

Two throws low resistance antenna tuning switch

Features

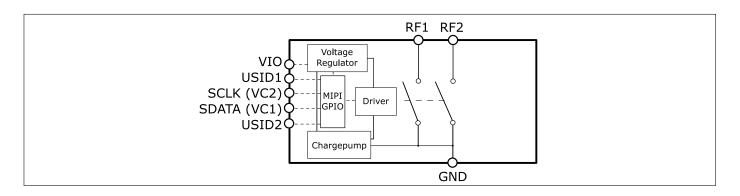
- Low R_{ON} resistance of 1.40 Ω at each port in ON state
- Low C_{OFF} capacitance of 157 fF at each port in OFF state
- High RF operating peak voltage handling of 50 V in OFF state
- · Low harmonic generation
- MIPI RFFE 2.1 control interface
- Support of MIPI and GPIO control modes
- 1.8 V and 1.2 V V_{IO} operation
- Extremely low current consumption of 22 μA
- Switching time < 5 μs
- Self-resonant frequency >8250 MHz
- Small form factor 1.1 mm x 1.1 mm (MSL1, 260 °C per JEDEC J-STD-020)

Infineon

Potential applications

- Impedance, antenna and inductance tuning
- Tunable filters

Product validation


Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Description

The BGSA200ML9 is a versatile shunt to ground 2 x Single-Pole Single-Throw (2xSPST) RF antenna tuning switch. It is optimized for low C_{OFF} as well as low R_{ON} enabling applications up to 8.25GHz; ideally fitting for antenna tuning purpose.

The BGSA200ML9 integrates on-chip CMOS logic and power supply regulation. Thanks to its 4 states USID1 and USID2 feature, it can be controlled either with GPIO lines or MIPI RFFE bus. Each switch throw can be programmed individually or altogether. Up to 3 instantiations of the same device can be controlled using the same RFFE bus when in MIPI RFFE mode.

Block diagram

Туре	Marking	Package	Ordering Information
BGSA200ML9	A2	TSLP-9-8	BGSA 200ML9 E6327

Two throws low resistance antenna tuning switch

Table of Contents

Table of Contents

1	Maximum ratings	2
2	DC characteristics	4
3	RF small signal characteristics	5
4	RF large signal parameter	6
5	MIPI RFFE specification	8
6	Application information	16
7	Package information	18

1

Two throws low resistance antenna tuning switch

Maximum ratings

1 Maximum ratings

Table 1: Maximum ratings table at $T_A = 25 \,^{\circ}\text{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Frequency range	f	0.4	_	8.25	GHz	1)	
RFFE supply voltage ²⁾	V _{IO}	-0.3	_	2.2	V	Only for infrequent and short	
						duration time periods	
Storage temperature range	T _{STG}	-55	_	150	°C	-	
RF peak voltage	V _{RF_max}	-	_	55	V	Short term peaks (1 µs in 0.1%	
						duty cycle), exceeding typical	
						linearity, R_{ON} and C_{OFF} param-	
						eters, in Isolation mode, test	
						condition schematic in Fig. 1	
ESD robustness, CDM ³⁾	$V_{ESD_{CDM}}$	-1	_	+1	kV		
ESD robustness, HBM ⁴⁾	$V_{ESD_{HBM}}$	-2	_	+2	kV		
Junction temperature	Tj	-	-	125	°C	-	
Thermal resistance junction - soldering point	R _{thJS}	_	_	50	K/W	-	
Maximum DC-voltage on RF-Ports and RF-	V _{RFDC}	0	_	0	V	No DC voltages allowed on RF-	
Ground						Ports	
RFFE control voltage levels	V _{SCLK} ,	-0.7	_	V _{IO} +0.7	V	-	
	V_{SDATA}			(max.			
				2.2)			

¹⁾ Switch has a low-pass response. For higher frequencies, losses have to be considered for their impact on thermal heating. The DC voltage at RF ports V_{RFDC} has to be 0 V.

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²⁾ Note: Consider any ripple voltages on top of V_{IO} . A high RF ripple at the V_{IO} can exceed the maximum ratings by $V_{IO} = V_{DC} + V_{Ripple}$.

³⁾ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

 $^{^{4)}}$ Human Body Model ANSI/ESDA/JEDEC JS-001 (R=1.5 k Ω , C=100 pF).

Two throws low resistance antenna tuning switch

Maximum ratings

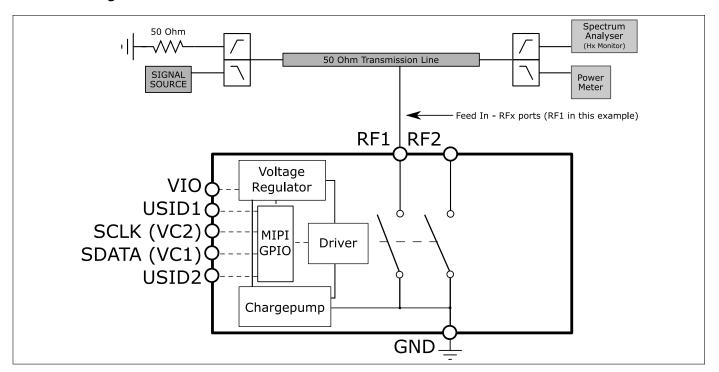


Figure 1: RF operating voltage and harmonic distortion measurement configuration

Two throws low resistance antenna tuning switch

DC characteristics

2 DC characteristics

Table 2: DC characteristics at T_A = -40 °C to 85 °C

Parameter	Symbol	Symbol Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	V _{IO}	1.1		1.3	٧	-	
Supply voltage	V _{IO}	1.65		1.95	٧	-	
Input high voltage ¹⁾	V _{IH}	0.7*V _{IO}	-	V _{IO}	٧	-	
Input low voltage ¹⁾	V _{IL}	0	-	0.3*V _{IO}	٧	-	
Output high voltage ¹⁾	V _{OH}	0.8*V _{IO}	-	V _{IO}	٧	-	
Output low voltage ¹⁾	V _{OL}	0	-	0.2*V _{IO}	٧	-	
Control input capacitance	C _{Ctrl}	_	-	2	pF	-	
Supply current	I _{VIO}	-	22	40	μА	Normal operating conditions after power ON in either MIPI RFFE ²⁾ or GPIO control mode, ≤ 35 dBm RF power	
		-	1.1	1.7	μА	SECONDARY_ACTIVE mode (LOW POWER) in MIPI RFFE mode ²⁾ with analog circuitry powered OFF	

¹⁾SCLK (VC2) and SDATA (VC1) ²⁾No traffic on MIPI bus

Two throws low resistance antenna tuning switch

RF small signal characteristics

3 RF small signal characteristics

Table 3: Parametric specifications for each SPST at T_A = 25 °C, Z_0 = 50Ω , V_{IO} = 1.1 V... 1.3 V / 1.65 V... 1.95 V

Parameter	Symbol	Values			Unit	STATE / Notes
		Min.	Тур.	Max.		
RF1 or RF2 to GND	R _{ONSPST}	_	1.40	1.55	Ω	
DC ON resistance						
RF1 or RF2 to GND	$C_{OFF_{SPST}}$	_	157	165	fF	
OFF capacitance, 1 GHz ¹⁾						

¹⁾ OFF capacitance calculated from Y11 parameters

Table 4: RF electrical parameters at $T_{\rm A}$ = -40 °C to 85 °C, Z_0 = $50\,\Omega$, V_{IO} = $1.1\,\rm V...1.3\,V / 1.65\,V...1.95\,V$ Isolation RF to RF (All OFF / Isolation Mode) ¹⁾

	· · · · · · · · · · · · · · · · · · ·					
380 - 600 MHz		47	50	-	dB	
600 - 960 MHz		43	45	-	dB	
1160 - 1300 MHz		41	42	-	dB	
1400 - 1700 MHz		38	40	-	dB	
1700 - 2200 MHz	ISO	37	38	-	dB	State 0
2200 - 2700 MHz		35	37	-	dB	
3300 - 4200 MHz		32	34	-	dB	
4400 - 5000 MHz		31	32	-	dB	
5150 - 5925 MHz		31	32	-	dB	
5950 - 7125 MHz		31	32	-	dB	
Isolation RF to RF (RFx ON Mode	e) ¹⁾					
380 - 600 MHz		67	72	-	dB	
600 - 960 MHz		59	64	-	dB	
1160 - 1300 MHz		55	56	-	dB	
1400 - 1700 MHz		50	52	-	dB	
1700 - 2200 MHz	ISO	45	49	-	dB	State 1, 2
2200 - 2700 MHz		42	45	-	dB	
3300 - 4200 MHz		35	38	-	dB	
4400 - 5000 MHz		32	34	-	dB	
5150 - 5925 MHz		29	31	-	dB	
5950 - 7125 MHz		27	29	-	dB	

¹⁾On application board without any matching components

Two throws low resistance antenna tuning switch

RF large signal parameter

4 RF large signal parameter

Table 5: RF large signal specifications at $T_{\rm A}$ = -40 °C to 85 °C, $Z_{\rm 0}$ = $50\,\Omega$, $V_{\rm IO}$ = $1.1\,\rm V...1.3\,V$ / $1.65\,\rm V...1.95\,V$, unless otherwise specified

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
RF operating voltage	V_{RF_opr}	_	_	50	V	In Isolation mode, 900MHz	
						test condition schematic in Fig. 1.	
						For H2 /H3 ≤ -40 dBm, T _A = 25° C	
Harmonic Generation up to	15 GHz, OFF m	ode					
All RF ports	P _{H2}	_	-88	-78	dBm	26 dBm, 50 Ω , f_0 = 663 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-99	-86	dBm	26 dBm, 50 Ω , f_0 = 663 MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-72	-66	dBm	35 dBm, 50 Ω , f_0 = 915 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-75	-70	dBm	35 dBm, 50 Ω , f_0 = 915 MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-71	-67	dBm	33 dBm, 50 Ω , $f_0 = 1910$ MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-75	-73	dBm	33 dBm, 50 Ω , $f_0 = 1910$ MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-72	-68	dBm	29 dBm, 50 Ω , f_0 = 2690 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-84	-81	dBm	29 dBm, 50 Ω , f_0 = 2690 MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-67	-65	dBm	29 dBm, 50 Ω , f_0 = 3600 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-80	-77	dBm	29 dBm, 50 Ω , f_0 = 3600 MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-67	-64	dBm	29 dBm, 50 Ω , f_0 = 4400 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-77	-74	dBm	29 dBm, 50 Ω , f_0 = 4400 MHz	
3rd order harmonics							
All RF ports	P _{H2}	_	-61	-58	dBm	29 dBm, 50 Ω , f_0 = 5000 MHz	
2nd order harmonics							
All RF ports	P _{H3}	_	-77	-74	dBm	29 dBm, 50 Ω , f_0 = 5000 MHz	
3rd order harmonics							
All RF ports	P_{H2}	_	-64	-61	dBm	26 dBm, 50Ω , $f_0 = 6000 \text{ MHz}$	
2nd order harmonics							
All RF ports	P _{H3}	_	-86	-83	dBm	26 dBm, 50 Ω , f_0 = 6000 MHz	
3rd order harmonics							
All RF ports	P _{Hx}	_	_	-80	dBm	29 dBm, 50 Ω	
> 3rd order harmonics							

Two throws low resistance antenna tuning switch

RF large signal parameter

Table 6: RF large signal specifications at $T_{\rm A}$ = -40 °C to 85 °C, $Z_{\rm 0}$ = $50~\Omega$, $V_{\rm IO}$ = $1.1~\rm V...1.3~\rm V$ / $1.65~\rm V...1.95~\rm V$

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Intermodulation distortion IIP2		-					
IIP2, low	IIP2,l	117	139	-	dBm	IIP2 conditions Tab. 7	
IIP2, high	IIP2,h	120	144	-	dBm		
Intermodulation distortion IIP3							
IIP3	IIP3	76	86	_	dBm	IIP3 conditions Tab. 8	

Table 7: IIP2 conditions table

Band	In-Band frequency	Blocker frequency 1	Blocker power 1	Blocker frequency 2	Blocker power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1 Low	2140	1950	20	190	0
Band 1 High	2140	1950	20	4090	0
Band 5 Low	881.5	836.5	20	45	0
Band 5 High	881.5	836.5	20	1718	0
Band 7 Low	2655	2535	20	120	0
Band 7 High	2655	2535	20	5190	0

Table 8: IIP3 conditions table

Band	In-Band frequency	Blocker frequency 1	Blocker power 1	Blocker frequency 2	Blocker power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1	2140	1950	20	1760	0
Band 5	881.5	836.5	20	791.5	0
Band 7	2655	2535	20	2415	0

Two throws low resistance antenna tuning switch

MIPI RFFE specification

5 MIPI RFFE specification

The MIPI RFFE interface is implemented according to the following specifications and documents:

- MIPI Alliance Specification for RF Front-End Control Interface version 2.1 18 December 2017
- MIPI Alliance Errata 01 for MIPI RFFE Specification Version v2.1 24 February 2019
- Qualcomm RFFE Vendor specification 80-N7876-1 Rev. Y (December 3, 2018)

Table 9: MIPI features

Feature	Supported	Comment
MIPI RFFE 2.1 standard	Yes	Backward compatible to MIPI 2.0 standard
Register 0 write command sequence	No	
Register read and write command sequence	Yes	
Extended register read and write command sequence	Yes	
Support for standard frequency range operations for	Yes	Up to 26 MHz
SCLK		
Support for extended frequency range operations for	Yes	Up to 52 MHz
SCLK		
Longer Reach RFFE Bus Length Feature	Yes	
Programmable driver strength	Yes	Up to 80 pF
Programmable Group SID	Yes	
Programmable USID	Yes	
Trigger functionality	Yes	
Extended Triggers and Trigger Masks	Yes	
Broadcast / GSID write to PM TRIG register	Yes	
Reset	Yes	Via VIO, PM TRIG or software register
Status / error sum register	Yes	
Extended product ID register	Yes	
Revision ID register	Yes	
Group SID register	Yes	
USID select pin	Yes	See Tab. 16

Table 10: Startup Behavior

Feature	State	Comment
Power status	Low power	Device in SECONDARY_ACTIVE mode (LOW POWER) after start-up
Trigger function	Enabled	Enabled after start-up. Programmable via behavior control register

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 11: Switching time behavior at T_A = 25 °C, Z_0 = 50Ω , V_{IO} = 1.1 V... 1.3 V / 1.65 V... 1.95 V

Parameter	Symbol		Values		Unit	STATE / Notes ^{1), 2)}
		Min.	Тур.	Max.		
ON switching time in MIPI control mode	t _{ON MIPI}	-	4.0	5.0	μs	Time from 50% last SCLK rising edge of the register write command to $V_{stop} + 0.1*(V_{start} - V_{stop})$, see Fig. 2
ON switching time in GPIO control mode	t _{ON GPIO}	-	4.0	5.0	μs	Time from VC1/VC2 low to high transition to V_{stop} + 0.1*(V_{start} - V_{stop}), see Fig. 3
OFF switching time in MIPI control mode	t _{OFF MIPI}	-	1.0	2.0	μs	Time from 50% last SCLK rising edge of the register write command to $V_{start} + 0.9*(V_{stop} - V_{start})$, see Fig. 2
OFF switching time in GPIO control mode	t _{OFF GPIO}	-	1.0	2.0	μs	Time from VC1/VC2 high to low transition to V_{start} + 0.9*(V_{stop} - V_{start}), see Fig. 3

 $^{^{-1)}}$ V_{start} is the starting RF voltage amplitude of the signal; V_{stop} is the ending RF voltage amplitude of the signal.

²⁾ RF power can be applied only 25 μs after analog ON command when in MIPI RFFE control mode and 25 μs after VIO powered up in GPIO control mode, see Fig. 2 and Fig. 3.

Two throws low resistance antenna tuning switch

MIPI RFFE specification

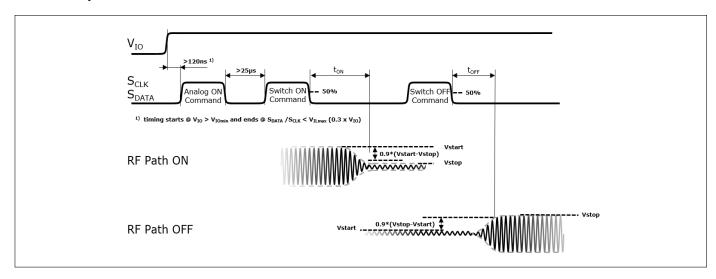


Figure 2: BGSA200ML9 MIPI switching time behavior

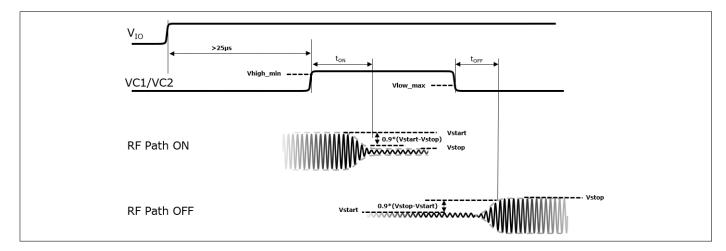


Figure 3: BGSA200ML9 GPIO switching time behavior

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 12: Register mapping, Table I

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W MW
0x01	REGISTER_1	7:0	MODE_CTRL	RF Switch Control	00000000	No	Yes	R/W
							Trigger 0-10	MW
0x1C	PM_TRIG	7	PWR_MODE(1)	0: Normal operation (ACTIVE)	1	Yes	No	R/W
			Operation Mode	1: Low Power Mode				MW
				(SECONDARY_ACTIVE)				
		6	PWR_MODE(0)	0: No action (ACTIVE)	0			
			State Bit Vector	1: Powered Reset (ACTIVE to STARTUP)				
		5	TRIGGER_MASK_2	0: Data masked (held in shadow REG)	0	No		
				1: Data not masked (ready for transfer to active REG)				
		4	TRIGGER_MASK_1	0: Data masked (held in shadow REG)	0			
				1: Data not masked (ready for transfer to active REG)				
		3	TRIGGER_MASK_0	0: Data masked (held in shadow REG)	0			
				1: Data not masked (ready for transfer to active REG)				
		2	TRIGGER_2	0: No action (data held in shadow REG)	0	Yes		
				1: Data transferred to active REG				
		1	TRIGGER_1	0: No action (data held in shadow REG)	0			
				1: Data transferred to active REG				
		0	TRIGGER_0	0: No action (data held in shadow REG)	0			
				1: Data transferred to active REG				
0x1D	PRODUCT_ID	7:0	PRODUCT_ID	This is a read-only register. However, during the programming of the USID a write command sequence is performed on this register, even though the write does not change its value.	10111101	No	No	R
0x1E	MAN_ID	7:0	MANUFACTURER_ID [7:0]	This is a read-only register. However, during the programming of the USID, a write command sequence is performed on this register, even though the write does not change its value.	00011010	No	No	R
0x1F	0x1F MAN_USID	7:4	MANUFACTURER_ID [11:8]	These bits are read-only. However, during the programming of the USID, a write command sequence is performed on this register even though the write does not change its value.	0001			
		3:0	USID[3:0]	USID_Sel pin	See Tab. 16	No	No	R/W

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 13: Register mapping, Table II

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W MW
0x20	EXT_PRODUCT_ID	7:0	EXT_PRODUCT_ID	Extension to PRODUCT_ID in register 0x1D. This is a read-only register. However, during the programming of the USID a write command sequence is performed on this register, even though the write does not change its value.	0000000	No	No	R
0x21	REV_ID	7:4	MAIN_REVISION	Chip main revision	0000	No	No	R
		3:0	SUB_REVISION	Chip sub revision	0000			
0x22	GSID	7:4	GSID0[3:0]	Primary Group Slave ID.	0000	No	No	R/W
		3:0	GSID1[3:0]	Secondary Group Slave ID.	0000			
0x23	UDR_RST	7	UDR_RST	Reset all configurable non-RFFE Reserved registers to default values. 0: Normal operation 1: Software reset	0	Yes	No	R/W
		6:0	RESERVED	Reserved for future use	0000000			
0x24	ERR_SUM	7	RESERVED	Reserved for future use	0	No	No	R
		6	COMMAND_FRAME_PARITY_ERR	Command Sequence received with parity error — discard command.	0			
		5	COMMAND_LENGTH_ERR	Command length error.	0			
		4	ADDRESS_FRAME_PARITY_ERR	Address frame with parity error.	0			
		3	DATA_FRAME_PARITY_ERR	Data frame with parity error.	0			
		2	READ_UNUSED_REG	Read command to an invalid address.	0			
		1	WRITE_UNUSED_REG	Write command to an invalid address.	0			
		0	BID_GID_ERR	Read command with a BROADCAST_ID or GROUP_ID.	0			
0x2B	BUS_LD	7:3	RESERVED	Reserved for future use	0x0	No	No	R/W
		2:0	BUS_LD[2:0]	Program the drive strength of the SDATA driver in readback modes. 0x0: 10 pF 0x1: 20 pF 0x2: 30 pF 0x3: 40 pF 0x4: 50 pF 0x5: 60 pF 0x6: 80 pF 0x7: 80 pF	0x4			

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 14: Register mapping, Table III

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W MW
0x2D	EXT_TRIG_MASK	7	TRIGGER_MASK_10	0: Data writes to registers tied to EXT_TRIGGER_10 are masked. Data is held in shadow registers until the EXT_TRIGGER_10 bit is set to 1.	1	No	No	R/W
				 Data writes to registers tied to EXT_TRIGGER_10 are not masked. Data writes go directly to the active registers. 				MW
		6	TRIGGER_MASK_9	0: Data writes to registers tied to EXT_TRIGGER_9 are masked. Data is held in shadow registers until the EXT_TRIGGER_9 bit is set to 1.	1			
				 Data writes to registers tied to EXT_TRIGGER_9 are not masked. Data writes go directly to the active registers. 				
		5	TRIGGER_MASK_8	0: Data writes to registers tied to EXT_TRIGGER_8 are masked. Data is held in shadow registers until the EXT_TRIGGER_8 bit is set to 1.	1			
				 Data writes to registers tied to EXT_TRIGGER_8 are not masked. Data writes go directly to the active registers. 				
		4	TRIGGER_MASK_7	0: Data writes to registers tied to EXT_TRIGGER_7 are masked. Data is held in shadow registers until the EXT_TRIGGER_7 bit is set to 1.	1			
				 Data writes to registers tied to EXT_TRIGGER_7 are not masked. Data writes go directly to the active registers. 				
		3	TRIGGER_MASK_6	0: Data writes to registers tied to EXT_TRIGGER_6 are masked. Data is held in shadow registers until the EXT_TRIGGER_6 bit is set to 1.	1			
				 Data writes to registers tied to EXT_TRIGGER_6 are not masked. Data writes go directly to the active registers. 				
		2	TRIGGER_MASK_5	0: Data writes to registers tied to EXT_TRIGGER_5 are masked. Data is held in shadow registers until the EXT_TRIGGER_5 bit is set to 1.	1			
				 Data writes to registers tied to EXT_TRIGGER_5 are not masked. Data writes go directly to the active registers. 				
		1	TRIGGER_MASK_4	0: Data writes to registers tied to EXT_TRIGGER_4 are masked. Data is held in shadow registers until the EXT_TRIGGER_4 bit is set to 1.	1			
				1: Data writes to registers tied to EXT_TRIGGER_4 are not masked. Data writes go directly to the active registers.				
		0	TRIGGER_MASK_3	0: Data writes to registers tied to EXT_TRIGGER_3 are masked. Data is held in shadow registers until the EXT_TRIGGER_3 bit is set to 1.	1			
				1: Data writes to registers tied to EXT_TRIGGER_3 are not masked. Data writes go directly to the active registers.				

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 15: Register mapping, Table IV

Register address	Register name	Data bits	Function	Description	Default	Broadcast_ID support	Trigger support	R/W MW
0x2E	EXT_TRIG	7	TRIGGER_10	0: No action. Data is held in shadow registers.	0	Yes	No	R/W
				Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_10				MW
		6	TRIGGER_9	0: No action. Data is held in shadow registers.	0			
			1: Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_9					
		5	TRIGGER_8	0: No action. Data is held in shadow registers.	0			
				1: Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_8				
		4	isters.	0				
				1: Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_7				
		3	TRIGGER_6	0: No action. Data is held in shadow registers.	0			
				Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_6				
		2	TRIGGER_5	0: No action. Data is held in shadow registers.	0			
				1: Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_5				
		1	TRIGGER_4	0: No action. Data is held in shadow registers.	0			
				Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_4				
		0	TRIGGER_3	0: No action. Data is held in shadow registers.	0			
				1: Data is transferred from shadow registers to active registers for refisters tied to EXT_TRIGGER_3				

Two throws low resistance antenna tuning switch

MIPI RFFE specification

Table 16: MIPI RFFE or GPIO mode selection

-	USID1	USID2
MIPI RFFE mode (USID address=0x03)	GND	GND
MIPI RFFE mode (USID address=0x04)	VIO	GND
MIPI RFFE mode (USID address=0x05)	GND	VIO
GPIO mode	VIO	VIO

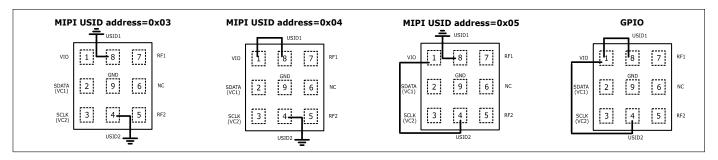


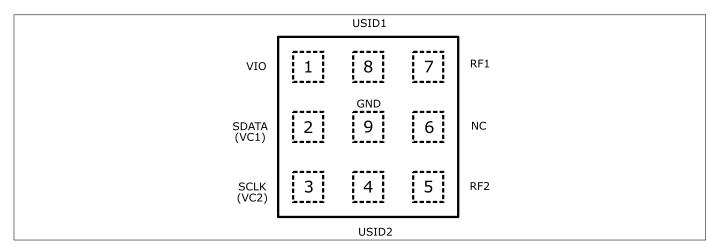
Figure 4: BGSA200ML9 mode selection and USID configuration

Table 17: MIPI mode control logic register

-	D7	D6	D5	D4	D3	D2	D1	D0
RF1+RF2 OFF (state 0)	х	х	х	х	х	х	0	0
RF1 ON (state 1)	Х	х	х	х	х	х	0	1
RF2 ON (state 2)	Х	х	х	х	х	х	1	0
RF1+RF2 ON (state 3)	Х	х	х	х	х	х	1	1

Table 18: GPIO mode control

-	VC1	VC2
RF1+RF2 OFF (state 0)	0	0
RF1 ON (state 1)	1	0
RF2 ON (state 2)	0	1
RF1+RF2 ON (state 3)	1	1


Two throws low resistance antenna tuning switch

Application information

6 Application information

Pin configuration and function

Figure 5: BGSA200ML9 pin configuration (top view)

Table 19: Pin definition and function

Pin No.	Name	Function
1	VIO	Voltage supply compatible with MIPI RFFE specification
2	SDATA(VC1)	MIPI RFFE data input / output (digital input when in GPIO mode)
3	SCLK(VC2)	MIPI RFFE clock input (digital input when in GPIO mode)
4	USID2	GPIO / MIPI mode (and USID default address) selection (see Tab. 16)
5	RF2	RF2 port
6	NC	Not connected
7	RF1	RF1 port
8	USID1	GPIO / MIPI mode (and USID default address) selection (see Tab. 16)
9	GND	Ground

Two throws low resistance antenna tuning switch

Application information

Evaluation board description

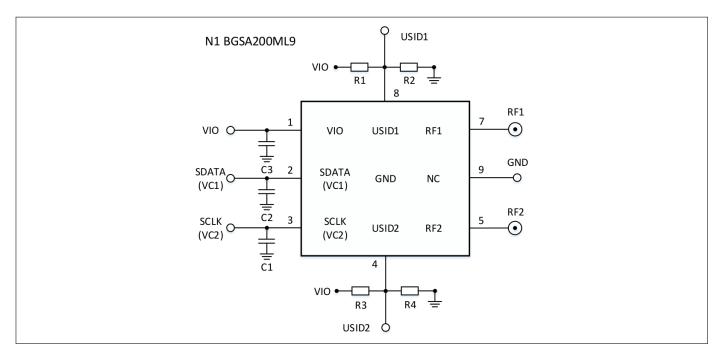


Figure 6: BGSA200ML9 application schematic

Table 20: Bill of Materials Table

Name	Part Type	Package	Manufacturer	Function
C1 (1nF optional) 1)	Capacitor	0402	Various	De-coupling capacitor
C2 (1nF optional) 1)	Capacitor	0402	Various	De-coupling capacitor
C3 (1nF optional) 1)	Capacitor	0402	Various	De-coupling capacitor
N1	BGSA200ML9	TSLP-9-8	Infineon	Antenna tuner
R1 (do not place), R2 (0 Ω)	Resistor	0402	Various	MIPI RFFE, USID address 0x03 (USID1 to GND and
R3 (do not place), R4 (0 Ω)				USID2 to GND)
R1 (0 Ω), R2 (do not place)	Resistor	0402	Various	MIPI RFFE, USID address 0x04 (USID1 to VIO and
R3 (do not place), R4 (0 Ω)				USID2 to GND)
R1 (do not place), R2 (0 Ω)	Resistor	0402	Various	MIPI RFFE, USID address 0x05 (USID1 to GND and
R3 (0 Ω), R4 (do not place)				USID2 to VIO)
R1 (0 Ω), R2 (do not place)	Resistor	0402	Various	GPIO (USID1 to VIO and USID2 to VIO)
R3 (0 Ω), R4 (do not place)				
			1	1

¹⁾ This capacitor is optional and value is only indicative. Decoupling capacitor value has to be chosen in order VIO ramp-up time is within MIPI RFFE version v2.1 specification

Package information

7 Package information

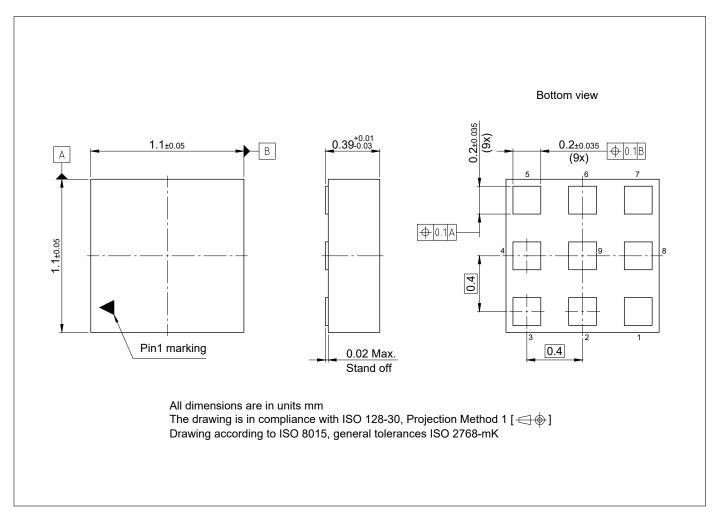


Figure 7: TSLP-9-8 Package outline (top, side and bottom views)

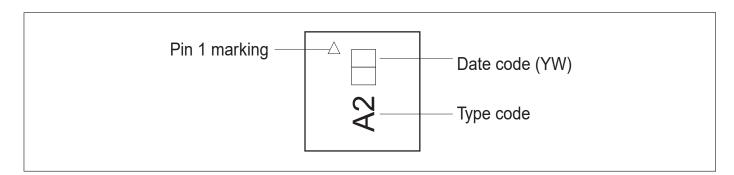


Figure 8: Marking specification (top view): Date code digits Y and W defined in Table 21/22

Two throws low resistance antenna tuning switch

Package information

Table 21: Year date code marking - digit "Y"

Year	"Y"	Year	"Y"	Year	"Y"
2010	0	2020	0	2030	0
2011	1	2021	1	2031	1
2012	2	2022	2	2032	2
2013	3	2023	3	2033	3
2014	4	2024	4	2034	4
2015	5	2025	5	2035	5
2016	6	2026	6	2036	6
2017	7	2027	7	2037	7
2018	8	2028	8	2038	8
2019	9	2029	9	2039	9

Table 22: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	v
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	Т	28	b	39	р	50	9
7	G	18	U	29	c	40	q	51	2
8	Н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	S	53	M
10	K	21	Υ	32	f	43	t		
11	L	22	Z	33	g	44	u		

Two throws low resistance antenna tuning switch

Package information

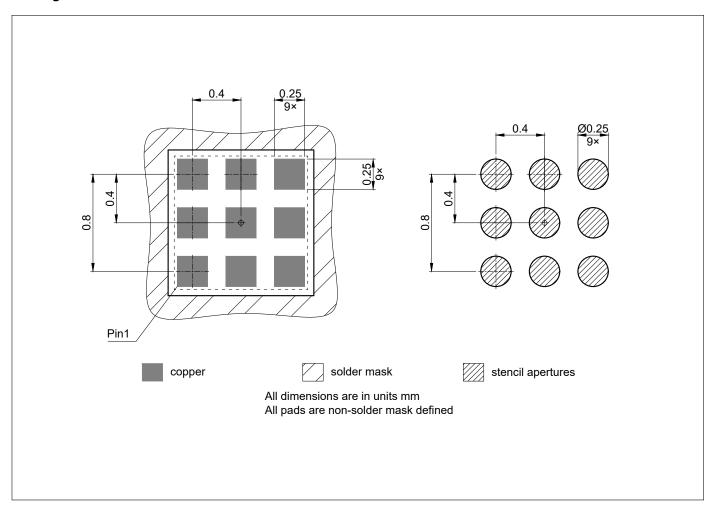


Figure 9: Footprint recommendation

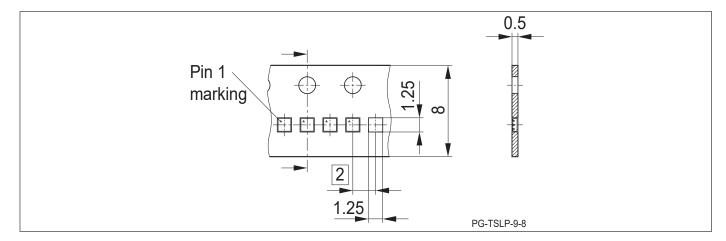


Figure 10: TSLP-9-8 carrier tape drawing (top and side views)

Two throws low resistance antenna tuning switch

Revision History	
Page or Item	Subjects (major changes since previous revision)
Revision 1.0, 202	3-06-13
All	Creation of datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-13 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.