XMC[™] protections in digitally controlled SMPS

XMC[™] Microcontrollers June 2016

- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- General information

- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- 5 General information

Protections in SMPS Introduction

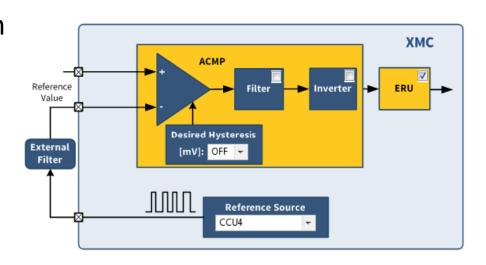
- SMPS systems requires protections to prevent system parameter to go beyond reliability limits
- Many times, this protections are calibrated during production of final product
- Typical examples are:
 - Overcurrent protection (OCP):
 - very fast reaction required: less than 100 nsec
 - Overvoltage protection (**OVP**):
 - Fast till relative slow reaction is allowed: in the range of usec to msec
 - Over temperature protection (OTP):
 - Very slow reaction: msec to seconds
 - Might require multilevel for warning
 - Overpower protection (OPP):
 - Fast till relative slow
 - Not easy with HW → SW approach is simpler

Protections in SMPS Overview of protections with XMC™

Type of protection		Characteristic								
		Typical reaction time	HW used	sw	Typical reaction to protection	Typical use case	Available in following devices	Comment		
Faster reaction	Ultra-fast protection Analog comparator	30-70 ns	XMC1000→ Analog comparators XMC4000→CSG	No	PWM switch off and/or interrupt routine	OCP, OVP	XMC13/14 XMC41/42/44	10 bit DAC reference in XMC4000		
	Fast protection Analog comparator	100- 300 ns	ORC (Out of range comparators)	No	PWM switch off and/or interrupt routine	OVP, OTP	XMC12,13,14 All XMC4000	Reference is fixed to VAREF (ADC ref)		
	Fast protection ADC fast compare	150 ns + 30-60 ns	VADC fast compare mode	No	PWM switch off and/or interrupt routine, modulation, warning	OVP, OTP	All	Requires typically to spend a full ADC group for this function		
	Fast protection ADC boundaries	600 ns – 1500 ns	VADC limit checking (boundary feature)	No	PWM switch off and/or interrupt routine, modulation, warning	OVP, OTP	XMC12,13,14 All XMC4000	Useful for variables that are anyhow measured for control purposes		
	Slow protection Software	1 us - ms	No HW, only SW	Yes	Any possible	OVP, OTP, OPP, any	All			

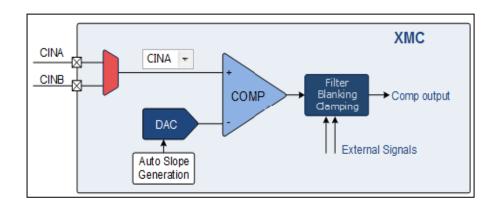
- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- 5 General information

Hardware protection - ultra-fast protection Analog comparator in XMC1000



- Implemented in XMC1000 with "analog comparator" peripheral
- Comparator reference can be generated by XMC™ with a PWM signal adding a capacitor to the pin
- Supported in COMP_REF App in DAVE™ and XMC Lib

Example connectivity of comparator 0 output in XMC1400



ACMP0.OUT	0	P0.10	output of ACMP0
		P2.10	
		P3.3	
		P4.3	
		ERU0.0A0	
		BCCU0.IN5	
		BCCU0.IN6	
		CCU40.IN0AS	
		CCU40.IN3AR	
		CCU80.IN2AR	
		CCU80.IN3AS	
		ERU1.3A0	
		CCU41.IN0AS	
		CCU41.IN3AR	
		CCU81.IN0AS	
		CCU81.IN2AR	

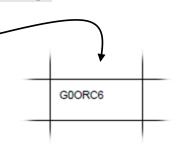
Hardware protection - ultra-fast protection Analog comparator in XMC4000

- Implemented in XMC4000 with comparator rand slope generation module (CSG)
- CSG integrates a 10 bit DAC that generates the level at which the protection is triggered

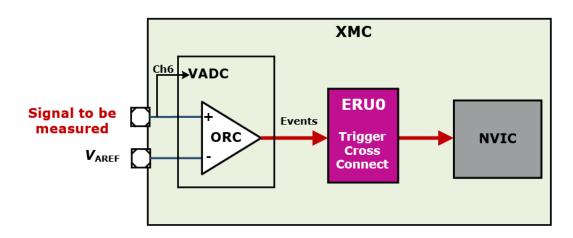
- Can blank, filter or clamp the comparator output with external signals
- > Supported in **COMP_SLOPE_GEN** App in DAVE™

 Example connectivity of comparator 0 output in XMC4200

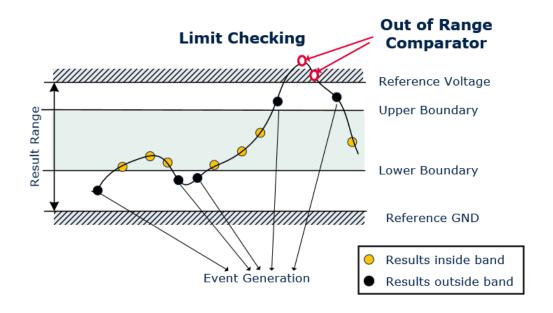
		1	
HRPWM0.C0O	0	CCU80.IN0M; CCU80.IN3P; CCU41.IN0G; HRPWM0.SC0IM; ERU1.2B3	Comparator Output



- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- 5 General information


Hardware protection: fast protections Analog comparator-Out of Range Comp. (ORC)

Integrated in some input channels in ADC (check data
sheet "Port I/O Functions table-GxORCy), XMC™ devices integrate analog comparators that connects to
interconnection matrix (ERU)

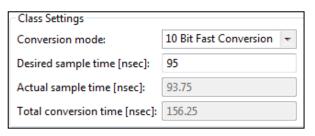

- The reference is fixed to VADC analog reference VAREF
- ERU can route the signal to other peripherals or trigger and interrupt routine
- In ERU, the output of the comparator can be logic AND, OR, etc, to other signals to implement blanking as an example

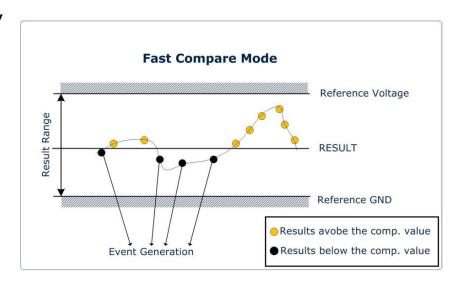
Hardware protection: fast protections Analog comparator-Out of Range Comp. (ORC)

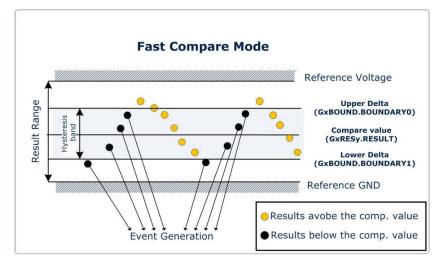
Typical use case of ORC together with limit checking (boundary of VADC-explained in next slides)

 Connectivity of ORC output of comparator 6 as input in ERU in XMC4200 (SCU section)

Table 4-8 ERU0 Pin Connections
Global I/O Connect


Global Inputs/Outputs	I/O	Connected To
ERU0.0A0	I	PORTS
ERU0.0A1	I	PORTS
ERU0.0A2	I	PORTS
ERU0.0A3	I	SCU.G0ORCOUT6


Hardware protection: fast protections


ADC fast compare

- 1 bit ADC conversion that happens in only 150 ns (min. conversion time)
- The result informs whether the signal is above or below a given 10 bits value (result register)
- A boundary flag connecting to other peripherals or NVIC can be generated in fast compare mode
- → Hysteresis can be added in most XMC[™] devices using boundaries to provide robustness to the protection detection
- Supported in ADC_QUEUE/SCAN Apps in DAVE™ and XMC Lib by class settings selection

- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- 5 General information

Software protection: slow protections

- Software running in XMC[™] handles values of voltages, currents, temperatures for the right control and monitoring of the power supply.
- It can calculate power as well
- Those values can be easily and flexibly controlled to certain target values
- > Averaging is very common to avoid miss-triggering of protections
- Many times multilevel protection is implemented and reaction is to mitigate the root cause until warning levels or trespassed
- Example code snippet of an overvoltage protection in a PFC stage with averaging

- 1 Protections in SMPS
- 2 Hardware protection: ultra-fast protections
- 3 Hardware protection: fast protections
- 4 Software protection: slow protections
- 5 General information

Support material:

Collaterals and Brochures

- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

www.infineon.com/XMC

Technical Material

- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVETM
- Software and Tool Ecosystem

Videos

- Technical Videos
- Product Information Videos

- Infineon Media Center
- XMC Mediathek

Contact

- Forums
- Product Support

- Infineon Forums
- Technical Assistance Center (TAC)

Glossary abbreviations

ADC Analog Digital Converter

› DAVE™ Free development IDE for XMC™

PWM Pulse Width Modulation

OVP Over Voltage Protection

OCP Over Current Protection

OTP Over Temperature Protection

OPP Over Power Protection

ORC Out of Range Comparator

> PFC
Power Factor Corrector stage

ERU External Request Unit (connection matrix)

> HW-SW Hardware-Software

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

