Facts and figures 2018/19

Infineon Technologies AG

- **Sales**: €8,029 million
- **Employees throughout the Group**: 41,400

Infineon Technologies Austria Group

- **Sales**: €3,113.8 million (+5.2%*)
- **Earnings before tax**: €306.4 million (+4.2%*)
- **Total investments**: €308.1 million (+72.4%*)
 - of which investments in property, plant and equipment: €307.1 million (+80.4%*)
 - of which investments in intangible assets: €1.0 million
- **Total employees**: 4,609 (+9.7%*)
- **Proportion of women overall**: 18.4% (+8.2%*)
- **Employees in R&D**: 1,977 (+9%*)
- **Employees in product and process development and quality assurance**: 550
- **Additional permanent external employees via third companies**: approx. 2,000
- **Degree candidates and doctoral students**: 181
- **Apprentices**: 77
- **Interns and vacation/industrial placements**: 1,105

Research and Development

- **R&D Expenditure**: €525 million (+5.4%*)
- **R&D Expenditure as a percentage of sales**: 17%
- **Initial patent applications**: 214

Production

- **Products (basic types)**: approx. 1,800
- **Production volume**: 11.44 billion chips
- **Audits and customer visits**: 49

*compared to the fiscal year 2017/18

**Aggregated values fiscal year 2018/19, as of September 30, 2019, including domestic shareholdings
Contents

1. Preface 7

2. Infineon Technologies Austria 9
 2.1 Fiscal year 2019: Intelligent Management 9
 2.2 Investments for the Future in Austria 9
 2.3 The Infineon Site Villach 10

3. Integrated Management System IMPRES 13
 3.1 The IMPRES Policy 13
 3.2 Organization of the Environmental Management System 14
 3.3 Employee Involvement 14
 3.4 Workplace Safety and Health Protection 15
 3.5 Compliance with Statutory Environmental Provisions 16
 3.6 Emergency Precautions and Emergency Management 16

4. Environmental Aspects 19
 4.1 Key Environmental Data 19
 4.2 Evaluation of Environmental Aspects 20
 4.3 Direct Environmental Aspects 23
 - Chemicals and gases 23
 - Waste 23
 - Energy consumption, climate protection and CO₂ balance 25
 - Emissions 26
 - Land use and biodiversity 28
 - Water consumption and waste water 29
 - Noise 30
 4.4 Indirect Environmental Aspects 30
 - Sustainable products for energy and climate targets 30
 - Responsible procurement 32
 - Environmentally friendly transport 33
 - “Green Way” mobility concept 33

5. Overview 35
 5.1 Projects Implemented in 2018/19 36
 5.2 Planned ESH Projects 37
 5.3 Special Environmental Achievements in the Fiscal Year 2019 38
 5.4 Significant Changes Since the Last Environmental Statement 39

6. Glossary 40
 6.1 Explanation of Terms 40
 6.2 Measurement Units 43
 6.3 Declaration of Validity 43
 6.4 Date of the Next Environmental Statement 44
 6.5 Contacts 44
More from less

Microelectronics is the key to making more from less: Infineon semiconductors reduce energy consumption, allow for environmentally friendly mobility and secure data transfer or the efficient generation of renewable energy. In this way, Infineon makes a significant contribution to energy efficiency and climate protection.

There is an overview brochure accompanying this Environmental Statement. Available online at: www.infineon.com/sustainable-austria
Dear readers,
the world is facing major global challenges: health, climate change, resource and energy consumption, mobility or safe operations in a networked world. Issues that are already relevant to us today, but which will be of existential importance for future generations.

As a manufacturer of microelectronics, we contribute to making our world easier, safer and greener through innovative technologies. Products from Infineon make an important contribution to greater energy efficiency. They lower energy consumption in smartphones, medical devices and data centers, enable sustainable mobility as well as the efficient generation of solar and wind energy.

With these energy-saving chips, we help tackle global issues. This is precisely why Infineon is building a new 300 mm chip factory for power electronics in Villach. It is the largest private investment in Austria as well as the largest within the industry in Europe. And we are strengthening research for the future, evidenced not least by the expansions at our development sites in Graz, Linz and Villach.

Together with our more than 4,600 employees, we promote and rely on responsible coexistence and economic activity at all our sites. Already today, Infineon is one of the most sustainable semiconductor producers. With the goal of achieving CO₂ neutrality by the year 2030, the Infineon group is stepping up these efforts and making its contribution to the implementation of the Paris Climate Targets.

We want to continue steadily on the path towards climate compatibility, practiced diversity and innovative strength. With this Environmental Statement, we invite you to learn more about our principles, measures and activities.

Only those who act can change things.

Sabine Herlitschka Oliver Heinrich Thomas Reisinger
Scan the QR code to follow our site expansion in real time
Infineon Technologies Austria AG is a subsidiary of Infineon Technologies AG. The Austrian head office is in Villach, further sites are located in Graz, Klagenfurt, Linz and Vienna. Besides Germany, Infineon Austria is the only subsidiary within the Group that pools competencies for research and development, production and global business responsibility. The 4,609 employees from 68 nations make Infineon a leading company and one of the most research-intensive companies in Austria (according to the Top 500 Ranking 2019 published by “trend” business magazine).

Microelectronics: making more from less
Microelectronics can be found in vehicles, smartphones, refrigerators, debit cards, ID cards, LED lighting or in solar and wind power plants, as well as in robots and industrial equipment. Microchip solutions developed by Infineon are used to generate, transmit and use electricity efficiently. They connect the real world with the digital world, reduce energy consumption, allow for environmentally friendly mobility and secure data transfer or the efficient generation of renewable energy. Microelectronics is the key to achieving more with less.

2.1 Fiscal year 2019:
Intelligent management

In the fiscal year 2019 (accounting reference date: 30 September), Infineon Technologies Austria increased its sales by five percent to 3,113.8 million euros. The long-term, structural growth drivers such as energy efficiency, security, the Internet of Things and sustainable mobility are intact, even though the global economic situation remains strained. The earnings before taxes amounted to 306.4 million euros, while investments increased by 72 percent to 308.1 million euros. Staffing levels are at an all-time high, with a total of 4,609 employees.

Investment in the digital success of tomorrow
The Infineon Technologies Austria Group is investing in its entire business presence in Austria: In Villach, a new chip factory with around 400 jobs is being built for 1.6 billion euros. In addition, investments in a new research and development building creating approximately 350 new highly qualified jobs are ongoing in Villach. The latest information and videos on the expansion of the Villach site can be found online at: www.infineon.com/expansion.

Investments are also being made at the development sites in Linz and Graz: In Linz, a new research building offers space for 400 people. In Graz, the development center is being expanded with an additional building, creating a further 290 jobs.

2.2 Investments for the Future in Austria

Research and development, production and global business responsibility – this synergistic combination is what distinguishes Infineon in Austria. In 2019, pioneering investments were made in both research & development and production at the Villach site. Infineon operates the largest research facility for microelectronics in Austria. In the fiscal year 2019 alone, approximately 17 percent of sales went into research and development. 1,977 people are employed in R&D, meaning that Infineon Austria employs more than a quarter of the group-wide R&D staff. In 2019, strategic investments and expansions were launched at all locations in Linz, Graz and Villach.

Innovation & production in Villach
The activities in Villach focus on the development and production of energy-saving chips or power semiconductors. In this area, Infineon is the world market leader. The energy-saving chips can be found in applications in automotive, manufacturing and consumer electronics and are used to convert and control electricity efficiently and reduce energy consumption. Since 1997, Infineon Austria has been the global competence center for power electronics within the Infineon Group. Since 2017, it has also been home to the
global competence center for new semiconductor materials (silicon carbide and gallium nitride) which can convert power even more efficiently. Production and development have always gone hand in hand in Villach. The same will hold true in the future: A new factory for the production of 300-millimeter thin wafers is being built in Villach for 1.6 billion euros, creating approximately 400 new jobs. It is the largest private investment in Austria as well as within the industry in all of Europe. At the same time, a new R&D building is being constructed for 50 million euros.

An overview of the construction projects in Villach with current videos, questions & answers and direct contact for site-neighbors can be found online at: www.infineon.com/expansion

2.3 The Infineon Site Villach

Infineon Austria employs about 3,940 people in Carinthia (of whom about 3,750 are employed at Villach). This makes the company the largest private employer in the region. What began as an extended workbench in 1970 has, over the years, developed into the headquarters in Austria and a strong competence center within the Group. Today, this is the only Group company besides Germany that pools competencies for production, research and development and global business responsibility.

The comprehensive expansions in Villach, both in production and research & development, are a strategic step to secure the future of the Infineon site as well as the entire high-tech region.

High-tech region Villach and Carinthia

In recent years, Carinthia and the Villach region have positioned themselves as a high-tech location with attractive quality of living in the Alps-Adriatic region. Infineon’s investment in a new chip factory enhances this positioning, providing sustainable impulses for the entire region and making it attractive for further settlement – for skilled workers, service providers, suppliers as well as research and educational institutions. For example, the leading Austrian research center Silicon Austria Labs has settled in the high-tech campus in Villach, as well as in Graz and Linz. Here, top-level research on microelectronic systems is conducted with a clean room infrastructure. Since 2019, the Fraunhofer Innovation Center for Digitization and Artificial Intelligence, “KI4LIFE” for short, has also been operating a site at Lakeside Park in Klagenfurt.

Leading factory in Villach

In Villach, the main focus is on the production of power semiconductors for applications in automotive and industrial electronics. The site is the innovation factory of the front-end production network, with partner factories in Germany and Malaysia. In the fiscal year 2019, 2.3 million silicon discs (called wafers) with a total of 11.44 billion microchips were produced in Villach. The factory produces approximately 1,800 basic product types simultaneously, in the best quality, around the clock and 365 days a year. The expertise to produce 40-micrometer (0.04 millimeters) thin
wafer technology. Today, the semiconductor technology and electronic components, wafer diameters.

New materials for new applications
The use of new semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) enables particularly high-performance and fast-switching system solutions to be produced with maximum reliability and low electricity consumption. Applications include solar energy and wind power, rapid charging stations for electric cars, and the mobile infrastructure for 5G networks. Villach has been the Infineon Group’s global competence center for these new semiconductor materials since 2017.

Industry 4.0
Infineon Austria is a pioneer in the field of integrated and knowledge-intensive production, or Industry 4.0 for short. The goal is to combine development and production processes to become smarter, faster, more efficient and more flexible. Simulations and networked information and communication technologies open up new possibilities to optimize processes along the entire value chain. With the “Industry 4.0 Pilot Area” in Villach, Infineon has ideal conditions for testing these new processes and methods in real-life operations. With these insights, various parameters, such as energy consumption, intelligent product steering and mobile maintenance, are optimized incrementally and then rolled out for the remaining production. Suppliers and other sites will be increasingly integrated into the overall process.

A milestone in European industrial history
The best example of this innovation is the world’s first production of power semiconductors in 300-millimeter thin-wafer technology. These particularly thin energy-saving chips convert energy even more efficiently and allow the production of around two and a half times as many chips in one production run as a 200-millimeter wafer. This technology was launched in 2011, with the continuous production line and customer approval for production following in 2013. Volume production of this new generation of power semiconductors for automotive applications has been up and running in Villach since 2015.

And the success story continues: With the investment in a new 300-millimeter chip factory, Infineon is making a statement for Austria and Europe as a business location. Construction started in 2019, and production is scheduled to begin at the end of 2021 (depending on macroeconomic developments) on a floor area of 60,000 m².
Infineon views sustainability as a combination of social, ecological and economic responsibilities. Cost-effective activities, health protection, workplace safety, environmental protection, energy efficiency, climate protection and social responsibility are mutually compatible principles and goals, which we implement and strive to fulfill.

Infineon’s global management system IMPRES integrates the topics of environmental protection, occupational safety, health and energy into all Group processes and thereby aims at establishing a uniform global minimum standard that is continuously optimized.

IMPRES stands for “Infineon Integrated Management Program for Environment, Energy, Safety and Health” and was introduced in 2005.

This management program is based on the ISO standards ISO 14001 for environment, ISO 50001 for energy and ISO 45001 for occupational health and safety. These international standards are reviewed annually through both external and internal audits as part of a matrix certification process and confirm a uniform global standard.

3. Integrated Management System IMPRES

3.1 The IMPRES Policy

The IMPRES policy is part of our corporate policy and summarizes the key areas of environmental protection, energy management, occupational safety and health protection. It applies throughout the Group and serves as the foundation for our integrated management system.

Below, you will find guidelines from the current IMPRES policy that serve as the basis for our actions:

› Through our everyday actions, innovations and products, we support a sustainable global society and enable the production of energy-efficient end products and applications.

› We assess and consider possible consequences for humans and the environment at the earliest possible stage of product and process planning.

› Beyond complying with legal regulations and other requirements, we are continuously working on minimizing risks, effects on people and the environment, as well as energy and resource consumption.

› We implement targeted measures to prevent risks to people and the environment and, if this is not possible, to minimize them as far as possible.

› We use energy conscientiously and efficiently, and consume resources sparingly.

› We strive to maintain our leadership within our industry in terms of energy efficiency, now and into the future.

› We contribute to climate protection in several areas, e.g. by minimizing our greenhouse gas emissions.

› We continuously work to create an ecological net benefit now and for the future, both in our products and solutions and through efficient processes and production methods.

› We support the use of renewable energies where technically possible and economically feasible.

› We support the use of energy-efficient products and services.

› We prefer a forward-looking assessment of long-term effects to an orientation towards short-term benefits.

› We ensure that our corporate policy on environmental protection, energy management, occupational safety and health protection is implemented effectively. The technical and organizational procedures necessary for this purpose are checked regularly and improved continuously.

› We see no contradiction between productivity and cost efficiency on the one hand and the protection of people and the environment on the other. We reduce costs through integrated recycling processes and the reuse of materials as well as through motivated, committed and involved employees who work in a safe environment. Our customers benefit from product features such as...
high performance or low energy consumption.
› We inform the interested public and support an open information policy.
› We require our business partners to follow our guidelines. We work together with authorities, associations and non-governmental organizations.

The entire IMPRES policy can be found at: www.infineon.com/sustainability.

3.2 Organization of the Environmental Management System

Along with the high environmental standards detailed in ISO 14001, the Austrian production site in Villach has also committed to the European Union’s EMAS environmental management system (Eco Management and Audit Scheme). In addition to the sustainable use of resources, EMAS also strives to continuously improve environmental performance, taking sustainability aspects into account, and to report on this annually in the Environmental Statement.

The documentation of environmental protection, energy management, workplace safety and health protection at Infineon includes both the IMPRES manual and all IMPRES-relevant process descriptions, work instructions and other IMPRES-relevant documents, which are also produced specifically for individual sites. From an organizational point of view, the head of the Environmental Protection and Workplace Safety Division, as local coordinator of the IMPRES integrated management system, sits directly under the legal Managing Director. In practice, they report directly to the Group’s global “Head of Sustainability”.

At the Villach site, IMPRES is regularly reviewed via both internal and external audits. The management system is regularly evaluated as part of a management review, in order to continuously improve and analyze activities. Companies are faced with an increasingly dynamic and complex environment. If we are to satisfy our customers’ expectations and meet other obligations in this environment, we must continue to develop our integrated management system.

3.3 Employee Involvement

Our employees contribute significantly to the company’s success with their motivation, flexibility and technical expertise. This makes it all the more essential for Infineon Austria to offer an attractive working environment – Infineon implements numerous initiatives and activities for this purpose. These include flexible working-time models, teleworking options, in-service training and further education, mentoring programs as well as a comprehensive health promotion program or support for new colleagues in settling down.

Award for apprenticeship & integration
In 2019, Infineon was awarded the quality level “State-certified training company” as well as the Integration Award of the State of Carinthia for “Lehre mit Asyl” (Apprenticeship with Asylum). The “Lehre mit Asyl” project focuses on the integration of young refugees into the labor market, in order to give them a perspective for the future and to
counteract the lack of skilled workers. Of the 77 apprentices at Infineon, there are currently eleven apprentices entitled to asylum, who are completing a dual apprenticeship in mechatronics/electrical engineering and electrical engineering/metal technology.

“berufundfamilie” (career and family) audit
The compatibility of work and family at Infineon is underscored by the state “berufundfamilie” quality label. Regular inspections (most recently in 2019) confirm the path taken by the family-friendly company.

Cooperation with kindergartens and schools
Infineon partners with Sonnenstrahl GmbH, which operates daycare centers for children in Villach. The largest of these, the “International Daycare Center” (IDC), is located immediately adjacent to the Infineon site in Villach. The demand is high. As a result, a second IDC site was opened in Villach in 2019. There are now a total of 190 daycare places available for children aged one to six years.

The public day care centers have a bilingual orientation (German/English) as well as a focus on technology and natural sciences. Further advantages: few closing days as well as flexible and long opening hours, which especially meets the needs of shift workers.

Infineon also initiated and supports the International School Carinthia (ISC) in Velden. Currently, 285 children from over 30 nations attend this private, English-speaking all-day school. Due to the strong demand, a new building will open its doors at the end of 2020, offering space for another ten classes and twice as many pupils.

Sustainable flashes of inspiration
As part of our employee suggestion scheme, ideas and approaches for innovation and improvements are constantly being developed. In the fiscal year 2019, the program entitled “Your Idea Pays” (YIP) achieved:

› 62 realized proposals on the subject of energy
› 104 proposals on the subject of workplace safety and health protection
› 22 proposals on other environmental protection issues

These suggestions for improvement resulted in total savings of approximately 620,000 euros in the fiscal year 2019.

Well-informed, right from the start
From their very first day on the job, Infineon offers employees information in the areas of workplace safety, health protection, environmental protection and energy. Ongoing publications and updates on these topics as well as environmentally relevant aspects are communicated via bulletin boards, displays and the intranet. In addition, the Environmental Statement is available both at company sites and as an Internet and intranet download.

3.4 Workplace Safety and Health Protection
The safety of all employees is of great importance to the company. We consistently continue the development of workplace safety and health protection. Due to the large number of different activities at the site, residual hazards remain at workplaces with increased risk potential, despite the constant implementation of preventive measures. Infineon takes these residual risks seriously and sees them as opportunities for continuous improvement. The resulting safety measures (awareness, training, monitoring) are also reflected in the very low number of accidents at our Villach facility (compare AUVA statistics), which was maintained in 2019.

Frequency of industrial accidents (per 1,000 employees)
Further focal points include the Medical Service Center at the Villach site, which is managed by two physicians and a specially-trained graduate nurse. In 2019, this team was expanded by one additional specialist. In addition to prevention, these key areas include exercise and ergonomic training as well as nutrition and mental health. Health and fitness programs, various health campaigns focusing on different aspects and courses in stress management and burnout prevention contribute to overall wellbeing. This is supplemented by the option of external psychological counseling – anonymously and free of charge.

As part of a safety campaign to raise employee awareness of occupational safety in the workplace, special preventive measures are now being communicated using a kind of company mascot called “SafetySusie”.

In order to maintain this status in the long term, training session with a focus on “Contractor management” and “Safety in dealing with toxins” were held in 2019, in addition to the tried and tested prevention service and the training courses on “Onsite chemical safety”.

3.5 Compliance with Statutory Environmental Provisions

The company meets all applicable environmentally-relevant obligations. Specifically, these include:

- the legal provisions laid out in the approximately 160 relevant laws, as well as 1,200 resulting legal obligations or requirements,
- approximately 2,200 regulatory requirements resulting from official rulings, conditions and limit values associated with approvals and official orders,
- insurance law requirements,
- other voluntary commitments (such as the job ticket).

Current statutory provisions relevant to workplace safety, health protection and environmental protection (including energy) are recorded in a legal directory. This also applies to voluntary commitments, requirements stipulated in official permits, etc. The legal directory as well as the measures resulting therefrom are reviewed on a regular basis and modified as necessary. They form, among other things, the basis for process descriptions and other corporate regulations on workplace safety and health protection, environmental protection and energy.

3.6 Emergency Precautions and Emergency Management

As a Seveso facility, Infineon complies with the high legal standard of the Industrial Accidents Regulation and is subject to annual inspections by the authorities regarding this issue.

We also monitor all of the key environment- and safety-related processes using process control technology as well as ongoing measurements. This means that even minimal deviations from standard operation and other faults are detected at the earliest possible stage.
Emergency response system, alarm and hazard prevention plans

In addition to shift workers and staff on call, the Infineon Villach company fire department and our company medical service are available for any emergency. Our plant fire department is composed of approximately 130 volunteer members, distributed across six firefighting teams and two full-time employees. It has four vehicles which are specially equipped and ready to go into action in the shortest possible time.

In the event of serious damage incidents which cannot be rectified in the course of normal operations, the company’s Disaster Response Organization (DRO) will be deployed. Specially-trained crisis management team leaders with managerial authority can be contacted via the recently established Security Control Center (SCC) at any time and can immediately take over the management of a response operation. Furthermore, as a part of the DRO, a specially-trained chemical response team is available to respond to emergencies in the area of chemicals and gases. The Medical Service Center is supported by 50 company paramedics distributed across the individual shift groups.

In order to limit the impact that emergencies and accidents may cause off the premises, there are alarm and hazard prevention plans which are updated continuously. In the past fiscal year, 64 operational exercises took place in the areas of fire safety and prevention, chemicals and technical assistance. 23 courses were held and a total of 2,093 hours were invested in further training.

Chemicals and how we handle them

The Villach site uses chemicals with a wide variety of properties. There is a defined process to guarantee safe transport, safe storage and safe use. In order to avoid negative effects of possible leaks, leakage and retention basins equipped with specially coated walls are in place. Plant-internal transports are conducted under strict security precautions. Further transport to the production facilities takes place through double-walled pipelines which, among other precautions, are monitored by sensors to ensure they are leak-proof. Our production facilities are equipped with extensive safety and emergency shutoff systems. In the event of an incident, the necessary emergency procedures can be triggered in the shortest possible time. A summary of all major emergency aspects and safety measures can be found in our information folder for site neighbors “Environmental Protection, Safety and Emergency Management”.

Information brochure for site neighbors: “Environmental Protection, Safety and Emergency Management”, 2020
www.infineon.com/sustainable-austria

see Glossary, page 40
An environmental aspect and its associated environmental impact refer to any positive or negative change in the environment or an environmental medium which occurs wholly or partly as a result of an organization’s activities, products or services. Infineon re-evaluates its environmental aspects at least once a year and updates its environmental focus accordingly.

4.1 Key Environmental Data

Infineon’s goal is to minimize the impact of the Villach site on the environment, while maximizing the positive impact of the products manufactured at the site. This is based on the systematic recording and evaluation of energy and material flows in order to optimize processes. Every individual is encouraged to optimize the use of resources. This is done not just through targeted recycling and processing measures, but also by initiating individual small projects, conducting environmental training and raising awareness through environmental campaigns.

In the following, we report on the direct environmental aspects of our Villach site, such as the consumption of energy, fresh air, water, chemicals and other materials as well as the generation of waste heat, exhaust air, waste water and general waste.

Although production output remained constant, the total use of resources increased, and with it specific consumption. The reason is the constantly increasing complexity of processes and plants. The marked decline in district heating consumption is attributable to the increased optimization of heat recycling at the site.
4.2 Evaluation of Environmental Aspects

When evaluating the important direct and indirect environmental aspects of our operational facilities, we formulate goals for the most significant environmental impacts and implement measures to prevent or reduce these. Direct, controllable aspects are evaluated by means of a detailed analysis. Indirect environmental aspects are assessed qualitatively, since the Infineon Villach site cannot control these indirect aspects.

The evaluation of environmental aspects for the Villach site was transferred to a new global evaluation scheme in FY 2018/19. Subsequently, this will be applied uniformly for all production sites throughout the Group.

In addition to environmental relevance, probability of occurrence, volume development and frequency, as well as geographical impact and legal requirements are used to assess environmental aspects.

Chemicals, raw materials and greenhouse gases were identified using both the previous, tried and tested method and the current new assessment of environmental aspects. In order to illustrate the development of the assessment, both methods are now used in this Environmental Statement.

The evaluation of environmental aspects according to the global system in schematic form:

In the area of greenhouse gas emissions (red category), a Group-wide strategy is being prepared to achieve CO₂ neutrality by 2030. According to Group Board Member Dr. Ploss, emissions are to be reduced by 70 percent against the level recorded 2019 by as early as 2025 (www.infineon.com/nachhaltigkeit). This category is therefore increasingly being expanded with projects involving the workforce. For us, overcoming the climate crisis does not end at the factory gates. It begins with consciousness and awareness on behalf of each individual. With “Green Way”, we are introducing sustainable mobility to the workforce. The goal is to implement further measures aimed at cutting CO₂ emissions and saving resources. Raising awareness and sustainable behavior in the company help to ensure that as many people as possible also become multipliers of a mindset that gives rise to hopes of further potential savings in their private lives.

The orange category includes both the higher volume of non-hazardous waste – the increase of which is based on a reclassification from hazardous to non-hazardous waste (see chapter on waste) – and indirect discharge. The assessment of indirect discharge is based on an increased fluoride load, which entails evaluation measures and coordination with the treatment plant.

In the yellow category, four environmental aspects are mentioned which, despite the evaluation, provide scope for action: Regarding the consumption of electrical energy, Infineon is launching a hydrogen project; on the subject of mobility, the “Green Way” project is being continuously expanded, and concerning the aspect of land use, Infineon has invested in reforestation projects.

Noise and dust measures (green category) are implemented on an ongoing basis and further optimized on the basis of construction site activities (see also environmental measures).
The evaluation of the environmental aspects according to the previous method as well as their development can be found in the following table, which due to our integrated management system (IMPRES) also includes ESH aspects:

<table>
<thead>
<tr>
<th>Environmental Aspects</th>
<th>Evaluation of environmental relevance 2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental and climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions into the atmosphere</td>
<td>In the new 300-millimeter factory, investments in sustainable facilities will be implemented. The supply of cooling and heating alone can save a total of around 30,000 tons of CO₂ emissions per year</td>
<td>P/M</td>
<td>B/C</td>
</tr>
<tr>
<td>Validation of exhaust air measurement technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update of the exhaust air register</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infineon climate strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste water volumes</td>
<td>Adaptation and expansion of waste water treatment system to meet operational requirements and make use of state-of-the-art technology</td>
<td>P/M</td>
<td>B/C</td>
</tr>
<tr>
<td>Load monitoring of various ingredients carried out; integrated into water legislation procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revalidation of the environmental laboratory pursuant to Section 7 of the Austrian Waste Water Emissions Regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hazardous waste</td>
<td>Main components of non-hazardous waste are sent to recycling</td>
<td>M</td>
<td>B/C</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>Main components are reclaimed or recycled and reused</td>
<td>M</td>
<td>B/C</td>
</tr>
<tr>
<td>Reclassification of the hazardous waste component calcium fluoride slurry based on process development and process conversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust emissions</td>
<td>Regular dust measurements by an external institution, all official requirements met, extended maintenance plan realized</td>
<td>M</td>
<td>B/C</td>
</tr>
<tr>
<td>Reduction measures for construction site activities such as truck tire washing, daily street cleaning along the adjacent roads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise emissions</td>
<td>No action required during normal operations</td>
<td>M</td>
<td>C</td>
</tr>
<tr>
<td>Noise protection measures along the parking areas to protect site-neighbors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water consumption/DI water</td>
<td>Increasing consumption is driven and controlled by technological and unit quantity factors</td>
<td>P/M</td>
<td>B/C</td>
</tr>
<tr>
<td>Water demand for the current plant expansion is being evaluated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational resources, consumables</td>
<td>Continuous analysis of resources, processes and consumption as part of the Environmental Statement</td>
<td>M</td>
<td>B/C</td>
</tr>
<tr>
<td>Consumption of operational resources and consumables is driven and controlled by technological and unit quantity factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals, gases</td>
<td>Continuous analysis of resources, processes and consumption, as well as inputs and outputs as part of the Environmental Statement</td>
<td>M</td>
<td>B</td>
</tr>
<tr>
<td>Consumption of chemicals and gases is driven and controlled by technological and unit quantity factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large volumes of solvents are already recycled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media consumption</td>
<td>Continuous optimization of hazardous goods transport by extracting oxygen & nitrogen from onsite air fractionation system</td>
<td>P/M</td>
<td>B/C</td>
</tr>
<tr>
<td>Dilution of chemicals onsite, central supply systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy requirements, waste heat</td>
<td>More than 20 percent of the total energy used undergoes heat reclamation and is reused</td>
<td>P/M</td>
<td>B/C</td>
</tr>
<tr>
<td>Comprehensive energy reduction program (“Energy Efficiency Project”)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating for the site supplied by district heating from sustainable sources (including biomass)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil/ground water quality</td>
<td>Soil monitored by means of regular ground water analyses</td>
<td>M</td>
<td>C</td>
</tr>
<tr>
<td>A soil assessment is undertaken during every phase of construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New production sites</td>
<td>Based on the site expansion, official procedures completed in a timely manner to ensure legal compliance with the extensive obligations to provide evidence</td>
<td>P</td>
<td>B/C</td>
</tr>
<tr>
<td>Safeguarding technical progress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process/innovations</td>
<td>Consistent and systematic evaluation and safeguarding of new technologies in respect of safety and the environment, including in the areas of ion implantation, electrochemical plating, silicon carbide & gallium nitride and e-mobility</td>
<td>P</td>
<td>B/C</td>
</tr>
<tr>
<td>Expansion of the production site with a new 300 mm semiconductor factory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Glossary, page 40
Environmental and ESH aspects and measures

People and the environment

Odor and smoke emissions
- No complaints from site neighbors
- Problems analyzed as necessary
- Raising awareness and training response teams and plant supervisors in the area of odor-related pollution in the production area
- Separation of acidic and alkaline exhaust air in process

Demand for other hazardous materials
- Despite the increased complexity of production technology, the specific consumption of hazardous materials and organic solvents has settled, and the recycling rate of spent solvents has remained stable
- DMF is now routinely recycled and PGMEA consumption has been further reduced as a result of optimization measures
- Solvent consumption significantly reduced by various process optimization measures

Environmental impacts in non-standard operations
- Maintenance of a cross-site safety function plan and business continuity concept
- Explosion zone concept (VEXAT)
- Extensive safety analyses of radiation-relevant facilities
- In-depth analyses of industrial accident regulations (creation of a safety report)
- Operation of a validated environmental protection laboratory
- New fire station
- Review of internal Disaster Response Organization (DRO)
- “Evaluation of environmental aspects in non-standard operations” performed
- Seveso inspections completed in 2018/19

Legal compliance
- Maintenance of a legal database
- Continued consolidation
- Expanded safety concepts (VEXAT, ADR, radiation protection, Industrial Accident Regulation and evaluation under the industrial emissions guidelines)
- Safety report prepared in compliance with the Seveso III Directive

Sustainable development
- Separation and recycling schemes in various areas
- Training and development schemes in workplace safety, health protection, energy and environmental protection
- Project theses, graduate theses assigned as required
- Promotion of the YIP improvement suggestions scheme
- E-mobility and solar technology: Operation of a company electric charging station and deployment of an electric car for business trips
- Extensive reporting on the environment and sustainability
- Review of data via the Group Sustainability Report
- Inclusion of further sustainability aspects in the Environmental Statement (e.g. mobility)
- 2018 EMAS Prize for the 2017 Environmental Statement

Health activities
- Ongoing corporate health promotion taking a holistic approach
- Activities run as needed and coordinated with the internal specifications; key areas:
 - Preventative care
 - Mental health (burnout prevention)
 - Exercise
 - New: “Ergonomics at the Office Workstation” training video
- Best aging
- Mediation and coaching
- Establishment of a Health Team with the aim of continuously developing company health promotion strategies
- Ongoing employee health promotion programs
- Mandatory ergonomics training
- Instructional film “Fit in the office”
- Increase of awareness through a kind of company mascot called “Safety Susie”
- Increase in resources at the MSC by an additional qualified nurse

Transport/mobility
- Intensified measures such as
 - Carpooling center and carpool app
 - Since 2019 bus lines from Faaker, Ossiacher See and Gegendtal, which stop at Infineon
 - Group purchase of electric bikes
 - Awareness raising campaign for employees
 - Public transport: free “job ticket” for employees
 - Carpool parking zones (green markings) with 100 parking spaces established
 - E-mobility: The e-charging stations will be further expanded as part of a cross-site concept
 - Expansion and upgrading of the bicycle parking facilities including a service station

Evaluation of environmental relevance

- A Reduction measures necessary
- B No immediate action necessary, reduction measures have already been carried out or match current state of the art
- B/C No immediate action necessary, measures are already being implemented (continuous improvement programs, dynamic processes)
- C No need for action due to measures introduced, or environmental impact cannot be controlled
4.3 Direct Environmental Aspects

In the following, we report on the direct environmental impact of the Villach site. Direct environmental aspects, which are those directly related to the company’s activities, products and services, include: emissions into the air and water, waste, and the consumption of resources (an overview of all assessed environmental impacts can be found in Chapter 4.2). The environmental impacts of our products are regarded as indirect environmental impacts and are described in the following section.

Chemicals and gases

In the fiscal year 2019, the specific consumption of chemicals and gases increased slightly compared to the previous financial year (the annual figures refer to Infineon’s fiscal year from 1 October to 30 September). The main production-related increase in consumption was seen in inorganic chemicals (mineral acids such as sulfuric acid).

Most hazardous and non-hazardous waste components that can be dealt with by licensed waste collectors and processors are recycled. Thus, the calcium fluoride slurry from the waste water treatment system is used in the construction industry, spent sulfuric acid is used for neutralization purposes, and 73 percent of spent solvents are recycled, with the rest being incinerated.

The following table shows the sum of non-hazardous and hazardous waste generated in the last fiscal years.

<table>
<thead>
<tr>
<th>Waste</th>
<th>Unit</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>t</td>
<td>8,395.059</td>
<td>9,096.564</td>
<td>9,121.62</td>
</tr>
</tbody>
</table>

The amount of waste generated per cm² of silicon surface area also shows a slight upward trend, but has remained at about the same level in recent years.

Waste

Infineon Austria attaches great importance to consistent waste separation at the Villach site. All employees are therefore encouraged to reduce residual waste volumes by collecting and sorting waste and reusable materials.

Due to process optimization and thermal treatment in the cement industry, calcium fluoride slurry (31641) is classified as non-hazardous waste from mid-2019 onwards. The annual reclassifications of the waste components between hazardous and non-hazardous since 2016 result from the changing composition and explain the strong annual fluctuations in the amount of hazardous and non-hazardous waste.
Non-hazardous waste
In the fiscal years 2017, 2018 and 2019 the main non-hazardous waste components > 100 tons were:

<table>
<thead>
<tr>
<th>Waste</th>
<th>Code</th>
<th>Unit</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurries from waste water plant</td>
<td>31,641</td>
<td>t</td>
<td>2,733</td>
<td>1,487</td>
<td>2,734</td>
</tr>
<tr>
<td>Household and commercial waste</td>
<td>91,101</td>
<td>t</td>
<td>497</td>
<td>604</td>
<td>585</td>
</tr>
<tr>
<td>Contents of grease separators (kitchen)</td>
<td>94,705</td>
<td>t</td>
<td>134</td>
<td>143</td>
<td>133</td>
</tr>
<tr>
<td>Iron and steel waste (commercial scrap metal)</td>
<td>35,103</td>
<td>t</td>
<td>259</td>
<td>248</td>
<td>214</td>
</tr>
<tr>
<td>Waste paper</td>
<td>91,201</td>
<td>t</td>
<td>175</td>
<td>183</td>
<td>172</td>
</tr>
<tr>
<td>Biogenic waste</td>
<td>91,104</td>
<td>t</td>
<td>172</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>Wood waste</td>
<td>17,201</td>
<td>t</td>
<td>218</td>
<td>268</td>
<td>262</td>
</tr>
</tbody>
</table>

In fiscal year 2019, the quantities of hazardous waste fluctuated within a production-related range. The noticeable reduction in calcium fluoride slurry resulted from the aforementioned downgrading of this waste component from hazardous to non-hazardous waste.

Treatment and disposal streams of hazardous waste
Below is a summary of the hazardous waste generated by the site, broken down into the main components and their respective recycling flows.

<table>
<thead>
<tr>
<th>Hazardous waste from production</th>
<th>Unit</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hazardous waste</td>
<td>t</td>
<td>3,655.88</td>
<td>5,498.91</td>
<td>4,364.21</td>
</tr>
<tr>
<td>of which recovered (not incinerated) or recycled</td>
<td>t</td>
<td>981.93</td>
<td>1,018.30</td>
<td>1,189.93</td>
</tr>
<tr>
<td>of which incinerated</td>
<td>t</td>
<td>578.14</td>
<td>700.89</td>
<td>665.84</td>
</tr>
<tr>
<td>of which disposed of</td>
<td>t</td>
<td>2,095.81</td>
<td>3,779.72</td>
<td>2,508.44</td>
</tr>
</tbody>
</table>

In the area of the operational recycling of spent solvents by means of redistillation, dimethylformamide (DMF) has been successfully recycled externally since 2014, in addition to the solvents propylene glycol methyl ether acetate (PGMEA), cyclopentanone and N-methyl pyrrolidone (NMP). A total of approximately 500 tons of pure solvents could thus be recycled externally using closed-loop recycling methods, with recycling rates of 65 to 78 percent (average: 73 percent). The recycling rate for all spent solvents was approximately 36 percent, as in the previous year, after major savings in cyclopentanone consumption were achieved at the equipment level.

It should also be noted that our spent solvent mixtures are, as a result, not only sources of energy in terms of thermal treatment, but also valuable secondary raw materials. Thus, preference is clearly given to the recovery of materials rather than thermal treatment.
Energy consumption, climate protection and CO₂ balance

As a global player in the semiconductor industry, energy efficiency and energy savings are essential pillars of our corporate philosophy. This is also reflected in our energy management system, which is certified according to ISO 50001. A constantly-growing number of energy and material flows is systematically recorded and evaluated in order to optimally design and control individual processes. These measures and many other optimization activities allow us to improve our energy usage efficiency.

The manufacture of semiconductors uses primarily electrical energy. This energy is needed both to create a stable production environment with defined ambient conditions in the clean rooms and for the operation of the production facilities. The majority of the Villach site’s energy consumption is incurred by production operations.

Reaching the Next Level with “Sustainability 4.0”

The first energy efficiency projects were launched as early as 2009. In 2017, they were combined under the umbrella of “Sustainability 4.0”. Topics such as Industry 4.0, energy efficiency and the use of resources are managed here. The objective is to create a self-learning factory by networking plants and systems in order to reduce energy consumption, increase efficiency and quality and optimize the use of resources. Attention is also paid to the education and further training of staff. In the European research project “SemI40” (www.semi40.eu, completion 2019), the cooling system for the clean room was successfully optimized using artificial intelligence (AI). Various load options (summer-winter, day-night) were simulated, and an energy savings potential of up to 13 percent per year was identified. In the follow-up project “iDev40” (www.idev40.eu), the development process will also be networked with volume production in order to achieve further resource-efficient optimization. Research is also being conducted in the field of hydrogen: Research in the “H2Pioneer” project focuses on experimental demonstrations of the production and recovery of ultrapure green hydrogen from renewable energy sources.

Energy-efficient production

With the “Industry 4.0 Pilot Area” in Villach, Infineon has ideal conditions for testing and continuing the development of new processes and methods of digitalization in real-life operations. Existing buildings and infrastructure systems are equipped with smart sensors, control devices and smart meters to achieve an even more precise adjustment of energy consumption to the respective production capacity utilization. The data collected in this way is used for computer models and simulations to determine further savings potential. In Production Hall 17, the energy dashboard shows the current energy consumption in production. All these findings will also be used for the new factory building currently under construction in order to achieve further resource-efficient optimization in the future.

New R&D building with a digital twin

The topping-out ceremony for the new R&D building in Villach took place in autumn 2019 and its completion is scheduled for mid-2020. The new R&D building relies on a high technical building standard with comprehensive ventilation system, cooling ceilings, selective exterior shading and the specific energy consumption of a low-energy house. When it comes to energy supply, sustainability is also the key focus: Energy is provided by means of heat recovery from the factory’s cooling processes as well as from a highly efficient refrigeration plant. The building’s energy supply is therefore almost entirely self-sufficient. The new R&D building is accompanied by a digital twin. It provides a virtual representation of an area in order to automatically optimize building technology in real time over its service life. The goal is to learn through simulation and to use the findings for an ideal indoor climate and low energy consumption. The new R&D building is therefore an important use case in the European “Arrowhead Tools” research project, which was launched in 2019 and will run until 2022.
The following graph illustrates the breakdown of the energy demand at the location:

![Energy Breakdown Diagram]

Breakdown of energy requirements at the Infineon Villach site 2019

- Natural gas: 10.9%
- District heating consumption: 16%
- Electricity consumed from renewable energy sources: 4.1%
- Self-generated energy heat pumps: 4.1%
- Waste heat utilization (calculated): 66.6%

As shown in the “energy consumption” graph, the site’s specific total electricity consumption increased slightly in fiscal year 2019. Only the consumption of district heat was significantly lowered by the optimized use of heat pumps. With the use of district heating since 2011, powered by an energy mix comprising mainly renewable energy sources, the use of natural gas has been reduced from typically more than ten percent to around 2.5 percent at the present time. The use of electricity from 100 percent hydroelectric power and green energy once again enabled approximately 60,000 tons of CO₂ emissions to be saved this year.

Emissions

Climate protection and CO₂ balance

The CO₂ calculations were made on the basis of EDM reporting as required by the Industrial Gas Ordnance and ESIA PFC working group templates, using information provided by the Intergovernmental Panel on Climate Change (IPCC) in the currently valid form.

With regard to emissions, due to the consistent implementation of the CO₂ reduction program (in the test facility among others), it was largely possible to slightly decrease the level of specific emissions of CO₂ equivalents over the last 15 years as compared with previous fiscal years, despite complex production expansions.

Diesel and extra-light fuel oil (EL) were used only in minimum quantities and for emergency power systems. CO₂ emissions mainly consist of greenhouse gas emissions from the gases used in production and to a small extent of natural gas consumption for heat and exhaust gas purification.

According to the EMAS III Regulation, emissions of CO₂, CH₄ (methane) and N₂O (nitrous oxide) are also considered in relation to the CO₂ equivalents. Since the global warming potential of the above-mentioned process gases is relatively low in relation to the CO₂ equivalents and, in the context of an overall assessment, amounted to an additional 2 percent of total emissions in the 2019 fiscal year, this share was not taken into account in the following chart based on the guideline in its current version (EU) 601/2018 (originally 2004/156/EC). In addition to the CO₂ emissions mentioned above, the consumption of CO₂-relevant hydrogen fluorocarbons (HFCs) as refrigerants amounted to approx. 3.7 percent in 2019.

CO₂ emissions

in kg/cm² silicon surface area, normalized by fiscal year – 2019

The target for the fiscal year 2019 was not to exceed 274 GWh of electricity consumption while providing for growth at the site. With a total of approx. 285 GWh consumed, this goal was not achieved – among other things, this reflects the complex energy-intensive technologies as well as in particular the extensive construction activities at the site.
A variety of greenhouse gases are used in the semiconductor industry, for example in the etching processes used to structure wafers and for the cleaning of production facilities. These include the so-called perfluorinated compounds (PFCs), such as perfluorinated and polyfluorinated hydrocarbon compounds, sulfur hexafluoride (SF_6) and nitrogen trifluoride (NF_3). These greenhouse gases cannot be replaced by other groups of substances.

We minimize the use of these gases, firstly by means of ongoing process optimization, i.e. more efficient production methods and intelligent air exhaust purification concepts, and secondly through the use of alternative PFC group gases with higher conversion rates and lower greenhouse potential. However, the increasing complexity of our products is leading to a slightly increased need for greenhouse gases. Because of its dielectric properties, SF_6 is used all over the world as an insulation gas in high-voltage technologies. Current state-of-the-art technologies offer no alternative to the use of SF_6 as a process gas for plasma etching in semiconductor component production.

In recent years, targeted reduction programs have enabled a reduction of the use of SF_6 as an insulation gas when measuring and testing completed wafers in the wafer testing facility at the Villach site to the minimum necessary. The remaining base load results from the special requirements of high-voltage measurement techniques as well as its use as a dielectric in implantation systems. Now that the Villach site has implemented sustainable measures for the reduction of greenhouse gas emissions, especially in the area of exhaust air purification, we have been able to, for the most part, optimize the ratio of specific CO_2 emissions to the amount of silicon surface area produced.

The use of perfluorinated hydrocarbons at the Villach site is rigorously monitored and reported under the Austrian Industrial Gas Regulation (BGBl. II No. 447/2002) and serves as the basis for the reporting required by this regulation.

Data on exhaust air

To provide the clean rooms with fresh air, large amounts of ambient air are taken in, cleaned of particulate matter and, after being recirculated several times (multiple circulation routing), filtered and then discharged back into the environment. Where necessary, we remove process-related contaminants from exhaust air by means of treatment systems. In doing so, we remain well below the official regulatory limits. Environmentally-relevant substance classes are collected from the exhaust air and sorted into exhaust flows according to their chemical properties.

Wet scrubbers are used for acidic/alkaline exhaust air (process exhaust air), organic components are purified using after-combustion systems, and perfluorinated compounds (PFCs) from the semiconductor production area are incinerated in a high-temperature process and cleaned using wet chemicals.

As can be seen from the below tables, the emission levels at the individual emission points of the site are well below the limit levels. The emission limit levels were therefore adjusted and lowered in cooperation with the applicable authorities.

Sulphur and nitrogen oxide emissions

Based on the provisions of the EMAS-III regulation, this Environmental Statement also includes reports on NO_x (nitrogen oxide), SO_2 (sulfur dioxide) and dust emissions. The site's NO_x emissions from production in the fiscal year 2019 are currently estimated at approximately 21,250 kg. The boiler plants were not in operation in the past reporting year, so there were no according emissions. Indirect emissions from district heating production are not recorded. Vehicle emissions are only recorded on a Group-wide basis, and not separately for each site (see “Energy Consumption”).

The NO_x emissions from production areas were evaluated by estimating the loads of the exhaust air volume flows from their NO_x levels (values below the measurement detection limit of 0.21 mg/Nm3 were replaced by the detection limit levels themselves in the calculation – worst-case calculation).
Air emissions from Halls 14, 15, 16 – Measured values from the fiscal years 2017, 2018 and 2019

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit</th>
<th>Limit[^1]</th>
<th>Hall 14</th>
<th>Hall 15</th>
<th>Hall 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Hydrogen chloride (HCl)</td>
<td>mg/m³</td>
<td></td>
<td>0.33</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF)</td>
<td>mg/m³</td>
<td></td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF) Hall 14</td>
<td>mg/m³</td>
<td></td>
<td>0.35</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF) Hall 15</td>
<td>mg/m³</td>
<td></td>
<td>n. a.</td>
<td>n. a.</td>
<td>0.06</td>
</tr>
<tr>
<td>Chlorine (Cl₂)</td>
<td>mg/m³</td>
<td></td>
<td>0.36</td>
<td>0.50</td>
<td>>0.16</td>
</tr>
<tr>
<td>Nitrogen oxides as nitrogen dioxide (NOₓ)</td>
<td>mg/m³</td>
<td></td>
<td>100</td>
<td>39</td>
<td>3.43</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>mg/m³</td>
<td></td>
<td>10</td>
<td>0.43</td>
<td>0.54</td>
</tr>
<tr>
<td>Hydrogen bromide (HBr)</td>
<td>mg/m³</td>
<td></td>
<td>3.72</td>
<td>0.92</td>
<td>n. a.</td>
</tr>
<tr>
<td>Arsenic (AsH₃)</td>
<td>mg/m³</td>
<td></td>
<td>0.5</td>
<td>≤0.07</td>
<td>≤0.07</td>
</tr>
<tr>
<td>Phosphine (PH₃)</td>
<td>mg/m³</td>
<td></td>
<td>0.5</td>
<td>≤0.03</td>
<td>≤0.03</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>mg/m³</td>
<td></td>
<td>20</td>
<td>1.52</td>
<td>>0.16</td>
</tr>
<tr>
<td>Organic carbon Hall 16</td>
<td>mg/m³</td>
<td></td>
<td>30</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>mg/m³</td>
<td></td>
<td>100</td>
<td>2.50</td>
<td><2.5</td>
</tr>
</tbody>
</table>

[^1]: Limit values in accordance with the official order “Reduction of emission limit values - change authorized 1/6V-B-S196/1/T.151/Ch”; valid from May 2016.

n. a. = not applicable

Air emissions from Halls 13, 13A, 16A and 17

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit</th>
<th>Limit[^1]</th>
<th>Hall 13</th>
<th>Hall 13A</th>
<th>Hall 16A</th>
<th>Hall 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen chloride (HCl)</td>
<td>mg/m³</td>
<td></td>
<td>n. a.</td>
<td>≤0.08</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF)</td>
<td>mg/m³</td>
<td></td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Nitrogen oxides as nitrogen dioxide (NOₓ)</td>
<td>mg/m³</td>
<td></td>
<td>100</td>
<td>≤0.21</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>mg/m³</td>
<td></td>
<td>10</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Arsenic (AsH₃)</td>
<td>mg/m³</td>
<td></td>
<td>0.5</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>mg/m³</td>
<td></td>
<td>20</td>
<td>0.16</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
</tbody>
</table>

[^1]: Limit values in accordance with the official order “Reduction of emission limit values - change authorized 1/6V-B-S196/1/T.151/Ch”; valid from May 2016.

n. a. = not applicable

Dust emissions

The regulatory specifications on dust emissions (a maximum of 5 mg/Nm³) are audited once a year based on samples taken at representative measurement points by an assessor as part of the corresponding control concept. The estimated dust emissions for the site for the past fiscal year, which in turn were obtained from a loading analysis of the exhaust air flows, amount to approximately 12.6 tons.

Land use and biodiversity

The total area covered by the site during the 2019 reporting period, including roads and pathways, was 217,584 m², with an additional 42,260 m² of leased space. Approximately 42,000 m² of the outdoor area is paved (sealed), and around 24,200 m² comprises green space (lawns, vegetation). The total sealed area of the site, including an area of approximately 66,000 m² covered by buildings (container village), amounts to approximately 108,000 m². The remaining approximately 100,000 m² consists mainly of parking areas with infiltration systems, drainage ditches and embankments, unpaved gravel surfaces (prepared sites), lawns and vegetation.

The new buildings and extensions (additional developed areas: 20,000 m² GP300 and 4,000 m² NO2/N03) for the expansion of the Villach site production plants will mainly be built on existing parking areas. Bushes and woods were cleared to make way for new infrastructure buildings and the plant access road. These areas are being replaced by Infineon in several ways: In consultation with the Carinthian Provincial Government (Department 8, Environment, Energy and Nature Conservation) and the forestry authority, so-called substitute habitats such as biotopes and wet meadows are being created.

Furthermore, Infineon is acquiring approximately 2,000 m² of natural space to the east of the daycare center in order to secure this as a pure natural area. As a further measure, Infineon – in coordination with the authorities – provides financial support to reforestation projects to create new forest areas, for example by reforesting with oaks and rowan trees on the following scale:

- 3,500 m² in Mallestig,
- 5,000 m² in Federaun (between motorway and Gail),
- 1,500 m² in Ossiachberg and
- 8,000 m² with hardwood in Berg (Rosegg).
Infineon is also financing the reforestation of a further 3,500 m² in Mallestig and 3,400 m² in Maria Gail. Details can be found at www.infineon.com/expansion.

Reforestation projects with a surface area of approx. 25,000 m² were carried out to compensate for the additional sealed or built up areas required as a result of the site expansion.

Water consumption and waste water

The Villach site obtains most of its water supply from its own wells. As a result of the expansion of operational facilities and shifts in technology, depending on production almost 50% of this self-supplied water is treated with the aid of special equipment, resulting in ultrapure water for production. The water used to cool these production and infrastructure facilities is also extracted onsite. We source drinking water and water for sanitary installations from the local utility provider.

The specific water consumption (8.2 l/cm²) and the specific waste water quantity (5.8 l/cm²) in relationship to the silicon surface area produced increased slightly in the 2019 financial year (2018: consumption 7.4 l/cm² and waste water 5.6 l/cm²). This increase is attributable to the slightly higher consumption of DI water and a significant additional demand for thermal cooling, based on the climatic conditions during the reporting period.

In the course of the ongoing plant expansions and the resulting additional demand for process and cooling water during commissioning and ramp-up of the new factory, there is close coordination with the authorities, and the required amount of water is approved within the scope of the legal requirements.

Usable areas of the buildings – existing buildings

See Glossary, page 40
4.4 Indirect Environmental Aspects

“Easier, safer and greener”: This is the aspiration driving the development and manufacture of innovative products at Infineon. For us, sustainability means maintaining a balance between successful economic activities and caring for people and the environment – this shapes the entire corporate culture.

Environmental impacts are not caused solely by the company’s own activities at the site; environmental damage can also be caused by the use and disposal of products and services. However, these effects are not, or only to a certain extent, under the control of the company.

Sustainable products for energy and climate targets

Infineon microchips are used in many applications to make more out of less: They reduce power consumption and improve energy efficiency. With a market share of 18.6 percent (source: Informa Tech, September 2019), Infineon is the world market leader for these power semiconductors, also known as energy-saving chips. Infineon’s energy-saving chips make a significant contribution to reducing our carbon footprint and enable savings that are 68 times greater than our emissions (ratio of 1:68). Our ecological net benefit is a CO₂ reduction by 8.4 million tons.

Noise

Infineon Austria maintains an up-to-date noise emissions log. Most noise-generating equipment (compressors, cooling units, heating equipment and vacuum pumps) is located in enclosed supply rooms. Only the heat exchangers are located out-of-doors. Noise levels at the site boundaries are within the officially stipulated levels.

Austrian Semiconductor Waste Water Emission Regulation (AEV) - indirect - external monitoring

The following table shows the relevant parameters and parameter limits according to the national and state regulations.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit</th>
<th>Official limit 2016</th>
<th>2017*</th>
<th>New official limit 2018</th>
<th>Meas. values 2017*</th>
<th>Meas. values 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron (B)</td>
<td>mg/l</td>
<td>1</td>
<td><0.5</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>THCs*</td>
<td>mg/l</td>
<td>1</td>
<td><0.1</td>
<td>0.16</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>AOX**</td>
<td>mg/l</td>
<td>0.1</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
</tr>
<tr>
<td>Anionic surfactants</td>
<td>mg/l</td>
<td>2</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>BTX**</td>
<td>mg/l</td>
<td>0.1</td>
<td><0.002</td>
<td><0.002</td>
<td><0.003</td>
<td><0.002</td>
</tr>
<tr>
<td>Non-ionic surfactants</td>
<td>mg/l</td>
<td>1</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
</tbody>
</table>

1) Total organically-bound carbon.
2) Hydrocarbons.
3) Purgeable organic halides.
4) Hydrocarbons.
5) Chemical oxygen demand.
6) Purgeable organic halides.
7) Adsorbable organic halides.
8) Adsorbable organic halides.

Austrian Semiconductor Waste Water Emission Regulation (AEV) - direct - external monitoring

Contaminated waste water from production is purified in our internal waste water treatment plant, which is equipped with state-of-the-art automatic online analysis functions and corresponding retention basins.

Austrian Semiconductor Waste Water Emission Regulation (AEV) - direct - external monitoring

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>6.5-8.5</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.5</td>
</tr>
<tr>
<td>Filterable substances</td>
<td>mg/l</td>
<td>50</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Ammonium – N (NH₄)</td>
<td>mg/l</td>
<td>20</td>
<td>1.4</td>
<td>1.2</td>
<td>0.85</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>mg/l</td>
<td>50</td>
<td>36.9</td>
<td>35</td>
<td>21</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Phosphorus (tot. P)</td>
<td>mg/l</td>
<td>60</td>
<td>29.3</td>
<td>37.1</td>
<td>114</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Nitrogen (total N)</td>
<td>mg/l</td>
<td>250</td>
<td>275</td>
<td>346.5</td>
<td>660**</td>
<td>86</td>
<td>356</td>
</tr>
<tr>
<td>Sulfate (SO₄²⁻)</td>
<td>mg/l</td>
<td>200</td>
<td>152</td>
<td>148</td>
<td>200</td>
<td>157</td>
<td>166</td>
</tr>
<tr>
<td>AOX*</td>
<td>mg/l</td>
<td>0.5</td>
<td>0.03</td>
<td>0.04</td>
<td>0.5</td>
<td><0.05</td>
<td><0.02</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>mg/l</td>
<td>0.1</td>
<td>0.05</td>
<td>0.06</td>
<td>0.1</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>mg/l</td>
<td>1.0</td>
<td><0.05</td>
<td><0.05</td>
<td>1.0</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>mg/l</td>
<td>2.0</td>
<td><0.10</td>
<td><0.10</td>
<td>2.0</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>mg/l</td>
<td>1.0</td>
<td><0.50</td>
<td><0.50</td>
<td>1.0</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>THCs**</td>
<td>mg/l</td>
<td>3.0</td>
<td><0.10</td>
<td>0.15</td>
<td>3.0</td>
<td><0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>AOX**</td>
<td>mg/l</td>
<td>0.05</td>
<td><0.010</td>
<td><0.010</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Arsenic</td>
<td>mg/l</td>
<td>0.10</td>
<td><0.10</td>
<td><0.10</td>
<td>0.10</td>
<td><0.05</td>
<td><0.05</td>
</tr>
</tbody>
</table>

** Changes according to official order 12/12/2017 1/NU-Wa-13/2016/Ka
*** According to final inspection in official order of 30/09/2016 1/NU-Wa-72-1/99/16, 1/NU-Wa-71/04/16, 1/NU-Wa-56/11

1) Adsorbable organic halides. 2) Chemical oxygen demand. 3) Adsorbable organic halides. 4) Total volatile aromatic hydrocarbons. MAPAG (state-accredited testing and inspection body) and BDL ZT GmbH 2018
Infineon chips perform a key function in electronic devices, where they adapt mains power to the requirements of the respective device and minimize energy losses. Chips from Villach play a pivotal role in this: Since 1997, Infineon in Villach has been the global competence center for power electronics within the Group, and since 2017 has also been serving as the global competence center for new semiconductor materials such as silicon carbide and gallium nitride. These convert electricity even more efficiently, enabling smaller and lighter components. Current applications include charging stations for electric cars with significantly shorter charging times or the mobile infrastructure for 5G networks. Today and in the future, Infineon is making a significant contribution to higher energy efficiency, better resource management and effective climate protection in accordance with the objectives of the Paris Climate Convention.

Electromobility
Infineon is the market and technology leader in power semiconductors for electromobility. As early as 2018, 15 of the world’s 20 best-selling electric cars and plug-in hybrids were using Infineon components. In the electric drive, charging, battery management and other electric vehicle systems sectors, Infineon provides viable solutions for start-stop systems suitable for mild-hybrid and plug-in hybrid vehicles as well as pure-electric vehicles. This reduces costs for drive and electronics and increases the overall energy efficiency of the system.

Silicon carbide plays a decisive role in active battery management. It converts electricity even more efficiently, thereby enabling further miniaturization of the chip system. The result: an increase in capacity, range and service life of batteries by over ten percent. Infineon energy-saving chips are also being used in a project conducted by a group of major German automotive manufacturers setting up rapid e-car charging stations throughout Europe. These smaller and lighter charging stations shorten the charging time for 300 km from three hours to 20 minutes. In Austria, Infineon networks with companies in the fields of industry, research and energy in the nationwide Austrian Mobile Power (AMP) platform.

“Smart Home” households
Infineon uses inverter technology to demonstrate how “power guzzlers” can become “energy savers”. In household appliances such as refrigerators, induction cookers, air conditioners, power tools, fans and pumps, Infineon’s inverter technology helps save electricity by optimally regulating the flow of current. For compressors in refrigerators, for example, this can reduce energy consumption by up to 40 percent.

Wireless charging
Infineon enables wireless charging with innovative chip solutions that transfer power from the charging station to the device as quickly and efficiently as possible. The majority of this technology is developed and produced in Villach. This way, devices can be charged “on-the-go” in
public places and in the car. Furthermore, several devices can now be charged at the same time by a single charging station. These include smartphones, tablets and notebooks as well as wearables. Low-voltage devices such as power tools, domestic appliances, toys and medical equipment benefit from this trend. Infineon offers product solutions for charging stations and adapters which ensure optimum wireless power transfer to various receivers.

Energy efficiency as a lever

The Internet connects people across continents, while the “Internet of Things” creates a network of devices and systems. According to estimates by the market research institute Juniper Research, 50 billion devices will be interconnected by 2022. This further increases the demand for energy. Energy efficiency is therefore becoming a pivotal lever for climate and environmental protection, and with it the chips for a low-loss and reliable power supply. In Villach, the next generation of energy-saving chips, which will be able to cut future energy losses by half, is being developed. In addition to a number of applications such as power supply units and chargers for notebooks, smartphones and tablets, energy-efficient server operations also play a significant role in this context. Increasing digital connectivity leads to a rise in server data rates, requiring larger server capacities and thus increasing the demand for chips. At present, around 50 percent of the world’s servers use Infineon power semiconductors from Villach for efficient power conversion.

Acting holistically: a focus on CSR

Infineon accepts its responsibility for the environment and society as a whole and involves the relevant interest groups (e.g. site-neighbors, customers, employees, suppliers, cooperation partners). Infineon Austria has defined guidelines for sustainable growth based on the “Smart Growth 2025” strategy and the Group’s CSR Policy.

Our CSR guidelines at a glance:
- Innovation is in our DNA
- A strong employer – a strong region
- For a green tomorrow

Responsible procurement

Responsible management is a core element of Infineon’s corporate philosophy. This aspiration also applies to our supply chain. That is why Infineon has a group-wide procedure in place to ensure the necessary transparency. Compliance with our requirements in the areas of environmental protection, occupational safety and CSR is of great relevance when evaluating existing suppliers, selecting future suppliers and deciding on supplier development.

Infineon Austria’s internal processes ensure that services and equipment are procured in an environmentally friendly manner. Based on our Groupwide guidelines, such as the “Principles of Purchasing” which, in turn, are based on our global “Business Conduct Guidelines” and CSR policy, all of our service providers and suppliers are obliged to meet our standards of workplace safety, health and environmental protection and working and social conditions.

Our framework purchasing agreements, which also specify environmental and workplace safety aspects, further contribute to successful cooperation. Additional requirements for our suppliers are formulated in our “Technical Terms and Conditions of Delivery”. These activities are...
also regularly reviewed by external parties: Infineon was awarded “Gold” status by the independent procurement rating agency EcoVadis for the fourth time in a row.

Environmentally friendly transport

At the Villach site, so-called shuttle packaging (reusable packaging) has been used for four years to transport sawn wafers (six, eight, twelve inches), primarily for deliveries to the sites in Germany (Warstein, Regensburg) and Hungary (Cegléd). Shuttle packaging is reusable transport packaging made of plastic, which has been developed by Infineon employees in cooperation with suppliers from different locations. In the fiscal year 2019, this saved up to 40,000 cardboard boxes and up to 80,000 pieces of rubber foam. The introduction of reusable packaging has resulted in savings of around 340,000 euros.

“Green Way” mobility scheme

With the corporate mobility management program “Green Way”, which was awarded the VCÖ Mobility Awards for Carinthia and Austria in 2018, Infineon promotes environmentally-friendly options for commuting to work. This includes comprehensive activities such as

› Promotion of cycling
› Expansion of the e-charging infrastructure
› Use of fully-electric cars for business travel
› Encouraging carpooling
› Promotion of public transport
› Free “job ticket” for employees
› Mobility analyses & involvement in networks relevant to the topic

More than 800 Infineon employees already come to work by bike. As a result, additional bicycle parking spaces were created to meet the increasing demand. In addition to the expansion of the e-charging infrastructure and the use of fully electric cars for business trips, Infineon offers specially reserved parking spaces for carpools.

Infineon is strongly committed to improving public transport and expanding the network of bicycle paths. This benefits not only the employees, but also suppliers, service providers and the entire residential and tourist region of Villach. To this end, Infineon is in ongoing consultation with the city, state and transport authorities. Since 2019, new bus lines from Faaker, Ossiacher See and Gegendtal, which stop at Infineon, were established. We were able to achieve a 15-minute interval from and to the city center as well as to and from the train station in the urban bus service as early as 2017. In addition, the EU Horizon 2020 project “STEVE” is ongoing, where Infineon, together with regional partners and the City of Villach, is planning to implement an electric bike sharing system in 2020.

With the “job ticket”, all employees are offered free travel to work on public transport. Since its introduction in March 2019, around 420 employees have been taking advantage of this sustainable offer. And the trend continues to point upwards.

As the growing Infineon site in Villach interacts with the region, “Green Way” is committed to holistic mobility measures. Infineon is cooperating closely with companies, authorities and relevant networks in joint projects and coordination efforts to improve mobility offers and promote the attractiveness of the region.

IT with social-ecological added value

In 2019, Infineon Austria was once again honored by AfB gemeinnützige GmbH for its commitment to social and ecological issues. The non-profit company which helps people with disabilities to integrate into working life specializes in refurbishing IT hardware that has been taken out of service so that it can be used in other applications. Half of the more than 400 people employed by the company in Germany, Austria, France and Switzerland have disabilities. The quality and quantity of the devices donated by Infineon in 2019 has helped to fund jobs for three persons with a disability.

“Green” printing

With all print jobs, we pay attention that environmentally friendly methods are used. The Environmental Statement is also printed on CO₂-neutral and certified recycled paper made from 100% waste paper. The individual print components are PEFC-certified, meet the criteria of the Austrian Eco-Label, and are the result of climate-neutral production.
Environment Program and Environmental Goals

5. Overview

At the Villach site, the workplace safety, health protection, environmental protection and energy programs are based on the objectives formulated in the Infineon Group’s policies on environmental protection, energy management, workplace safety and health protection. The catalog of goals and actions is reviewed, adjusted and defined once a year based on the corresponding input and output analyses and the environmental aspects of the site that have been identified as essential. The measures, deadlines and responsible parties associated with the individual projects are determined as part of the same process.

In recent years, Infineon Austria has concentrated on highlighting its major strategic projects in the areas of waste water, exhaust air and recycling in its Environmental Statement. When new equipment is needed for innovation, capacity expansion or replacement investments, we pay close attention to the state of the art. Below, we showcase examples of environmentally-relevant project activities that have provided, or will provide, a significant contribution to improving the site’s environmental performance.

For the Infineon Group, less is more

-52 % less electricity
-32% less water
-65% less waste

per cm² wafer produced, as compared to the global average

The calculation is based on the square centimeters of processed wafer area in front-end production and the consumption according to the WSC definition. The figures have been audited by KPMG and relate to the fiscal year 2018/19.
5.1 PROJECTS Implemented in 2018/19

Based on the analysis of environmental aspects and the measures derived from this, the following projects were planned and implemented in the fiscal year 2018/2019:

<table>
<thead>
<tr>
<th>Area</th>
<th>Target</th>
<th>Measure</th>
<th>Status</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency*</td>
<td>Cost and energy savings through onsite use of LEDs</td>
<td>LED project already into its 3rd fiscal year. Currently: evaluation and detailed planning for areas that do not yet have LED lighting installed</td>
<td>Complete implementation is currently not possible – parts of the manufacturing process require amber light or fluorescent tubes, so LED lighting cannot be used here</td>
<td>10/2020</td>
</tr>
<tr>
<td></td>
<td>Onsite production of green hydrogen</td>
<td>Feasibility study and planning of onsite hydrogen production by means of electrolysis system</td>
<td>Feasibility study completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy savings through optimized operation of air conditioning in clean rooms</td>
<td>Commissioning of a feasibility study “Optimization of air conditioning units in existing buildings”</td>
<td>Project was postponed for priority reasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy optimization for operations</td>
<td>Evaluation to identify optimal hardware components for cooling towers (configurations and designs)</td>
<td>Preparation of evaluation plan</td>
<td>10/2020</td>
</tr>
<tr>
<td></td>
<td>Consumption of resources</td>
<td>Continuation of solvent recycling</td>
<td>Approximately 500 t were recycled in FY 2018/19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exhaust air</td>
<td>Refurbishment of H16 EPI scrubber (approx. 4 scrubber packages) without honeycomb; Implementation of new technologies</td>
<td>Evaluation of the MAT scrubber was carried out successfully. Investment project for replacement of existing scrubber is approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional 3 scrubbers to double scrubber capacity for alkaline exhaust air from Hall 16/16A/15</td>
<td>Separation of acidic and alkaline exhaust air from H15 (wet scrubber 44) – continuation from last year</td>
<td>Pipeline from H15 to wet scrubber 44 was completed. Commissioning completed in 09/2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobility</td>
<td>Action program to promote occupational mobility logistics/e-mobility – Organization of parking area</td>
<td>Carpooling spaces have been implemented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skills, training and awareness</td>
<td>Training given by means of “Environmental Protection” video</td>
<td>Script has been written. Editing has been completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immission protection</td>
<td>Development of a permanent joint immissions monitoring station with Dept. 8 of the Carinthian Provincial Government</td>
<td>Measuring station commissioned 10/2018, all values at low levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workplace safety</td>
<td>Implementation of standardized evaluations by means of IT-controlled “Syneris” program</td>
<td>Implementation 10/2021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire safety and disaster response</td>
<td>Recording of accidents by individual employees by means of IT-supported “Syneris” program</td>
<td>Program has been released for first stage of user testing Rollout: completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faster and better targeted evacuation of buildings</td>
<td>Automated evacuation alarm announcements (German/English) – naming specific areas of buildings</td>
<td>100% implementation of evacuation flashers, 95% implementation of base sounders and flashers in the production buildings, implementation of automated announcements by 10/2020</td>
<td>03/2020</td>
</tr>
</tbody>
</table>

*The projects shown in the energy efficiency section are reproduced in a “BaMa” master plan dealing with simulations and optimization projects for energy-optimized production.

Status indicators: Progress in % 25% 50% 75% 100%
5.2 Planned ESH Projects

Based on the analysis of environmental aspects and the measures derived from this, the following projects are planned for the fiscal year 2019/20:

<table>
<thead>
<tr>
<th>Area</th>
<th>Target</th>
<th>Measure</th>
<th>Status</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of resources</td>
<td>Reductions in input media (solvents) > 300 t</td>
<td>Continuation of solvent recycling</td>
<td>Long-standing, continuously optimized permanent measure</td>
<td>10/2020</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Onsite production of green hydrogen</td>
<td>Planning of onsite hydrogen production by means of electrolysis system</td>
<td>Currently in contract negotiations, Target: System installed by 04/2021</td>
<td>12/2019</td>
</tr>
<tr>
<td>Exhaust air</td>
<td>Expansion bas. exhaust air capacity in H16 incl. redundancy</td>
<td>Conversion wet scrubber 05 from acidic to alkaline, conversion of redundancy scrubbers 15 and 16 to optional alkaline and acidic operation, changeover of furnace exhaust air alkaline from wet scrubber 01 to wet scrubber 05</td>
<td>Conversion wet scrubber 05 and wet scrubber 15 completed, conversion wet scrubber 16 planned for March 2020, changeover from wet scrubber 01 to wet scrubber 05 completed</td>
<td>12/2020</td>
</tr>
<tr>
<td>Enhanced production safety standards</td>
<td>Use of new technologies through the renewal of the EPI scrubbers (about 4 scrubber packages)</td>
<td>Replacement of 6 scrubbers 2020, replacement of 7 scrubbers planned for 2021. 1 scrubber coming June 2020</td>
<td></td>
<td>12/2020</td>
</tr>
<tr>
<td>In the course of plant shunting in H15, the exhaust air ducts are optimized</td>
<td>Re-use of released abatements in the furnace and etching area, increase of the utilization of the wet scrubbers in the area of wet chemistry through switchovers</td>
<td>Switchover to wet scrubbers completed in June 2020, re-use of already available abatements until the end of the calendar year</td>
<td></td>
<td>12/2020</td>
</tr>
<tr>
<td>Employees / external contractors, service providers</td>
<td>Optimization of the process for external companies</td>
<td>Establishment of a uniform process with – uniform – documents applicable to everybody</td>
<td>Draft process description is being coordinated</td>
<td>12/2020</td>
</tr>
<tr>
<td>Skills, training and awareness</td>
<td>Employees know the dangers of workplaces that are not ergonomically designed</td>
<td>Implementation of training by means of mandatory e-learning sessions for all office workplaces throughout IFAT</td>
<td>Is being implemented</td>
<td>12/2019</td>
</tr>
<tr>
<td>Employees know the dangers of chemicals at the Villach site</td>
<td>Implementation of training by means of mandatory e-learning sessions</td>
<td>e-learning has been rolled out</td>
<td></td>
<td>01/2020</td>
</tr>
<tr>
<td>Increase employee awareness of accident prevention</td>
<td>Encourage employees to be more prudent by using different channels with a central figure</td>
<td>Project "SafetySus" implemented</td>
<td></td>
<td>11/2020</td>
</tr>
<tr>
<td>International staff should also be able to be first responders</td>
<td>Offer English-language first aid courses and make them bookable via learning portal</td>
<td>Has been implemented - Courses can already be booked</td>
<td></td>
<td>01/2020</td>
</tr>
<tr>
<td>Correct employee behavior in case of an evacuation alarm</td>
<td>Revision of the evacuation concept for the office</td>
<td>Project is being implemented, Start of implementation 02/2020</td>
<td></td>
<td>02/2020</td>
</tr>
<tr>
<td>Skills, training and awareness</td>
<td>Employees and external contractors onsite act in a consciously sustainable and environmentally-friendly manner</td>
<td>Training given by means of “Environmental Protection” video</td>
<td>Script has been written. Expected realization / original start of shooting postponed as of 05/2020</td>
<td>10/2020</td>
</tr>
<tr>
<td>Workplace safety and health protection</td>
<td>Workplace-specific MAK value measurements on selected equipment for special chemicals</td>
<td>Graduate thesis on MAK value measurements of defined chemicals</td>
<td>Project has been launched, Cooperation with various external institutes</td>
<td>06/2020</td>
</tr>
<tr>
<td>Mobility</td>
<td>Continuation of the “Green Way” project</td>
<td>Action program to promote occupational mobility logistics/e-mobility, e.g.:</td>
<td>– Investment for e-charger approved - Implementation approx. 05/2020 with 30 charging points (further expansion planned for FY 20/21) – New bicycle cage is currently being built (03/2020) – Carpooling spaces implemented (separate barriers will be erected this year) – Discussions with city and country regarding bicycle paths ongoing</td>
<td>03/2020</td>
</tr>
<tr>
<td>Chemical safety</td>
<td>Optimization of the laboratory standard with regard to norms</td>
<td>Laboratory revalidation with the main focal points: methods, standards, technical guidelines and extended health protection evaluation</td>
<td>Summary in preparation</td>
<td>06/2020</td>
</tr>
<tr>
<td>Fire safety and disaster response</td>
<td>New Security Control Center in Building 03</td>
<td>Opening of the new Security Control Center in Building 03 – no savings, but improvement of the existing situation</td>
<td>Ongoing</td>
<td>12/2019</td>
</tr>
<tr>
<td>Disaster response</td>
<td>Crisis management team exercises</td>
<td>Combination of a DRO exercise with Seveso inspection planned</td>
<td>In preparation</td>
<td>12/2020</td>
</tr>
</tbody>
</table>

Green text: planned goals that have already been met

Status indicators: Progress in % 25% 50% 75% 100%
5.3 Special Environmental Achievements in the Fiscal Year 2019

When it comes to special environmental achievements, the Villach site is highly innovative and oriented toward the future. A few important examples are highlighted below:

Onsite energy efficiency
- Based on the ISO 50001-compliant energy management system already implemented in 2012, a number of projects focusing on energy efficiency and led by the Energy Manager have already been launched and realized. As part of the best practice sharing policy, information was constantly exchanged with the other Infineon sites.
- When designing new procedures, technologies and innovations, Infineon attaches great importance to environmental compatibility and sustainability. Infineon uses electricity produced 100 percent by hydroelectric power and other ecologically friendly energy sources. As a result, 60,000 tons of CO₂ were again avoided this year.
- By using the exhaust heat, two thirds of the heat demand is already covered by energy-saving heat recycling ("green heat"). A diverse range of measures – from air conditioning in the production area to converting to LED lighting – contribute to increasing energy efficiency. This resulted in additional total savings of 4,755 GWh of energy during fiscal year 2019. This is equivalent to the electricity consumption of approx. 74 family households and the heat consumption of approx. 262 single-family houses.

Recycling
- The consistent implementation of the solvent recycling program again enabled approximately 500 tons, or 36 percent, of total solvents to be recycled in this fiscal year.

Exhaust air
- Investment in a total of 13 new scrubber systems to optimize the exhaust air purification process.

Mobility
- With the “Green Way” project, Infineon has been continuously implementing activities to create environmentally friendly mobility solutions for its employees since 2016. In 2019, the free “job ticket” for travel to work on public transport was introduced, bicycle parking and the e-charging infrastructure were expanded, and new bus connections and car-pooling parking spaces were created.
5.4 Significant Changes Since the Last Environmental Statement

A look back over the last two calendar years shows that the following changes have taken place at the Villach site:

2019
› December 2019: new bus lines from Faaker, Ossiacher See and Gegendtal, which stop at Infineon.
› March 2019: launch of the “job ticket”, offering all employees free travel to work on public transport. Additionally, expansion of the bicycle parking areas to 800 spaces.
› May 2019: scheduled start of construction of the new 300-millimeter chip factory at the Villach site, at 1.6 billion euros the largest private investment project in Austria.
› June 2019: Completion of the shell of the R&D building in Villach. It is designed as a low-energy house and is accompanied by a “digital twin” that automatically increases energy efficiency and ensures an ideal indoor climate. Lead user project of the European research project “Arrowhead Tools”.
› Launch of the European research project “UltimateGaN” (26 partners, nine countries) for the development of new energy-saving chips based on gallium nitride to enable ultra-fast data transfer with less power consumption.
› Within the “H2Pioneer” project (e!MISSION energy research program), research is being conducted with partners from academia and industry on a demonstration plant for the production of high-purity hydrogen from renewable energy sources.
› Inauguration of the new central Security Control Center (SCC) in Building 03: All safety and rescue activities at the Villach site are coordinated here – 24 hours a day, 365 days a year.
› Completion of the EU research project “Semi40” (37 partners, five countries). The result: a new IT security concept for the networked factory, automated quality improvement and an energy savings potential in the cooling system of 13 percent.

2018
› On 18 May 2018, the expansion of the Villach site to add a new fabrication line for 300-millimeter chips for power electronics was announced. This investment of 1.6 billion euros is currently the largest private investment project in Austria.
› As part of the iDev40 (Integrated Development 4.0) research project, which was launched in May 2018, work is underway on applying Industry 4.0 methods to automate highly complex processes and develop the workplaces of the future. This project involves 38 partners from seven countries, with a project volume of 47 million euros.
› The EU’s “PowerBase” research project, which involved 39 partners from nine countries and a project volume of 87 million euros, was successfully completed in 2018. This project successfully developed and demonstrated the pilot production of the next generation of energy-saving chips, which in some cases can reduce energy losses by up to half.
› Infineon Austria won the 2018 EMAS Award for the best environmental statement and the VCÖ Mobility Award 2018 for Austria and Carinthia for its operational mobility management program. Furthermore, in October 2018, Infineon Austria received the EFQM Global Excellence Award 2018, the most prestigious award for business quality.
6. Glossary

6.1 Explanation of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEV</td>
<td>Austrian Waste Water Emission Regulation</td>
</tr>
<tr>
<td>Ammonium-N</td>
<td>Ammoniacal nitrogen</td>
</tr>
<tr>
<td>Audit</td>
<td>systematic and documented verification process within the company to identify and evaluate data and processes</td>
</tr>
<tr>
<td>AUVA</td>
<td>Austrian General Accident Insurance Institution (Allgemeine Unfallversicherungsanstalt in Österreich)</td>
</tr>
<tr>
<td>Best aging</td>
<td>Comprehensive health project for employees aged 50 and over</td>
</tr>
<tr>
<td>Class 1 clean room</td>
<td>Class 1 is the highest grade of clean room; i.e. with the lowest maximum permitted particle concentration. Maximum permissible concentration (particles/m³) is equal to or lower than 10 (≥ 0,1 µm)</td>
</tr>
<tr>
<td>Clean room</td>
<td>Used for the production and inspection of micro-mechanical and electronic components and systems subject to particular requirements, e.g. particle-free environments</td>
</tr>
<tr>
<td>CMP</td>
<td>Chemical-Mechanical Polishing</td>
</tr>
<tr>
<td>CO₂ equivalent</td>
<td>CO₂ = the chemical formula for carbon dioxide; as different greenhouse gases have different climatic impacts, a common unit is needed to compare them. This unit is referred to as a CO₂ equivalent and is calculated based on the amount of emissions of a particular gas multiplied by its climatic impact factor</td>
</tr>
<tr>
<td>Cyclopentanone</td>
<td>An organic solvent</td>
</tr>
<tr>
<td>DI Water</td>
<td>Deionized water, ultrapure water</td>
</tr>
<tr>
<td>DMF</td>
<td>The solvent dimethyl formamide</td>
</tr>
<tr>
<td>DRO</td>
<td>Disaster Response Organization</td>
</tr>
<tr>
<td>EDM</td>
<td>A networked system of Internet applications and databases to support the complex processes involved in documentation, notification and reporting obligations related to environmental protection</td>
</tr>
<tr>
<td>EMAS</td>
<td>“Eco Management and Audit Scheme” (eco-auditing system of the European Union)</td>
</tr>
<tr>
<td>EMAS-III-VO</td>
<td>legally binding regulation for EMAS organizations, which was extended in 2018 to include Annexes 1 - 3 – Annexes I-III of which were updated in 2017 and Annex IV in 2018</td>
</tr>
<tr>
<td>E-mobility</td>
<td>Promotion of energy-efficient electric and hybrid vehicles and expansion of the electric charging infrastructure</td>
</tr>
<tr>
<td>Environment</td>
<td>The surroundings in which the company or parts thereof are active; including among others: air, water, land and other natural resources, people and nature as well as their mutual interactions</td>
</tr>
<tr>
<td>(according to ISO 14001)</td>
<td></td>
</tr>
<tr>
<td>Environmental Aspects</td>
<td>The elements of a company's activities, products or services etc. or its sub-areas, which interact or might interact with the environment</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Environmental statement</td>
<td>A document by which a company's sites certified under Regulation (EC) No. 1221/2009 communicate the activities performed, environmentally-relevant objectives, environment-related services, environmental impacts, etc. to the public on a regular basis</td>
</tr>
<tr>
<td>Environmental management system (according to ISO 14001)</td>
<td>Part of the company's management system. The environmental management system includes the organization, planning activities, methods, procedures, processes and resources which are necessary for the development, implementation and fulfillment of the environmental policy, as well as for its evaluation and continued maintenance</td>
</tr>
<tr>
<td>Front-end</td>
<td>Type of production in which chips are manufactured on the wafers</td>
</tr>
<tr>
<td>Hazardous material</td>
<td>Materials or mixtures with one or more of the following hazardous properties: risk of explosion, oxidizing, highly or easily flammable, combustible, toxic, very toxic, detrimental to health, caustic, irritating, sensitizing, carcinogenic, toxic to reproduction, mutagenic or chronically harmful in some other way, pathogenic, hazardous to the environment</td>
</tr>
<tr>
<td>IMPRES</td>
<td>Infineon Integrated Management Program for Environment, Energy, Safety and Health</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISO 14001:2015</td>
<td>To support companies in establishing and expanding in-house environmental management systems, the International Organization for Standardization (ISO) developed the ISO 14001 standard, which is recognized worldwide. It was most recently updated in 2015.</td>
</tr>
<tr>
<td>ISO 45001:2018</td>
<td>A standard published by the International Organization for Standardization (ISO) in March 2018, which describes requirements for an Occupational Health and Safety Management System (OHSMS) as well as instructions for its implementation. The ISO 45001 replaces the Occupational Health and Safety Assessment Series (OHSAS 18001)</td>
</tr>
<tr>
<td>ISO 50001:2018</td>
<td>A globally recognized standard published by the International Organization for Standardization (ISO), which is intended to help organizations and companies establish comprehensive energy management systems; certification can also serve as proof that an energy management system complies with the standard</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology – comprises all the methods, concepts and technologies for the processing, storage, transmission and provision of access to information and data</td>
</tr>
<tr>
<td>Legal compliance</td>
<td>Ensuring legal certainty</td>
</tr>
<tr>
<td>Matrix certification</td>
<td>Certificate listing all units/sites of a company which have been certified by an assessor</td>
</tr>
<tr>
<td>NMP</td>
<td>The solvent N-methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>OHSAS 18001</td>
<td>Occupational Health and Safety Assessment Series 18001– internationally applicable standard for the evaluation and certification of an occupational health management system; replaced by ISO45001:2018</td>
</tr>
<tr>
<td>PFC</td>
<td>Perfluorinated compounds</td>
</tr>
<tr>
<td>PGMEA</td>
<td>The solvent propylene glycol monomethyl ether acetate</td>
</tr>
<tr>
<td>Power semiconductors</td>
<td>Are semiconductor components specially designed for switching and controlling high currents and voltages (more than 1 ampere and voltages of more than about 24 volts)</td>
</tr>
<tr>
<td>Seveso III Directive</td>
<td>EU Directive 2012/18/EU for the prevention of industrial accidents</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>A crystalline material which displays electronic conductivity between that of “conductors” and “non-conductors”. A semiconductor’s electronic conductivity increases at higher temperatures. Some examples of semiconductors are silicon and germanium; the term is also used for integrated circuits made with these materials</td>
</tr>
<tr>
<td>Slurries</td>
<td>Suspensions of solids, sometimes with chemical additives, used in the CMP process</td>
</tr>
<tr>
<td>SoFi</td>
<td>Sustainability reporting database</td>
</tr>
<tr>
<td>State-of-the-art</td>
<td>The development status of advanced procedures, facilities or modes of operation which ensures the practical suitability of a measure for the protection of health, safeguarding the employee and limiting environmental damage. When determining the state of the art, particular attention should be paid to comparable procedures, facilities and modes of operation that have been successfully tested in practical operations</td>
</tr>
<tr>
<td>Wafers</td>
<td>A disk made of a semiconductor material (e.g. silicon) with a diameter of up to 300 millimeters; in integrated circuit production, the wafer is sliced from a single crystal boule and serves as the carrier material for integrated circuits</td>
</tr>
<tr>
<td>WSC</td>
<td>World Semiconductor Council</td>
</tr>
<tr>
<td>YIP</td>
<td>“Your Idea Pays”; internal company scheme for suggestions for improvement</td>
</tr>
</tbody>
</table>
6.2 Measurement Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g, mg</td>
<td>Grams, milligrams</td>
<td></td>
</tr>
<tr>
<td>GJ</td>
<td>Gigajoule</td>
<td></td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt hours</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
<td></td>
</tr>
<tr>
<td>kg/d</td>
<td>Kilograms per day</td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt hours</td>
<td></td>
</tr>
<tr>
<td>kWh/cm²</td>
<td>Kilowatt hour (consumption) per square centimeter (silicon surface area)</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Liters</td>
<td></td>
</tr>
<tr>
<td>l/cm²</td>
<td>Liters (consumption) per square centimeter (silicon surface area)</td>
<td></td>
</tr>
<tr>
<td>m², cm²</td>
<td>Square meter, square centimeter</td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Cubic meter</td>
<td></td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligrams per liter</td>
<td></td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hours</td>
<td></td>
</tr>
<tr>
<td>Nm³</td>
<td>Standard cubic meter</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Ton</td>
<td></td>
</tr>
</tbody>
</table>

6.3 Declaration of Validity

Gültigkeitserklärung

Es wird bestätigt, dass:
1. die Begutachtung und Validierung in vollem Umfang den Anforderungen der Verordnung (EG) Nr. 1221/2009 in der Fassung der Verordnung (EU) Nr. 1505/2017 entsprechen,
2. keine Belege für die Nichterfüllung der geltenden Umweltvorschriften vorliegen,
3. die Daten und Angaben der aktualisierten Umwelterklärung, ein verlässliches, glaubhaftes und wahrheitsgetreues Bild sämtlicher Tätigkeiten der Organisation geben.

Die nächste umfassende Umwelterklärung wird im Jahr 2022 veröffentlicht. Jährlich wird eine für gültig erklärte, aktualisierte Umwelterklärung veröfentlicht.

Wien, am 20.04.2020
Dr. Stefan GARA
Leitender Umweltgutachter
6.4 Date of the Next Environmental Statement

The next Environmental Statement will be an updated Environmental Statement and will be published in May 2021.

6.5 Contacts

General information
info-austria@infineon.com
www.infineon.com/austria
Tel.: +43 (0) 517 77-0

The following persons are available for further information on the topics of workplace safety, health protection, energy and environmental protection:

Contact for Corporate Environmental Protection and Workplace Safety
› Dr. Adolf Biedermann
 Senior Manager Facility Management ES
 Email: adolf.biedermann@infineon.com
› Mag. Natalie Kuchling
 Manager Safety and Environment
 Email: natalie.kuchling@infineon.com

Contact for Energy Management
› Josef Obiltschnig
 Energy Manager
 Email: josef.obiltschnig@infineon.com

Corporate Communications Manager
› Alexander Tarzi
 Director Communications
 Email: alexander.tarzi@infineon.com

Publication Information

Issued by: Infineon Technologies Austria AG
in cooperation with Infineon Technologies AG,
Corporate Sustainability & Continuity Planning

Responsible for the content: Dr. Adolf Biedermann, Mag. Natalie Kuchling-Katzengruber, Mag. Birgit Rader-Brunner
Concept and design: KANZIAN ENGINEERING & CONSULTING GmbH/Dr Barbara Koncz
Graphic design and layout: designation – Strategie | Kommunikation | Design
Paper: The Environmental Statement has been printed on environmentally-friendly paper.
No liability is accepted for typographical or layout errors.
Good for the environment:
This brochure is printed on CO₂-neutral and FSC, Blue Angel and Ecolabel certified recycled paper made from 100% waste paper.