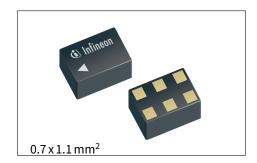


Ultra Low Current Low Noise Amplifier for GNSS Applications

Features

• Operation frequencies: 1550 to 1615 MHz

• Ultra low current consumption: 1.3 mA

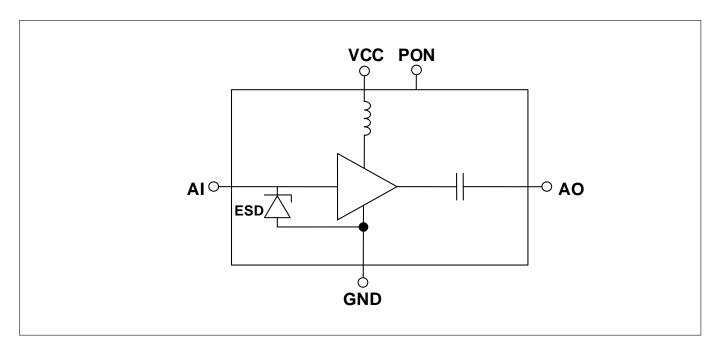

• Wide supply voltage range: 1.1 V to 2.8 V

· High insertion power gain: 19.0 dB

· Low noise figure: 0.75 dB

• 2 kV HBM ESD protection (inluding AI pin)

• Ultra small and RoHS/WEEE compliant package


Potential Application

The BGA123N6 is designed to enhance GNSS signal sensitivity especially in wearables and mobile cellular IoT applications. With the very good performance it ensures high system sensitivity. The ultra low power consumption of 1.5mW preserves valuable battery power, ideal for small battery powered GNSS devices. The wide supply voltage range from 1.1 V to 2.8 V ensure flexible design and high compatibility. It supports all GNSS systems including GPS, GLONASS, Beidou and Galileo.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Ultra Low Current Low Noise Amplifier for GNSS Applications

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	Electrical Characteristics	4
4	Application Information	7
5	Package Information	9

Ultra Low Current Low Noise Amplifier for GNSS Applications

Features

1 Features

Operation frequencies: 1550 to 1615 MHz
 Ultra low current consumption: 1.3 mA

Wide supply voltage range: 1.1 V to 2.8 V
High insertion power gain: 19.0 dB

• Low noise figure: 0.75 dB

• 2 kV HBM ESD protection (inluding AI pin)

• Only one external matching component needed

• Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm²)

· RoHS/WEEE compliant package

Description

The BGA123N6 is designed to enhance GNSS signal sensitivity especially in wearables and mobile cellular IoT applications. With the very good performance it ensures high system sensitivity. The ultra low power consumption of 1.5mW preserves valuable battery power, ideal for small battery powered GNSS devices. The wide supply voltage range from 1.1 V to 2.8 V ensure flexible design and high compatibility. It supports all GNSS systems including GPS, GLONASS, Beidou and Galileo. The BGA123N6 LNA is manufactured in Infineon's patented bipolar technology.

The device has a very small size of only 0.7 x 1.1 mm² and a maximum height of 0.375 mm.

The device configuration is shown in Fig. 1.

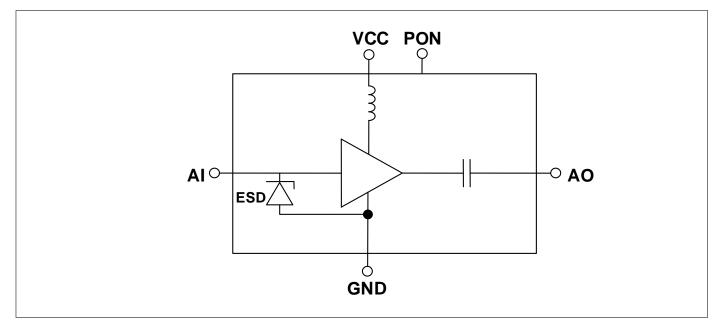


Figure 1: BGA123N6 Block diagram

Product Name	Marking	Package		
BGA123N6	6	PG-TSNP-6-2		

Ultra Low Current Low Noise Amplifier for GNSS Applications

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings

Parameter	Symbol		Values		Unit	Note / Test Condition		
		Min.	Тур.	Max.				
Voltage at pin VCC	V _{cc}	-0.3	_	2.8	٧	1		
Voltage at pin AI	V _{AI}	-0.3	_	0.9	٧	-		
Voltage at pin AO	V _{AO}	-0.3	_	V _{CC} + 0.3	٧	-		
Voltage at pin PON	V _{PON}	-0.3	_	2.8	٧	-		
Voltage at pin GND	V_{GND}	-0.3	_	0.3	٧	-		
Current into pin VCC	I _{cc}	_	_	9	mA	-		
RF input power	P _{IN}	_	_	+25	dBm	CW signal, VSWR 10:1, tested		
						at device level, VCC/VPON typ,		
						25°C, for 30s and all modes ²		
Total power dissipation	P _{tot}	_	_	60	mW	-		
Junction temperature	TJ	_	_	150	°C	-		
Ambient temperature range	T _A	-40	_	85	°C	-		
Storage temperature range	T _{STG}	-55	-	150	°C	-		
ESD capability, HBM	V _{ESD_HBM}	-2000	_	+2000	V	3		

¹All voltages refer to GND-Nodes unless otherwise noted

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²RF input power higher than +10dBm exceeding operating range

³Human Body Model ANSI/ESDA/JEDEC JS-001 ($R = 1.5 \text{ k}\Omega$, C = 100 pF)

Ultra Low Current Low Noise Amplifier for GNSS Applications

Electrical Characteristics

3 Electrical Characteristics

Table 3: Electrical Characteristics at T_A = 25 °C, V_{CC} = 1.2 V, f = 1550–1615 MHz

Parameter ¹	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	1.1	1.2	2.8	V	-	
Cumply Current	,	-	1.3	1.65	mA	ON-Mode	
Supply Current	I _{cc}	-	0.2	3	μΑ	OFF-Mode	
Dawer on Valtage	17	0.8	-	2.8	V	ON-Mode	
Power on Voltage	V_{PON}	0.0	-	0.4	V	OFF-Mode	
Davier on Current	,	_	1.5	3	μΑ	ON-Mode	
Power on Current	I I _{PON}	_	-	1	μΑ	OFF-Mode	
Insertion Power Gain	$ S_{21} ^2$	16.7	18.7	20.7	dB	ON-Mode	
f = 1575 MHz							
Noise Figure ²	NF	_	0.80	1.20	dB	ON-Mode	
$f = 1575 \text{ MHz } Z_S = 50\Omega$							
Input return loss ³	RL _{IN}	9	12	-	dB	ON-Mode	
<i>f</i> = 1575 MHz							
Output return loss ³	RL _{OUT}	10	18	_	dB	ON-Mode	
<i>f</i> = 1575 MHz							
Reverse isolation ³	1/ S ₂₁ ²	25	40	_	dB	ON-Mode	
<i>f</i> = 1575 MHz							
Power up settling time ^{4 5}	t _S	_	8	11	μs	OFF- to ON-Mode	
Inband input 1dB-compression	IP _{1dB}	-23	-19	_	dBm	ON-Mode	
point ³							
<i>f</i> = 1575 MHz							
Inband input 3rd-order intercept	IIP ₃	-18	-13	_	dBm	ON-Mode	
point ^{3 6}							
Out of band input 3rd-order in-	IIP _{300B}	-14	-9	_	dBm	ON-Mode	
tercept point ^{5 7}							
Stability ⁵	k	>1	_	_		f=20 MHz-10 GHz	

¹Based on application described in chapter 4

²PCB losses are substrated

³Verification based on AQL; not 100% tested in production

⁴LNA gain changed to 90% of final gain value (in dB)

⁵Guaranteed by device design; not tested in production

 $^{^6}$ Inband @ 1575 MHz, Input power = -30 dBm for each tone, 1 MHz tone distance

 $^{^7}$ f1 = 1712.7 MHz, f2 = 1850 MHz, Input power = -20 dBm for each tone

Ultra Low Current Low Noise Amplifier for GNSS Applications

Electrical Characteristics

Table 4: Electrical Characteristics at $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, f = 1550– 1615 MHz

Parameter ¹	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	1.1	1.8	2.8	V	-	
County Comment	,	-	1.35	1.7	mA	ON-Mode	
Supply Current	I _{cc}	-	0.2	3	μΑ	OFF-Mode	
Danier Vallana	17	0.8	_	2.8	V	ON-Mode	
Power on Voltage	V_{PON}	0.0	_	0.4	V	OFF-Mode	
Davier on Current		_	3	6	μΑ	ON-Mode	
Power on Current	I _{PON}	-	-	1	μΑ	OFF-Mode	
Insertion Power Gain	$ S_{21} ^2$	17.0	19.0	21.0	dB	ON-Mode	
f = 1575 MHz							
Noise Figure ²	NF	_	0.75	1.15	dB	ON-Mode	
$f = 1575 \text{MHz} Z_{\text{S}} = 50 \Omega$							
Input return loss³	RL _{IN}	9	12	-	dB	ON-Mode	
f = 1575 MHz							
Output return loss ³	RL _{OUT}	10	17	_	dB	ON-Mode	
f = 1575 MHz							
Reverse isolation ³	1/ S ₂₁ ²	25	40	_	dB	ON-Mode	
f = 1575 MHz							
Power up settling time ^{4 5}	ts	_	7	10	μs	OFF- to ON-Mode	
Inband input 1dB-compression	IP _{1dB}	-19	-15	-	dBm	ON-Mode	
point ³							
f = 1575 MHz							
Inband input 3rd-order intercept	IIP ₃	-17	-12	_	dBm	ON-Mode	
point ^{3 6}							
Out of band input 3rd-order in-	IIP _{300B}	-12	-7	_	dBm	ON-Mode	
tercept point ^{5 7}							
Stability ⁵	k	>1	_	_		f=20 MHz-10 GHz	

¹Based on application described in chapter 4

²PCB losses are substrated

³Verification based on AQL; not 100% tested in production

⁴LNA gain changed to 90% of final gain value (in dB)

⁵Guaranteed by device design; not tested in production ⁶Inband @ 1575 MHz, Input power = -30 dBm for each tone, 1 MHz tone distance

 $^{^{7}}$ f1 = 1712.7 MHz, f2 = 1850 MHz, Input power = -20 dBm for each tone

Ultra Low Current Low Noise Amplifier for GNSS Applications

Electrical Characteristics

Table 5: Electrical Characteristics at $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, f = 1550– 1615 MHz

Parameter ¹	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	1.1	2.8	2.8	V	-	
Cumply Cumpnt	,	-	1.45	1.8	mA	ON-Mode	
Supply Current	I _{cc}	-	0.2	3	μΑ	OFF-Mode	
Danier Vallana	17	0.8	_	2.8	V	ON-Mode	
Power on Voltage	V_{PON}	0.0	_	0.4	V	OFF-Mode	
Davier on Current		_	5	10	μΑ	ON-Mode	
Power on Current	I _{PON}	-	-	1	μΑ	OFF-Mode	
Insertion Power Gain	$ S_{21} ^2$	17.2	19.2	21.2	dB	ON-Mode	
f = 1575 MHz							
Noise Figure ²	NF	_	0.75	1.15	dB	ON-Mode	
$f = 1575 \text{MHz} Z_{\text{S}} = 50 \Omega$							
Input return loss³	RL _{IN}	9	12	-	dB	ON-Mode	
f = 1575 MHz							
Output return loss ³	RL _{OUT}	10	17	_	dB	ON-Mode	
f = 1575 MHz							
Reverse isolation ³	1/ S ₂₁ ²	25	30	-	dB	ON-Mode	
f = 1575 MHz							
Power up settling time ^{4 5}	ts	_	7	10	μs	OFF- to ON-Mode	
Inband input 1dB-compression	IP _{1dB}	-16	-12	-	dBm	ON-Mode	
point ³							
f = 1575 MHz							
Inband input 3rd-order intercept	IIP ₃	-16	-11	_	dBm	ON-Mode	
point ^{3 6}							
Out of band input 3rd-order in-	IIP _{300B}	-11	-6	_	dBm	ON-Mode	
tercept point ^{5 7}							
Stability ⁵	k	>1	_	_		f=20 MHz-10 GHz	

¹Based on application described in chapter 4

²PCB losses are substrated

³Verification based on AQL; not 100% tested in production

⁴LNA gain changed to 90% of final gain value (in dB)

⁵Guaranteed by device design; not tested in production ⁶Inband @ 1575 MHz, Input power = -30 dBm for each tone, 1 MHz tone distance

 $^{^{7}}$ f1 = 1712.7 MHz, f2 = 1850 MHz, Input power = -20 dBm for each tone

Application Information

4 Application Information

Pin Configuration and Function

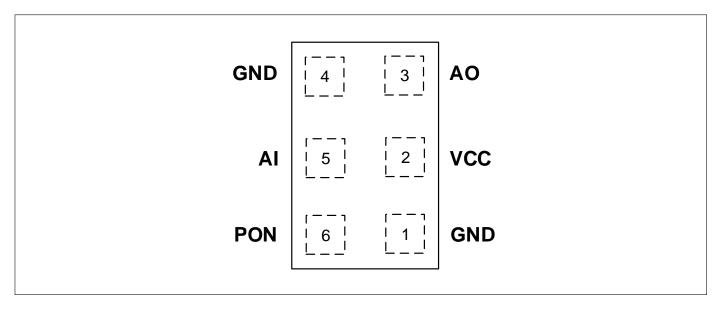


Figure 2: BGA123N6 Pin Configuration (top view)

Table 6: Pin Definition and Function

Pin No.	Name	Function				
1	GND	Ground				
2	VCC	DC Supply				
3	AO	LNA Output				
4	GND	Ground				
5	Al	LNA Input				
6	PON	Power On Control				

Ultra Low Current Low Noise Amplifier for GNSS Applications

Application Information

Application Board Configuration

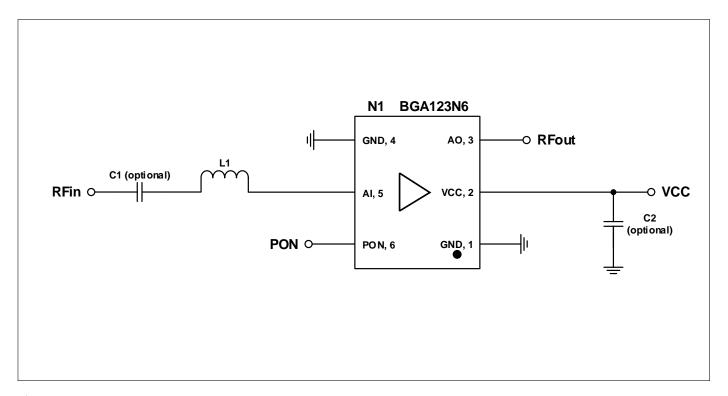


Figure 3: BGA123N6 Application Schematic

Table 7: Bill of Materials Table

Name	Value	Package	Manufacturer	Function
C1 (optional)	1nF	0402	Various	DC block ¹
C2 (optional)	≥ 1nF	0402	Various	RF bypass ²
L1	10nH	0402	Murata LQW15 type	Input matching
N1	BGA123N6	PG-TSNP-6-2	Infineon	GNSS LNA

¹DC block might be realized with pre-filter in GNSS applications.

²RF bypass recommended to mitigate power supply noise.

Package Information

5 Package Information

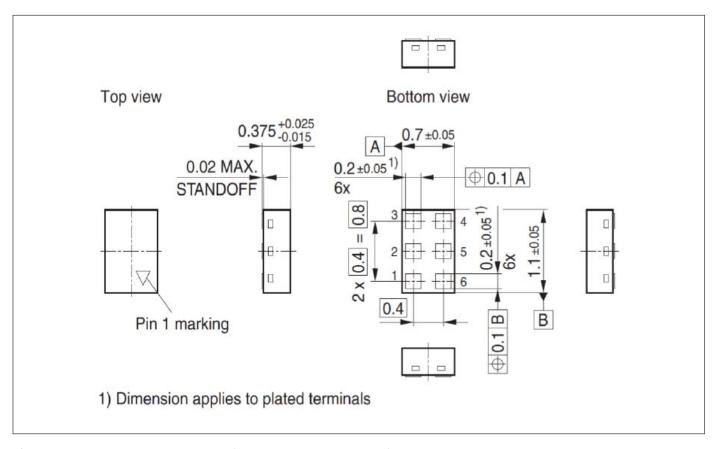


Figure 4: PG-TSNP-6-2 Package Outline (0.7mm x 1.1mm x 0.375mm)

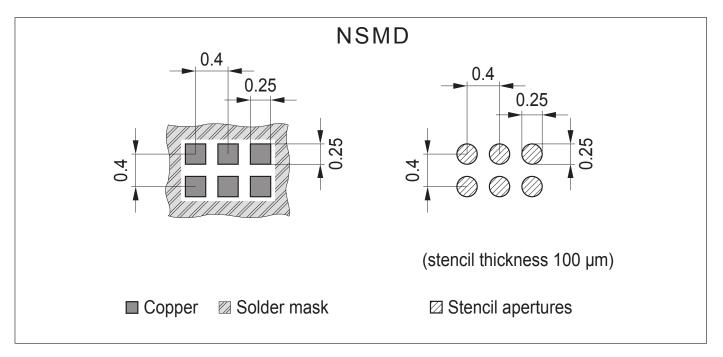


Figure 5: Footprint Recommendation

Ultra Low Current Low Noise Amplifier for GNSS Applications

Package Information

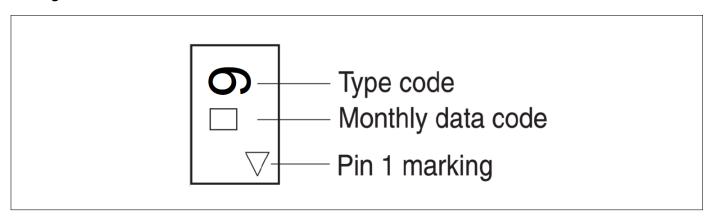


Figure 6: Marking Specification (top view)

Table 8: Monthly Date Code Marking

Month	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
1	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
2	b	q	В	Q	b	q	В	Q	b	q	В	Q
3	С	r	С	R	С	r	С	R	С	r	С	R
4	d	S	D	S	d	S	D	S	d	S	D	S
5	е	t	Е	Т	е	t	E	Т	е	t	E	Т
6	f	u	F	U	f	u	F	U	f	u	F	U
7	g	V	G	V	g	v	G	V	g	V	G	V
8	h	х	Н	Х	h	х	Н	Х	h	х	Н	Х
9	j	у	J	Υ	j	у	J	Y	j	у	J	Υ
10	k	z	K	Z	k	z	K	Z	k	z	K	Z
11	l	2	L	4	l	2	L	4	l	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

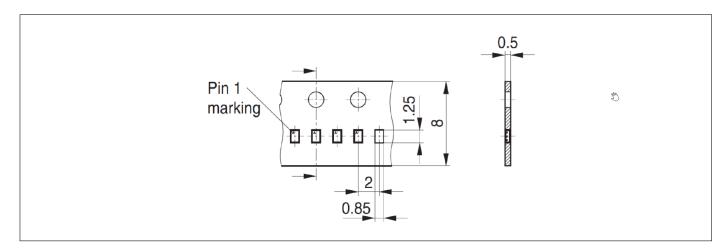


Figure 7: PG-TSNP-6-2 Carrier Tape

Revision History	
-	
Page or Item	Subjects (major changes since previous revision)
Revision 2.4, 202	3-01-10
Revision History	
4-6	Update Power on Voltage for ON-Mode

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-01-10 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.