q_5 - Q_8	BSC093N15NS5 four pieces in parallel
	Driver IC Q ₅ -Q ₈	2EDF7275F
	AUX controller	ICE5QSAG
	AUX flyback MOSFET	IPU80R4K5P7

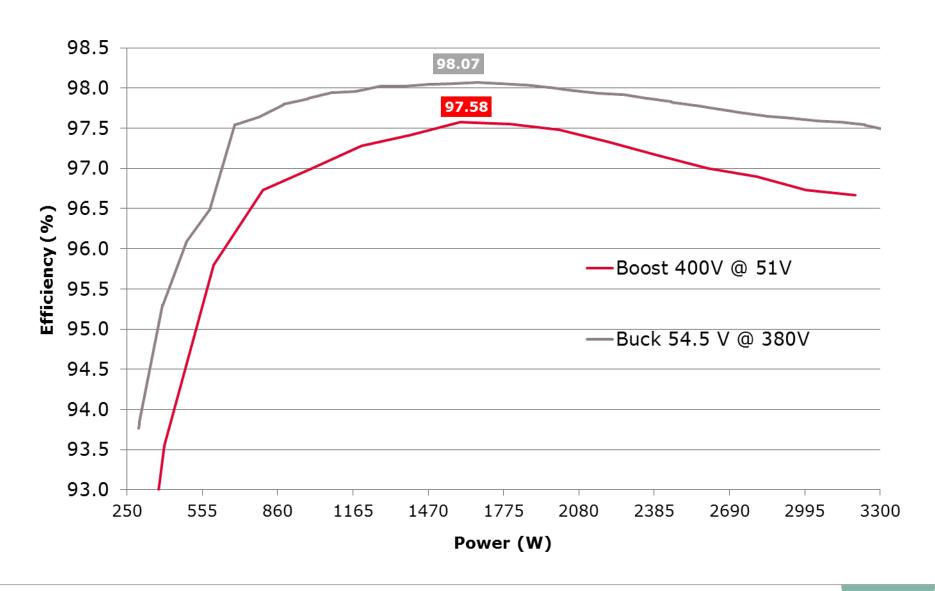
Board distribution

Copyright © Infineon Technologies AG 2019. All rights reserved.

Functional blocks

- 1. HV bulk
- Bias supply
- Control card
- HV bridge
- C. sence
- C. diodes
- Maintransformer
- 7.1. LR
- Output choke 8.
- Output capasitor
- Input connector
- 11. Output connector
- 12. Output shunt
- 13. Synchronous rectification
- 13.1. Functional isolated driver (SR)
- 13.2. Snubber (SR)
- 14. Reinforced isolated drivers (bridge)

*SR - Synchronous rectification


Functional blocks

- 1. HV bulk
- 2. Bias supply
- 3. Control card
- 4. HV bridge
- 5. C. sence
- 6. C. diodes
- 7. Maintransformer
- 7.1. LR
- 8. Output choke
- 9. Output capasitor
- 10. Input connector
- 11. Output connector
- 12. Output shunt
- 13. Synchronous rectification
- 13.1. Functional isolated driver (SR)
- 13.2. Snubber (SR)
- 14. Reinforced isolated drivers (bridge)

*SR - Synchronous rectification

Efficiency Bias and fan included

Agenda

- 1 Introduction
- What is battery formation (BF)
- Battery formation power systems
- 4 Summary

Summary

The next years will see an increasing demand for batteries, especially for EVs

Copyright © Infineon Technologies AG 2019. All rights reserved.

- > Today, bottleneck in battery production is the battery formation process, which is:
 - time consuming
 - cost intensive
 - high power demanding
- Infineon offers a full system power solution that enables you to:
 - 1. Increase power density
 - 2. Improve efficiency
 - 3. Lower system cost and energy recycling
- 3.3 KW DC-DC demonstration board available request one now!
- Visit: <u>www.infineon.com/batteryformation</u>

Summary

- The next years will see an increasing demand for batteries, especially for EVs
- > Today, bottleneck in battery production is the battery formation process, which is:
 - time consuming
 - cost intensive
 - high power demanding
- Infineon off
 - 1. Increase
 - 2. Improve 6
 - 3. Lower sys
-) 3.3 KW DC
- Visit: www.

Remember:

Every battery needs formation

Part of your life. Part of tomorrow.