BTN7030-1EPA Power dissipation Application Note

About this document

Scope and purpose

This document compiles application hints for the application of the BTN7030-1EPA, the NovalithIC™ Lite. This document must be used in conjunction with the device datasheets.

Intended audience

Developers, working with the BTN7030-1EPA.

Table of contents

About this document
Table of contents
1 Introduction
2 Power dissipation
 2.1 Conduction / RDS(ON) power dissipation
 2.2 Switching losses power dissipation
 2.3 Entire power dissipation of the MOSFETs
 2.4 Entire power dissipation in the actuator MOSFET
 2.5 Entire power dissipation in the freewheeling MOSFET
 2.6 Slew rate dependency on the supply voltage
3 Summary – Power dissipation in a nutshell
 3.1 Load to VS
 3.2 Load to GND
 3.3 Switching of resistive loads
4 Thermal performance
5 Revision history
1 Introduction

The NovalithIC™ Lite is part of an integrated half-bridge family, suitable for driving DC motors and solenoids. The device is a monolithic chip integrated in SMART7 technology. BTN7030-1EPA is a protected half-bridge with integrated driver, providing protection and diagnosis functions. The high side power stage is built using a N-channel vertical power MOSFET with charge pump, while the low side power stage uses no charge pump. This device has an exposed pad which ensures better cooling capabilities.

Figure 1 Application circuit example
2 Power dissipation

Power is dissipated in both the logic and in the individual MOSFETs of the device. The load currents in the MOSFETs generate most of the power dissipation. The following sections provide a basic method for calculating power dissipation in the MOSFET power stages to help the designer estimate overall power dissipation of the device. The power dissipation in the MOSFETs consists mainly of conducted losses and switching losses. Losses in the body diode only occur during the cross current protection phase.

2.1 Conduction / RDS(ON) power dissipation

In the ON-state, a MOSFET has a specific R_{ON} ($R_{DS(ON)}$) which is listed in the data sheet. The $R_{DS(ON)}$ is different for the high-side (HS) and the low-side (LS) MOSFETs. This means that $R_{DS(ON)(LS/HS)}$ must be selected according to currently active power stage. A current flowing through this MOSFET generates the following conducted losses:

\[
P_{RDSON} = I_{OUT}^2 \cdot R_{DS(ON)(LS/HS)}
\]

Equation 1

When the NovalithIC™ Lite is driven in a static condition, without PWM, the above equation can be used to estimate the static conduction losses for the high-side or low-side MOSFETs.

For static reverse current operation of the MOSFETS, the corresponding ON-state resistance values $R_{DS(INV)(LS/HS)}$ are provided in the data sheet of the BTN7030-1EPA for both high-side and low-side switch.

2.2 Switching losses power dissipation

With PWM control, switching losses need to be considered because they generate most of the power dissipation for high PWM frequencies. As the NovalithIC™ Lite is designed to drive motors or other inductive loads, this chapter describes switching losses generated while driving an inductive load in PWM mode.
Figure 2 shows low side PWM operation of a load connected to VS. Current flows in the low side MOSFET when activated, and recirculates in the high side MOSFET when the low side MOSFET is OFF. During the time between the high side turning off and the low side turning on, current flows in the body diode of the high-side MOSFET. The motor winding inductance prevents instantaneous changes in current (per Lenz' rule), resulting in current flow in both the high-side body diode and low-side MOSFET during the switching period. While current flows in the high-side body diode the output voltage is fixed to $V_{DS(DIODE)}$ above VS. Once the low-side MOSFET supports the full load current, the output voltage decreases to $I_{LS} \cdot R_{DS(ON)}$.

The rise- and fall- time shown in Figure 2 is dependent on the supply voltage and can be estimated based on the switching ON/OFF slew rate dV/dt, which is given in the data sheet:

$$t_{rf} = t_{xs-ON/OFF} = \frac{V_S}{(dV/dt)_{xs-ON/OFF}}$$

Equation 2

The equation above can be used to perform calculations using the corresponding HS/LS data sheet parameters. The slew rate provided in the data sheet is for $VS = 18\, \text{V}$, representing the worst-case scenario.

Other assumptions, with a minor effect on the result, include the following:

- The load current during the switching process is constant.
- V_{OUT} and $V_{DS(HS)}$ have linear behavior.
- The switching times are assumed as equal and in the following always referred to as t_{rf}.

The switching energy E_{SW} is shown in Figure 2, and can be estimated using the equation below:
Using the formula for switching energy E_{SW} the average power loss P_{SW} can be determined by multiplying E_{SW} with two switching times per PWM period. This is shown here:

$$P_{SW} = \frac{1}{2} \cdot V_S \cdot I_{OUT} \cdot t_{rf} \cdot 2 \cdot f_{PWM} = V_S \cdot I_{OUT} \cdot t_{rf} \cdot f_{PWM}$$

Equation 4

The NovalithIC™ Lite has a cross-current protection mechanism which ensures that an output MOSFET is turned ON only when the other one is OFF. This causes a freewheeling current through the MOSFET body diode $V_{DS(DIODE)}(xS)$ before the resistive path is switched on. The power dissipation caused by the body diode can be calculated as follows:

$$P_{BD} = I_{OUT} \cdot V_{DS(DIODE)}$$

Equation 5

2.3 Entire power dissipation of the MOSFETs

The average power dissipation in PWM-mode consists of the switching losses plus the conducted losses. We must take into account that the losses occur in the high-side (HS) and low-side (LS) MOSFET. In the example where the motor is connected to VS, the switching losses occur in the low-side MOSFET. The conducted losses occur in the low-side MOSFET during the ON-phase and in the high-side MOSFET in the freewheeling phase, as shown in Figure 2. In PWM-mode, the PWM-period-time is:

$$T_{PWM} = \frac{1}{f_{PWM}}$$

Equation 6

The duty cycle (DC) of the PWM-mode is the relation between the ON-time and the PWM-period-time defined as

$$DC = \frac{T_{ON}}{T_{PWM}}$$

Equation 7

All timings and occurring power dissipation sources for a motor-to-VS scenario is illustrated in Figure 3 below.
For the motor-to- VS scenario the resulting activation time of the actuator, the low-side MOSFET is:

$$T_{\text{act}} = T_{\text{OFF}} = T_{\text{PWM}} - T_{\text{ON}} = (1 - \text{DC}) \cdot T_{\text{PWM}}$$

Equation 8

2.4 Entire power dissipation in the actuator MOSFET

In the motor-to-GND scenario the active MOSFET is the high-side (HS) MOSFET and in motor-to- VS scenario, the active MOSFET is the low-side (LS) MOSFET, as shown in Figure 2. The entire power dissipation consists of two times the switching losses plus the conducted losses in the ON-phase, as shown in Figure 3. The time of the ON-phase in PWM-mode is provided by the following equation:

$$t_{\text{act}} = T_{\text{OFF}} - t_{\text{pfw}} - t_{rf}$$

Equation 9

This results in a total energy per PWM cycle for the actuator MOSFET, consisting of the switching and conduction / $R_{\text{DS(ON)}}$ losses:

$$E_{\text{act}} = E_{\text{SW}} + E_{\text{RDSON-LS}} = V_s \cdot I_{\text{OUT}} \cdot t_{rf} + I_{\text{OUT}}^2 \cdot R_{\text{DS(ON)(LS)}} \cdot t_{\text{act}}$$

Equation 10

This results in an average power dissipation in the actuator MOSFET:

$$P_{\text{act}} = E_{\text{act}} \cdot f_{\text{PWM}} = (V_s \cdot I_{\text{OUT}} \cdot t_{rf} + I_{\text{OUT}}^2 \cdot R_{\text{DS(ON)(LS)}} \cdot t_{\text{act}}) \cdot f_{\text{PWM}}$$

Equation 11
\(P_{act} \) is an estimation of the average power dissipation in the active MOSFET. In Figure 2, this is the low-side MOSFET for the motor-to-VS scenario.

2.5 Entire power dissipation in the freewheeling MOSFET

In the motor-to-VS scenario, the freewheeling MOSFET is the high-side MOSFET, as shown in Figure 2, and in the motor-to-GND scenario, the freewheeling MOSFET is the low-side MOSFET. The entire power dissipation consists of the conduction / \(R_{DS(ON)} \) losses in the freewheeling phase and twice the passive freewheeling losses. The passive freewheeling losses calculate as follows:

\[
E_{pfw} = V_{DS(DIODE)(LS)} \cdot I_{OUT} \cdot t_{pfw}
\]

Equation 11

The body diode voltage for the both high-side and low-side MOSFETs \(V_{DS(DIODE)(xS)} \) can be found in the data sheet. For the durations of the passive freewheeling, the blank time between switches activation, also provided in the datasheet can be used:

\[
t_{pfw} = t_{BLANK(xS-xS)}
\]

Equation 12

The duration of the active freewheeling phase in PWM-mode is provided by the equation below:

\[
t_{afw} = T_{ON} - t_{rf} - t_{pfw} = DC \cdot T_{PWM} - t_{rf} - t_{pfw}
\]

Equation 13

The equation to determine the energy generated during the active freewheeling in the corresponding freewheeling MOSFET together with the dedicated ON-state resistance for inverse currents:

\[
E_{afw} = I_{OUT}^2 \cdot R_{DS(INV)(HS)} \cdot t_{afw}
\]

Equation 14

From the two energy equations above, the average power dissipation in the freewheeling MOSFET can be determined by multiplying the sum by \(f_{PWM} \):

\[
\overline{P_{fw}} = (2 \cdot E_{pfw} + E_{afw}) \cdot f_{PWM} = I_{OUT} \cdot (2 \cdot V_{DS(DIODE)(LS)} \cdot t_{pfw} + I_{OUT} \cdot R_{DS(ON)(HS)} \cdot t_{afw}) \cdot f_{PWM}
\]

Equation 15

This is an estimation of the average power dissipation in the freewheeling MOSFET. In Figure 2, this is the high-side MOSFET for the load-to-VS scenario.
2.6 Slew rate dependency on the supply voltage

In the motor-to-GND scenario the active MOSFET is the high-side (HS) MOSFET and in motor-to-VS scenario, the active MOSFET is the low-side (LS) MOSFET, as shown in Figure 2.

While in the datasheet the value is provided for $V_S = 18\, \text{V}$, the slew rate dV/dt also has a certain dependency on V_S. The typical value is shown in the following figures.

Figure 4 Typical switch-ON slew rate LS dependency on the supply voltage V_S

Figure 5 Typical switch-OFF slew rate LS dependency on the supply voltage V_S
3 Summary – Power dissipation in a nutshell

An overview of necessary steps to estimate the power dissipation for the load-to-VS scenario is summarized in the following table.

3.1 Load to VS

Table 1 Summary power dissipation load to VS

<table>
<thead>
<tr>
<th>Timing diagram</th>
<th>Load to VS (high-side freewheeling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IN</sub></td>
<td>t<sub>pfw</sub> t<sub>rf</sub> t<sub>act</sub></td>
</tr>
<tr>
<td>V<sub>OUT</sub></td>
<td>t<sub>pfw</sub> t<sub>rf</sub> t<sub>act</sub></td>
</tr>
</tbody>
</table>

Application parameters
- Supply voltage: V_S
- Load current: I_{OUT}
- PWM frequency: f_{PWM}
- PWM Duty-cycle: DC

BTN7030-1EPA Data sheet parameters
- Switch ON/OFF slew rate: (dV/dt)_{ON-OFF}
- ON-state resistance, low-side: R_{DS(ON)(LS)}
- ON-state resistance, high-side switch: R_{DS(ON)(HS)}
- Blank time between switches activation HS to LS: t_{BLANK(HS-LS)}

Timings
1. t_{rf} = \(\frac{V_s}{(dV/dt)_{SS-ONOFF}} \)
2. t_{pfw} = t_{BLANK(HS-LS)}
3. T_{PWM} = \(\frac{1}{f_{PWM}} \)
4. T_{ON} = DC · T_{PWM}
5. T_{OFF} = T_{PWM} - T_{ON}
6. t_{act} = T_{OFF} - t_{pfw} - t_{rf}
7. t_{afw} = T_{ON} - t_{rf} - t_{pfw} = DC · T_{PWM} - t_{rf} - t_{pfw}

Low-side losses
1. Average switching losses:
 \(\overline{P_{SW}} = V_s \cdot I_{OUT} \cdot t_{rf} \cdot f_{PWM} \)
Load to VS
(high-side freewheeling)

2. Average conduction / $R_{DS(ON)}$ losses:
 \[P_{RDSON-LS} = (I_{OUT}^2 \cdot R_{DS(ON)(LS)} \cdot t_{act}) \cdot f_{PWM} \]

3. Total average losses low-side:
 \[P_{LS} = P_{SW} + P_{RDSON-LS} \]

High-side losses

1. Passive FW – average body-diode freewheeling losses:
 \[P_{pfw} = 2 \cdot V_{DS(DIODE)(HS)} \cdot I_{OUT} \cdot t_{pfw} \cdot f_{PWM} \]

2. Active FW – average conduction / $R_{DS(ON)}$ losses:
 \[P_{afw} = I_{OUT}^2 \cdot R_{DS(INV)(HS)} \cdot t_{afw} \cdot f_{PWM} \]

3. Total average losses high-side:
 \[P_{HS} = P_{pfw} + P_{afw} \]

3.2 Load to GND

Table 2 Summary power dissipation load to GND

| Timing diagram | Load to GND
| (low-side freewheeling) |
|----------------|------------------|
| V_IN | V_OUT |
| \(t_f \) | \(t_{pfw} \) | \(t_{afw} \) | \(t_{pfw} \) | \(t_f \) | \(t_{act} \) |

Application parameters

- Supply voltage: V_S
- Load current: I_{OUT}
- PWM frequency: f_{PWM}
- PWM Duty-cycle: DC

BTN7030-1EPA Data sheet parameters

- Switch ON/OFF slew rate: \((dV / dt)_{X=S-ON/OFF}\)
- ON-state resistance, low-side: \(R_{DS(ON)(LS)}\)
- ON-state resistance, high-side switch: \(R_{DS(INV)(HS)}\)
- Blank time between switches activation LS to HS: \(t_{BLANK(LS-HS)}\)

Timings

1. \[t_{rf} = \frac{V_S}{(dV/dt)_{X=S-ON/OFF}} \]

2. \[t_{pfw} = t_{BLANK(LS-HS)} \]
3.3 Switching of resistive loads

In the data sheet the typical energy dissipated for an output voltage transition between 10% and 90% for one single ON or OFF switching event is provided with $E_{\text{ON}}(\text{xS})$ or $E_{\text{OFF}}(\text{xS})$ for a resistive load for both the high-side (HS) and low-side (LS) MOSFET.

The value in the datasheet is valid for the default testing load of $R_{\text{load}} = 3.3 \, \Omega$ with a negligible inductance. This results in a static current after full switching on of the MOSFET:

$$I_{\text{OUT}} = \frac{V_S}{R_{\text{load}}} = \frac{13.5 V}{3.3 \, \Omega} = 4.09 \, A$$

Equation 16

For the switch ON energy measurement, the load current increases from 0 A linear with the output voltage until the steady state current of 4.09 A. While for the switch OFF voltage the current decreases from the steady state down to 0 A.
4 Thermal performance

The parameters $R_{\text{thJA(LS/HS)}}$ (thermal resistance junction to ambient) and R_{thJC} (thermal resistance junction to case) are important for the package. The necessary cooling area can be estimated based on these values, which is important for the design. In order to ensure comparability, these values are specified assuming a setup according to JEDEC JESD51-2,-5,-7 placing the device on FR4 1s0p or 2s2p board at natural convection, with an ambient temperature $T_A = 25^\circ\text{C}$ and a given power $P = 1\ \text{W}$.

![Graph showing typical thermal impedance for $T_{\text{ambient}} = 85^\circ\text{C}$; Simulation with 1 W of power dissipation](image)

Figure 6 Typical thermal impedance for $T_{\text{ambient}} = 85^\circ\text{C}$; Simulation with 1 W of power dissipation

Typical values for junction to ambient thermal resistance are:

- HSS: typ = 36 K/W
- LSS: typ = 32.5 K/W
5 Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2020-11-24</td>
<td>Chapter Introduction updated</td>
</tr>
<tr>
<td>1.0</td>
<td>2020-08-28</td>
<td>First release</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the type in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.