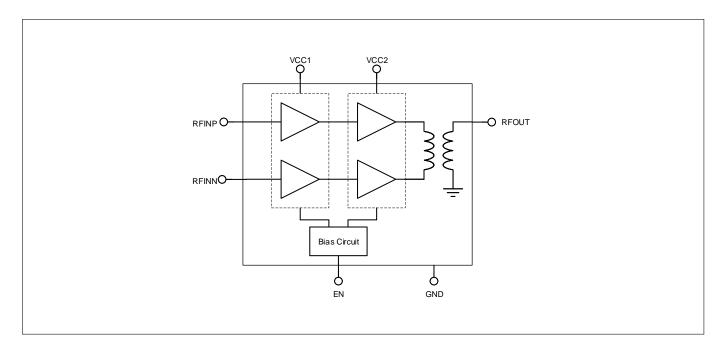


Pre-Driver for Doherty Power Amplifier

Features

- Operation frequency range: 3300 to 4200MHz
- Gain: 34.4dB
- Output P1dB: 27.8dBm
- 100Ω differential input
- 3.3V supply voltage
- TSNP-16 leadless package (3.0 x 3.0 mm²)
- SiGe Technology


Potential Application

- 5G m-MIMO
- Mobile Infrastructure

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Pre-Driver for Doherty Power Amplifier

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	Electrical Characteristics	4
4	Performance Variation	5
5	Application Information	6
6	Package Information	8

Pre-Driver for Doherty Power Amplifier

Features

1 Features

• Operation frequency range: 3300 to 4200MHz

• Gain: 34.4dB

• Output P1dB: 27.8dBm

• 100Ω differential input

• 3.3V supply voltage

• TSNP-16 leadless package (3.0 x 3.0 mm²)

· SiGe Technology

Description

The product is a stand-alone pre-driver in package. The pre-driver is a two-stage amplifier designed to be used in the 5G Tx line-up for base station applications as the pre-driver for the Doherty power amplifier. It has been designed in the INFINEON SiGe technology. The input is 100Ω differential, the output is 50Ω single-ended.

The device configuration is shown in Fig. 1.

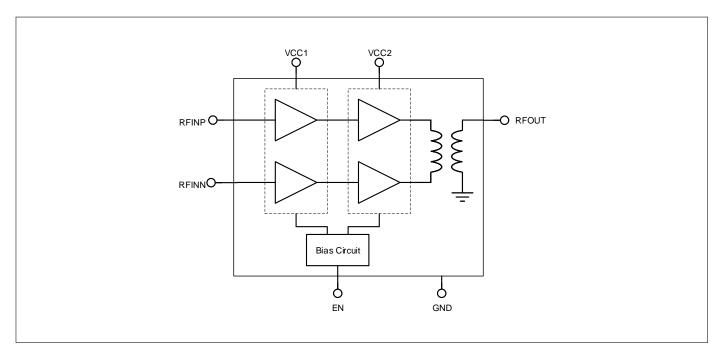


Figure 1: BGA7P320 Block diagram

Product Name	Marking	Package
BGA7P320	B7P320 YYWW(YY=year, WW=week)	PG-TSNP-16-12

Pre-Driver for Doherty Power Amplifier

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	-0.5	_	3.6	V	1	
Storage Temperature	T _{STG}	-45	_	150	°C	-	
Junction Temperature	TJ	-40	_	170	°C	-	
DC voltage on RF Ports	$V_{RF,DC}$	0	-	0	V	1	
RF Input Power CW	P _{IN,CW}	_	_	12	dBm	-	
ESD Capability HBM ²	V _{ESD,HBM}	_	_	2	kV	-	
ESD Capability CDM ³	V _{ESD,CDM}	_	_	500	V	-	

¹All voltages refer to GND-Nodes unless otherwise noted

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Table 2: Thermal Resistance

Parameter	Symbol	Value	Unit
Thermal Resistance - Junction - Solder (@25°C)	R _{th,JS}	21.3	°K/W
Thermal Resistance - Junction - Case-Top (@25°C)	$R_{th,JC}$	105.9	°K/W

Table 3: Recommended Operating Conditions

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	3.15	_	3.45	V	-	
Enable Voltage OFF	$V_{\rm EN,OFF}$	0	_	0.75	V	-	
Enable Voltage ON	V _{EN,ON}	0.95	_	V _{cc}	V	-	
Operating Temperature	TA	-40	_	115	°C	Solder joint temperature	

²Human Body Model ANSI/ESDA/JEDECJS-001 (R = $1.5k\Omega$, C = 100pF)

³Field-Induced Charged-Device Model ANSI/ESDA/JEDECJS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

Pre-Driver for Doherty Power Amplifier

Electrical Characteristics

3 Electrical Characteristics

Table 4: Electrical Characteristics

Parameter	Symbol		Values ¹		Unit	Note / Test Condition ²
		Min.	Тур.	Max.		
RF Frequency	f_{RF}	3300	_	4200	MHz	-
Current Consumption OFF	I _{CC,OFF}	_	1.7	_	mA	-
Current Consumption ON	I _{CC,ON}	_	152	210	mA	No RF input signal
Input Return Loss	RL _{IN}	_	15	_	dB	-
Output Return Loss	RL _{OUT}	_	15	_	dB	-
Gain	G	30.8	34.4	_	dB	-
Gain Flatness		_	_	0.5	dB	In any 100Mhz BW within RF
						band
Output P1dB	OP _{1dB}	24.5	27.8	_	dBm	-
Output IP3	OIP ₃	_	37	_	dBm	$P_{IN1}=P_{IN2}=-30dBm$, $\Delta f=1MHz$
Adjacent Channel Leakage Ratio	ACLR	_	50	_	dBc	20MHz E-TM1.1 @Pout=15dBm
Common Mode Rejection Ratio	CMRR	24	_	_	dB	-
Noise Figure	NF	_	3.5	_	dB	-
ON/OFF Time	$T_{\rm ON}, T_{\rm OFF}$	_	2.5	_	μ s	Gain within 0.1dB amplitude/1°
						phase of final value

 $^{^1}$ Min/Max values defined over process, voltage, temperature and frequency variations 2 Test conditions (unless otherwise noted): T=25°C, $V_{\rm CC}$ =3.3V, $f_{\rm RF}$ =3.6GHz

Pre-Driver for Doherty Power Amplifier

Performance Variation

4 Performance Variation

Table 5: Gain Variation Contributions

Parameter		Frequency Range				
	3.4GHz-3.6GHz	3.3GHz-3.9GHz	3.3GHz-4.2GHz			
Typical	34.5	34.5	34.4	dB		
Process Variation ¹	± 0.75	± 0.9	± 1.35	dB		
Temperature Variation ²	-0.018	-0.018	-0.019	dB/°C		
Minimum	31.7	31.6	30.8	dB		

¹Process variation is based on simulation data ($\pm 3\sigma$)

Table 6: OP1dB Variation Contributions

Parameter		Frequency Range	ency Range		
	3.4GHz-3.6GHz	3.3GHz-3.9GHz	3.3GHz-4.2GHz		
Typical	27.4	27.8	27.8	dBm	
Process Variation ¹	\pm 1.5	± 1.5	\pm 1.5	dB	
Temperature Variation ²	-0.008	-0.010	-0.010	dB/°C	
Minimum	24.5	24.5	24.5	dBm	

¹Process variation is based on simulation data ($\pm 3\sigma$)

Table 7: OIP3 Variation Contributions

Parameter	Frequency Range					
	3.4GHz-3.6GHz	3.3GHz-3.9GHz	3.3GHz-4.2GHz			
Typical	35.9	36.4	37	dBm		
Process Variation ¹	\pm TBD	\pm TBD	\pm TBD	dB		
Temperature Variation ²	0.025	0.039	0.062	dB/°C		
Minimum	TBD	TBD	TBD	dBm		

 $^{^1 \}hbox{OIP3 simulation provides insufficient resolution. Process variations will be assessed from larger device volume.}$

²Temperature variation is based on measured data

²Temperature variation is based on measured data

²Temperature variation is based on measured data

Pre-Driver for Doherty Power Amplifier

Application Information

5 Application Information

Pin Configuration and Function

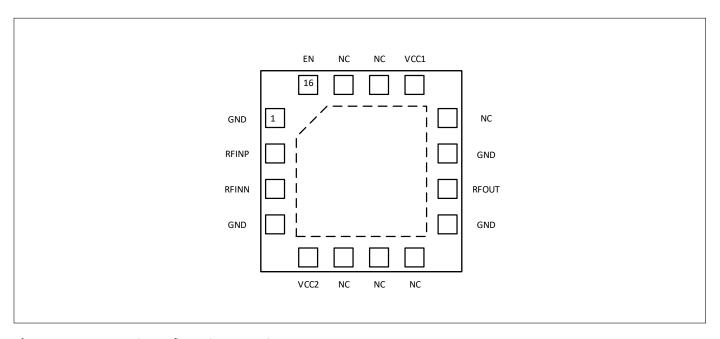


Figure 2: BGA7P320 Pin Configuration - Top View

Table 8: Pin Definition and Function

Pin No.	Name	Function
1, 4, 9, 11	GND	Ground
2	RFINP	RF Input +
3	RFINN	RF Input -
5	VCC2	2 nd stage DC voltage supply
6, 7, 8, 12, 14, 15	NC	Not connected internally. It can be either left floating or connected to ground.
10	RFOUT	RF Output
13	VCC1	1 st stage DC voltage supply
16	EN	Chip enable
Backside Paddle	GND	Ground connection

Application Information

Application Board Configuration

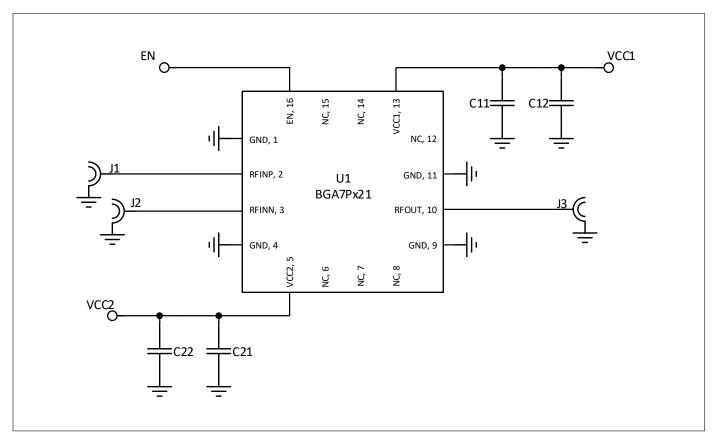


Figure 3: BGA7P320 Application Schematic

Table 9: Bill of Materials Table

Name	Value	Description	Part Number	Manufacturer
C11, C21	10nF	Capacitor, X7R, 0402	_	Various
C12, C22	1uF	Capacitor, X7R, 0402	-	Various
J1, J2, J3	-	Connector, SMA	32K243-40ML5	Rosenberger
U1	_	Pre-driver, PG-TSNP-16-12	BGA7P320	Infineon

Package Information

6 Package Information

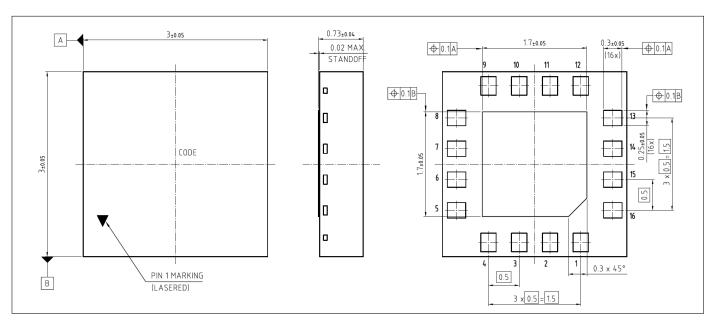


Figure 4: PG-TSNP-16-12 Package Outline (3.0mm x 3.0mm x 0.73mm)

Pre-Driver for Doherty Power Amplifier

Revision History	
1.0	
Page or Item	Subjects (major changes since previous revision)
Revision 1.1, 202	1-06-22
Revision History	
pag. 4	Updated ACLR value and test condition

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06-22 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.