

REF_5QR2270AZ_12W1

About this document

Scope and purpose

This document is a reference design for a 12 W auxiliary SMPS for a refrigerator with the latest fifth-generation Infineon QR CoolSET™ ICE5QR2270AZ. The power supply is designed with a universal input compatible with most geographic regions and isolated output (+12 V/1 A) on a single-layer PCB, as typically employed in most home appliances.

Highlights of the auxiliary power supply for a refrigerator:

- High efficiency under light and heavy load conditions to meet ENERGY STAR requirements
- Simplified circuitry with good integration of power and protection features
- Single-layer PCB design for compatibility with wave-soldering process and low-cost manufacturing
- Auto-restart protection scheme to minimize interruption to enhance end-user experience

Intended audience

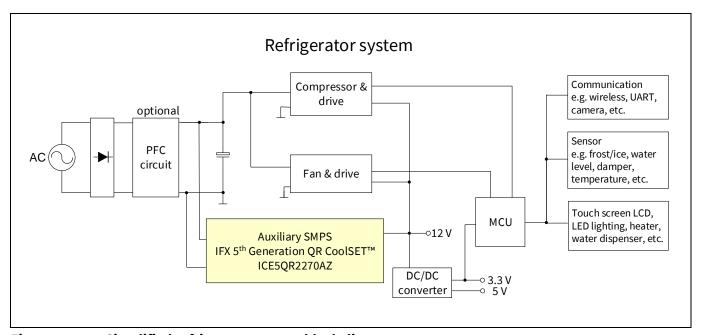
This document is intended for power supply design or application engineers, etc. who want to design auxiliary power supplies for refrigerators that are efficient under light and heavy load conditions, reliable and easy to design.

Table of contents

Abou	ıt this document	1
	e of contents	
1	System introduction	3
1.1	High efficiency under light and heavy load conditions to meet ENERGY STAR requirements	4
1.2	Simplified circuitry with good integration of power and protection features	4
1.3	Auto-restart protection scheme to minimize interruption to enhance end-user experience	4
2	Reference design board	5
3	Power supply specifications	6
4	Circuit diagram	7
5	Circuit description	8
5.1	EMI filtering and line rectification	8
5.2	Flyback converter power stage	8
5.3	Control of Flyback converter through fifth-generation QR CoolSET™ ICE5QR2270AZ	8
5.3.1	Integrated HV power MOSFET	
5.3.2	Fast self-start-up and sustaining of V _{CC}	8
5.3.3	QR switching with valley sensing	9
5.3.4	Current Sensing (CS)	9
5.3.5	Feedback (FB) and compensation network	9

Table of contents

5.3.6	System robustness and reliability through protection features	9
5.4	Clamper circuit	10
5.5	PCB design tips	10
5.6	EMI reduction tips	11
6	PCB layout	12
6.1	Top side	
6.2	Bottom side	12
7	BOM	13
8	Transformer specification	
9	Measurement data and graphs	16
9.1	Efficiency curve	
9.2	Standby power	19
9.3	Line and load regulation	19
9.4	Maximum input power	20
9.5	Switching frequency through digital frequency reduction	20
9.6	ESD immunity (EN 61000-4-2)	21
9.7	Surge immunity (EN 61000-4-5)	21
9.8	Conducted emissions (EN 55022 class B)	22
9.9	Thermal measurement	24
10	Waveforms and oscilloscope plots	25
10.1	Start-up at full load	25
10.2	Soft-start at full load	25
10.3	Drain and CS voltage at full load	26
10.4	Output ripple voltage at full load	26
10.5	Output ripple voltage at ABM (100 mA load)	27
10.6	Load transient response (dynamic load from 10 percent to 100 percent)	27
10.7	Entering ABM	28
10.8	During ABM	28
10.9	Leaving ABM	
10.10	·	
10.11	1 0 1	
10.12	Brown-in/brown-out protection	30
10.13	Input line OVP	31
11	Appendix A: Transformer design and spreadsheet [3]	32
12	Appendix B: WE transformer specification	39
13	References	40
Davis	sion history	<i>/</i> 11



System introduction

System introduction 1

With the growing household trend for internet-connected devices, the new generation of home appliances such as refrigerators are equipped with advanced features which often include communication capability, such as wireless communication, touch screen display and sensors. These will transform a static product into an interactive and intelligent home appliance, capable of adapting to the smart-home theme. To support this trend, Infineon has introduced the latest fifth-generation QR CoolSET™ to address this need in an efficient and cost-effective manner.

An auxiliary SMPS is needed to power the various modules and sensors, which typically operate from a stable DC voltage source. The Infineon CoolSET™ (as shown in Figure 1) forms the heart of the system, providing the necessary protection and AC-DC conversion from the mains to multiple regulated DC voltages to power the various blocks.

Simplified refrigerator system block diagram Figure 1

Table 1 lists the system requirements for a refrigerator, and the corresponding Infineon solution is shown in the right-hand column.

Table 1 **System requirements and Infineon solutions**

	System requirement for a refrigerator	Infineon solution – ICE5QR2270AZ
1	High efficiency under light and heavy load conditions to meet ENERGY STAR requirements	New QR control and Active Burst Mode (ABM)
2	Simplified circuitry with good integration of power and protection features	Embedded 700 V MOSFET and controller in DIP-7 package
3	Auto-restart protection scheme to minimize interruption to enhance end-user experience	All protections are in auto-restart

System introduction

High efficiency under light and heavy load conditions to meet ENERGY 1.1 **STAR** requirements

During typical refrigerator operation, the power requirement fluctuates according to various use cases. However, in most cases, the refrigerator will reside in an idle state in which the loading toward the auxiliary power supply is low. It is crucial that the auxiliary power supply operates as efficiently as possible, because it will be in this particular state for a prolonged period. Under light load conditions, losses incurred with the power switch are usually dominated by the switching operation. The choice of switching scheme and frequency play a crucial role in ensuring high conversion efficiency.

In this reference design, ICE5QR2270AZ was primarily chosen due to its QR switching scheme. Compared with a traditional Flyback switching scheme, the CoolSET™ will attempt to turn on its integrated HV MOSFET in the valley of the resonant period, thereby minimizing switching losses. Additionally, the fifth-generation QR series has the highest detection rate in the industry, of up to 10 valleys, thereby lowering the switching frequency further along with a reduction in load. Therefore, an efficiency of more than 80 percent is achievable under 10 percent loading conditions.

Simplified circuitry with good integration of power and protection 1.2 features

To relieve the designer of the complexity of PCB layout and circuit design, this CoolSET™ is a highly integrated device with both a controller and an HV MOSFET integrated into a single, space-saving DIP-7 package. These certainly help the designer to reduce component count as well as simplifying the layout into a single-layer PCB design for ease of manufacturing, using the traditional, cost-effective wave-soldering process.

To counter abnormal line-input conditions, CoolSET™ has integrated line-input Over-Voltage Protection (OVP) as well as brown-in/brown-out protection to increase the robustness of the auxiliary power supply. In the event of such faults, the controller within the CoolSET™ will halt the switching operation of the integrated HV MOSFET, thereby preventing permanent damage. These features allow the designer to reduce the complexity of introducing additional external circuitry and yield a saving of as many as 15 components.

Additional protection features are integrated into the CoolSET™, such as output OV, V_{CC} OV, V_{CC} Under Voltage (UV), over-load/open-loop, over-temperature and Current Sense (CS) short-to-GND. It also has limited charging current for V_{cc} short-to-GND.

Auto-restart protection scheme to minimize interruption to enhance 1.3 end-user experience

For a refrigerator it would be annoying to both the end user and the manufacturer if the system were to halt and latch after protection. To minimize interruption, the CoolSET™ implements auto-restart mode for all protections.

Reference design board

2 Reference design board

This document provides complete design details including specifications, schematics, Bill of Materials (BOM), PCB layout, and transformer design and construction information. Performance results pertaining to line/load regulation, efficiency, transient load, thermal conditions, conducted EMI scans and so on are also included.

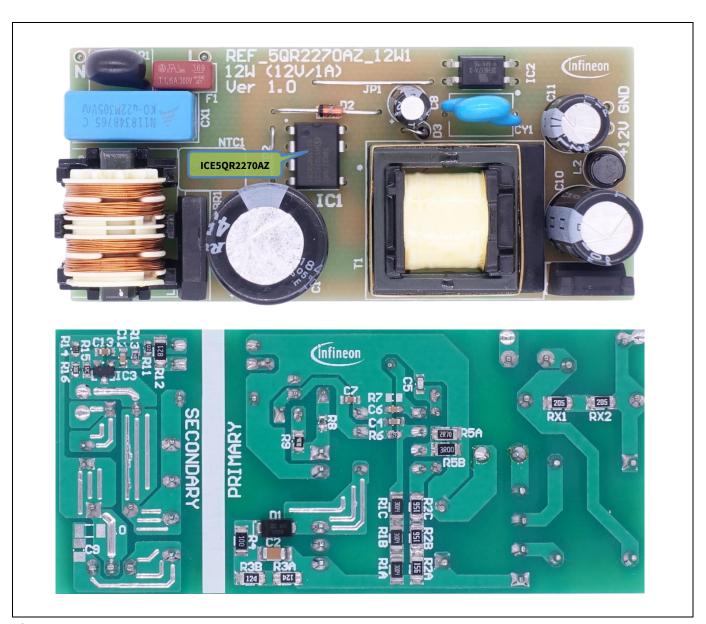


Figure 2 REF_5QR2270AZ_12W1 top and bottom

Power supply specifications

3 Power supply specifications

The table below shows the minimum acceptable performance of the design at 25°C ambient temperature. Actual performance is listed in the measurements section.

Table 2 Specifications of REF_5QR2270AZ_12W1

Table 2 Specifications of REI _SQR2210A2_12W1										
Description	Symbol	Min.	Тур.	Max.	Units	Comments				
Input										
Voltage	V _{IN}	85	_	264	V AC	Two-wire (no P.E.)				
Frequency	f _{LINE}	47	50/60	64	Hz					
No-load input power	P _{stby_NL}	-	_	75	mW	220 V AC				
Output										
Output voltage	V_{OUT}	_	12	_	V	± 1 percent				
Output current	I _{OUT}	_	_	1	Α					
Output power	P _{OUT_Nom}	_	-	12	W					
Output voltage ripple	V_{RIPPLE}	_	_	100	mV	20 MHz bandwidth				
Output over-current protection	I _{OCP}	_	1.4	_	Α					
Start-up time	t _{start_up}	_	_	250	ms					
Efficiency										
Maximum power	η	89	_	_	%	115 V AC/220 V AC				
Average efficiency (25 percent, 50 percent, 75 percent and 100	$\eta_{ ext{avg}}$	88	-	-	%					
percent)	$\eta_{10\%}$	80	_	_	%					
10 percent load efficiency		0			70					
Environmental										
Conducted EMI			6		dB	Margin, CISPR 22 class B				
ESD			±8		kV	EN 61000-4-2				
Surge immunity						EN 61000-4-5				
Differential Mode (DM)			± 2		kV					
Common Mode (CM)			± 4		kV					
Ambient temperature	T _{amb}	0	_	50	°C	Free convection, sea level				
Form factor		8	0 × 36 × 3	0	mm³	L×W×H				

Circuit diagram

4 Circuit diagram

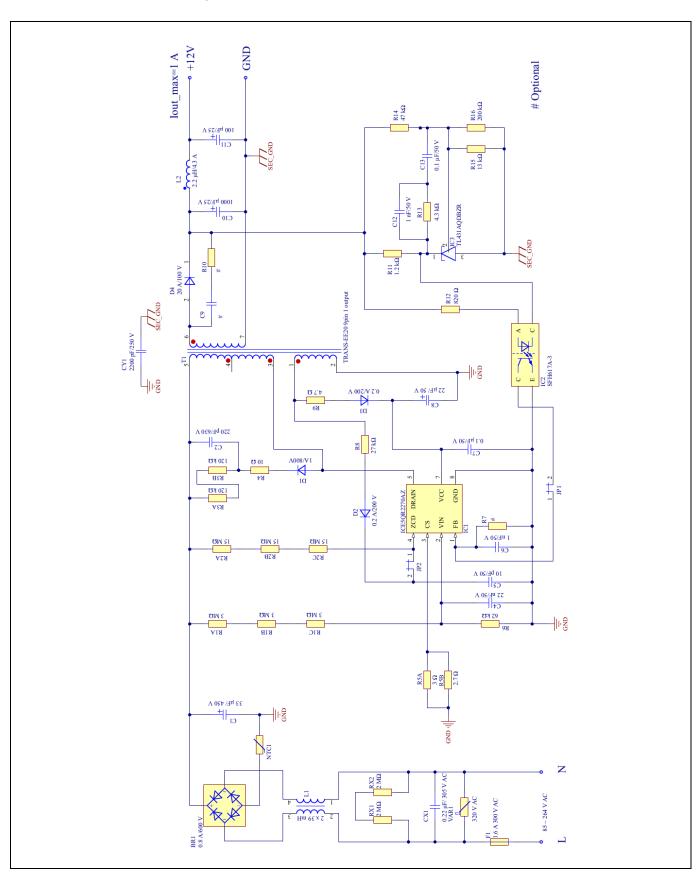


Figure 3 Schematic diagram of REF_5QR2270AZ_12W1

Circuit description

5 Circuit description

In this section, the reference design circuit for refrigerator auxiliary power supply will be briefly described by the different functional blocks. For details of the design procedure and component selection for the Flyback circuitry, please refer to the IC design guide [2] and calculation tool [3].

5.1 EMI filtering and line rectification

The input of the refrigerator auxiliary power unit is taken from the AC power grid, which is in the range of 85 V AC ~ 264 V AC. The fuse F1 is directly connected to the input line to protect the system in case of excess current entering the system circuit due to any fault. Following is the varistor VAR1, which is connected across L and N to absorb the line surge transient. CM choke L1 and X-capacitor CX1 are filters to attenuate the DM and CM conducted EMI noise. Resistors RX1 and RX2 are used to discharge the X-capacitor when the AC is off in order to fulfill the IEC61010-1 and UL1950 safety requirement. The bridge rectifier BR1 rectifies the AC input into DC voltage, filtered by the bulk capacitor C1.

5.2 Flyback converter power stage

The Flyback converter power stage consists of transformer T1, a primary HV MOSFET (integrated into ICE5QR2270AZ), secondary rectification diode D4 and secondary output capacitors and filtering (C10, L2 and C11).

When the integrated HV MOSFET turns on, energy is stored in the transformer. When it turns off, the stored energy is discharged to the output capacitors and into the output load.

Secondary winding is sandwiched between two layers of primary winding to reduce leakage inductance. This improves efficiency and reduces voltage spikes.

For the output rectification, lower forward voltage and ultra-fast recovery diodes can improve efficiency. Capacitor C10 stores the energy needed during output load jumps, and it should have low ESR. LC filter L2 and C11 reduces the high-frequency ripple voltage.

5.3 Control of Flyback converter through fifth-generation QR CoolSET™ ICE5QR2270AZ

5.3.1 Integrated HV power MOSFET

The ICE5QR2270AZ CoolSET™ is a seven-pin device in a DIP-7 package. It has been integrated with the new QR PWM controller and all necessary features and protections, and most importantly the 700 V power MOSFET, Infineon superjunction (SJ) CoolMOS™. Hence, the schematic is much simplified and the circuit design is made much easier.

5.3.2 Fast self-start-up and sustaining of V_{cc}

The IC uses a cascode structure to fast-charge the V_{CC} capacitor. Pull-up resistors R2A, R2B and R2C connected to the multi-function ZCD pin (pin 4) is used to initiate the start-up phase. At first, 0.2 mA is used to charge the V_{CC} capacitor from 0 V to 1.1 V. This is a protection which reduces the power dissipation of the power MOSFET during V_{CC} short-to-GND condition. Thereafter, a much higher charging current of 3.2 mA will charge the V_{CC} capacitor until the V_{CC} on is reached. Start-up time of less than 250 ms is achievable with a V_{CC} capacitor of 22 μ F.

After start-up, the IC V_{CC} supply is sustained by the auxiliary winding of transformer T1, which needs to support the V_{CC} to be above Under-Voltage Lockout (UVLO) voltage (10 V typ.) through the rectifier circuit R9, D3 and C8.

Circuit description

5.3.3 QR switching with valley sensing

ICE5QR2270AZ is a QR Flyback controller, which turns the HV MOSFET on at the lowest valley point of the drain voltage to minimize the switching losses. The IC senses the valley point through the ZCD pin (pin 4), which monitors auxiliary winding voltage through R8, D2 and C5 together with the internal resistor R_{ZCD} . When the ZCD voltage drops below 100 mV (typ.), the HV MOSFET switches on.

The IC employs digital frequency reduction to avoid the inherent increasing switching frequency during load reduction of QR operation. With ICE5QR2270AZ, the HV MOSFET switches on from first to eighth valley for low-line or third to tenth valley for high-line.

5.3.4 Current Sensing (CS)

The ICE5QR2270AZ is a current mode controller. The peak current is controlled cycle-by-cycle through the CS resistors R5A and R5B in the CS pin (pin 3). Transformer saturation can be avoided through Peak Current Limitation (PCL); therefore, the system is more protected and reliable.

5.3.5 Feedback (FB) and compensation network

 V_{OUT} is sensed by resistor dividers R14, R15 and R16 connected to the input of error amplifier TL431 (IC3). A type-2 compensation network (C12, C13 and R13) is connected to the input and output of IC3. The output of IC3 is coupled to the FB pin via optocoupler IC2.

The FB pin of ICE5QR2270AZ is a multi-function pin, which is used to select the entry/exit burst power level through a resistor at the FB pin (R7) and also the burst-on/burst-off sense input during ABM.

5.3.6 System robustness and reliability through protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5QR2270AZ provides comprehensive protection to ensure the system is operating safely. This includes brown-in/brown-out, V_{IN} OV, V_{OUT} OV, V_{CC} OV and UV, open-loop/over-load, over-temperature, CS short-to-GND and V_{CC} short-to-GND. When those faults are found, the system will enter protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and the failure conditions is shown in the table below.

Table 3 Protection functions of ICE5QR2270AZ

Protection function	Failure condition (typical values)	Protection mode
V _{cc} OV	V _{VCC} more than 25.5 V	Odd-skip auto-restart
V _{cc} UV	V _{VCC} less than 10 V	Auto-restart
V _{OUT} OV	V _{ZCD} more than 2 V for 10 consecutive pulses	Non-switch auto-restart
V _{IN} OV	V _{VIN} more than 2.9 V	Non-switch auto-restart
Brown-in/brown-out	V _{VIN_BI} less than 0.66 V/V _{VIN_BO} less than 0.40 V	Non-switch auto-restart
Open-loop/over-load	V _{FB} more than 2.75 V and lasts for 30 ms	Odd-skip auto-restart
Over-temperature	T _J more than 140°C (40°C hysteresis)	Non-switch auto-restart
CS short-to-GND	V _{cs} less than 0.1 V, lasts for 5 μs and three consecutive pulses	Odd-skip auto-restart

Circuit description

Protection function	Failure condition (typical values)	Protection mode	
V _{cc} short-to-GND	V_{VCC} less than 1.1 V, $I_{VCC_Charge1} \approx -0.2$	Cannot start up	
$(V_{VCC} = 0 \text{ V, start-up} = 50 \text{ M}\Omega \text{ and } V_{DRAIN} = 90 \text{ V})$	mA		

5.4 Clamper circuit

A clamper network consisting of D1, C2, R4, R3A and R3B is used to reduce the switching voltage spikes across the DRAIN pin, which are generated from the leakage inductance of the transformer T1. This is a dissipative circuit; therefore, R3A, R3B and C2 need to be fine-tuned depending on the voltage derating factor and efficiency requirement.

5.5 PCB design tips

For a good PCB design layout, there are several points to note.

• The switching power loop needs to be as small as possible (see Figure 4). There are two power loops in the reference design; one on the primary side and one on the secondary side. The primary-side loop starts from the bulk capacitor (C1) positive terminal, primary transformer winding (pin 4 and pin 6 of T1), CoolSET™, CS resistors and back to the C1 negative terminal. The secondary-side loop starts at the secondary transformer winding (pin 8 of T1), output diode D4, output capacitor C10 and back to pin 11 of T1.

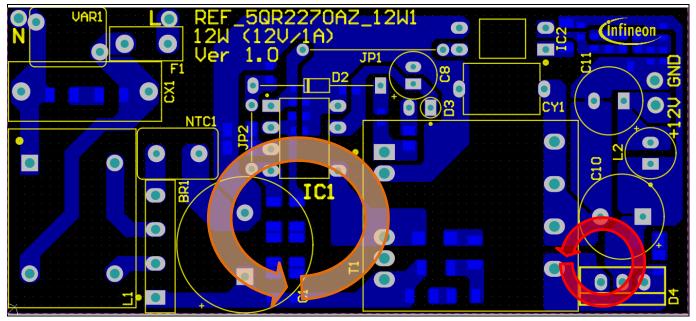


Figure 4 PCB layout tips

- Star-ground connection should be used to reduce HF noise coupling, which can affect the functional operation. The ground of the small-signal components, e.g. R6, R7, C4, C5, C6, C7, and the emitter of the optocoupler (pin 3 of IC2) should connect directly to the IC ground (pin 8 of IC1).
- Separating the HV components and LV components, e.g. clamper circuit (D1, C2, R3A, R3B and R4), at the bottom part of the PCB and the other LV components at the upper part of the PCB can reduce the spark-over chance of the high energy surge during ESD or a lightning surge test.
- Make the PCB copper pour on the DRAIN pin of the MOSFET cover as wide an area as possible to act as a heatsink.

Circuit description

5.6 **EMI reduction tips**

EMI compliance is always a challenge for the power supply designer. There are several critical points to consider in order to achieve a satisfactory EMI performance.

- A proper transformer design can significantly reduce EMI. Low leakage inductance can incur a low switching spike and HF noise. Interlaced winding technique is the most common practice to reduce leakage inductance. Winding shield, core shield and whole transformer shield are also some of the techniques used to reduce EMI.
- Input CMC and X-capacitor greatly reduce EMI, but this is costly and impractical especially for low-power applications.
- Short-switching power-loop design in the PCB (as described in section 5.5) can reduce radiated EMI due to the antenna effect.
- The Y-capacitor CY1 dampens the HF noise generated between the primary and secondary, thus reducing the EMI noise.
- The secondary diode snubber circuit (R10 and C9) can reduce HF noise.
- Ferrite beads can reduce HF noise, especially on critical nodes such as the DRAIN pin, clamper diode and secondary diode terminals. There is no ferrite bead used in this design, as this can reduce the efficiency due to additional losses, especially on the MOSFET and secondary diode.

PCB layout

6 PCB layout

6.1 Top side

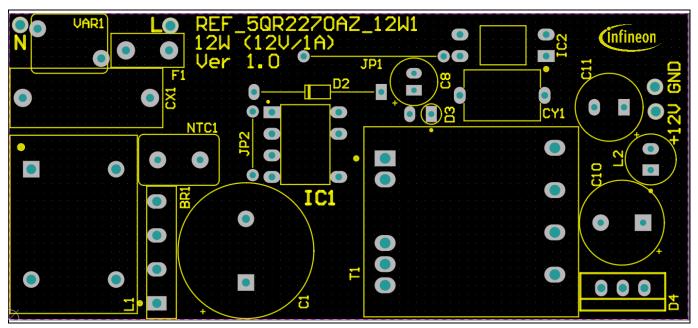


Figure 5 Top side component legend

6.2 Bottom side

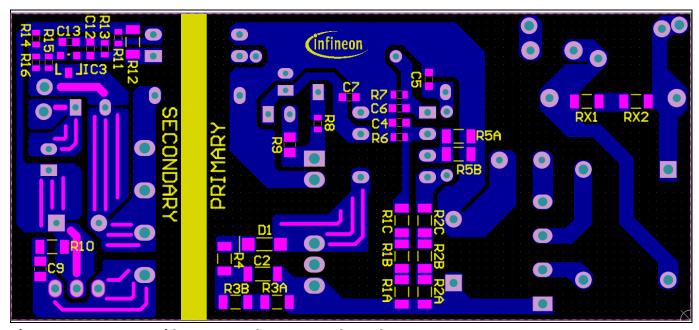


Figure 6 Bottom side copper and component legend

BOM

7 BOM

Table 4 BOM

Item	Designator	Description	Part no.	Manufacturer	Qty.
1	BR1	1 A/600 V	KBP06G	Shindengen	1
2	C1	33 μF/450 V	450BXC33MEFC16X25	Rubycon	1
3	C2	220 pF/630 V/1206			1
4	C4	22 nF/50 V/0603			1
5	C5	47 pF/50 V/0603			1
6	C6	4.7 nF/50 V/0603			1
7	C12	1 nF/50 V/0603			1
8	C7, C13	100 nF/50 V/0603			2
9	C8	22 μF/50 V	50PX22MEFC5X11	Rubycon	1
10	C10	1000 μF/25 V	25ZLH1000MEFC10X23	Rubycon	1
11	C11	220 μF/25 V	25ZLG220MEFC8X11.5	Rubycon	1
12	CX1	0.22 μF/305 V/X2	B32922C3224	Epcos	1
13	CY1	2200 pF/250 V/X1/Y1	DE1E3KX222MA4BN01F	Murata	1
14	D1	1 A/800 V	US1K-13-F		1
15	D2	0.2 A/150 V	FDH400		1
16	D3	0.2 A/200 V	1N485B		1
17	D4	20 A/100 V	STPS20M100SFP		1
18	F1	1.6 A/300 V	36911600000	Littlefuse	1
19	IC1	QR CoolSET™	ICE5QR2770AZ	Infineon	1
20	IC2	Optocoupler	SFH617A-3		1
21	IC3	2.5 V _{ref}	TL431AQDBZR		1
22	JP1, JP2		Jumper		2
23	L1	2 x 39 mH	750343586	Wurth Electronics	1
24	L2	2.2 μH/4.3 A	7447462022	Wurth Electronics	1
25	NTC1	Shorted			1
26	R1A, R1B, R1C	3 MΩ/0.25 W/1 percent/1206			3
27	R2A, R2B, R2C	15 MΩ/0.25 W/5 percent/1206			3
28	R3A, R3B	120 kΩ/0.25 W/5 percent/1206			2
29	R4	10 Ω/0.25 W/5 percent/1206			1
30	R5A	2.7 Ω/0.25 W/1 percent/1206			1
31	R5B	3 Ω/0.25 W/1 percent/1206			1
32	R6	62 kΩ/0.1 W/1 percent/0603			1
33	R8	27 kΩ/0.1 W/1 percent/0603			1
34	R9	4.7 Ω/0.1 W/5 percent/0805			1
35	R11	1.2 kΩ/0.1 W/5 percent/0603			1
36	R12	820 Ω/0.25 W/5 percent/1206			1
37	R13	4.3 kΩ/0.1 W/5 percent/0603			1
38	R14	47 kΩ/0.1 W/1 percent/0603			1
39	R15	13 kΩ/0.1 W/1 percent/0603			1

BOM

40	R16	200 kΩ/0.1 W/1 percent/0603			1
41	RX1, RX2	2 MΩ/0.25 W/5 percent/1206			2
42	T1	1.3 mH/EE20	750344229	Wurth Electronics	1
43	VAR1	Varistor, 0.3 W/320 V	ERZE07A511	Panasonic	1
44	PCB	80 mm x 36 mm(L x W), single layer,			1
		2 oz., FR-4			

Transformer specification

Transformer specification 8

Refer to Appendix A: Transformer design and spreadsheet [3] for transformer design and Appendix B: WE transformer specification for WE transformer specification.

Wurth Electronics core part number: 150-1945 (EE20/10/6)

Wurth Electronics bobbin: 070-5643 (14-Pin EXT, THT, horizontal version)

Primary inductance: $L_P = 1300 \, \mu H$ (±10 percent), measured between pin 4 and pin 6

Manufacturer and part number: Wurth Electronics Midcom (750344229)

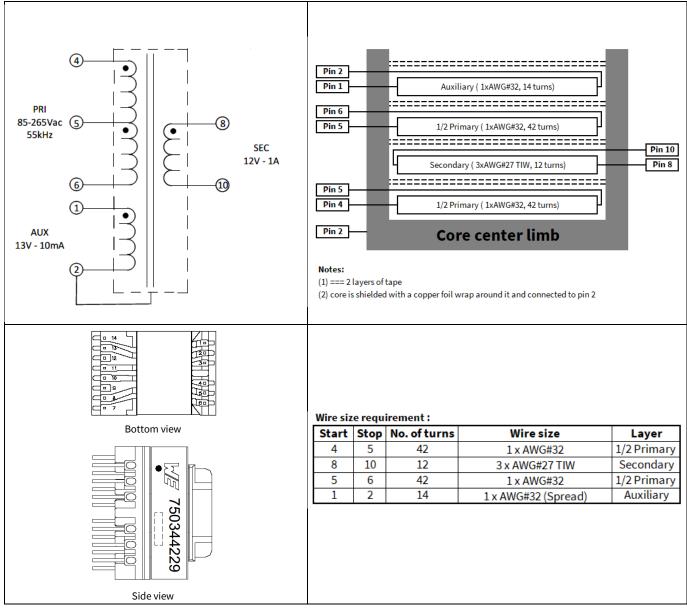


Figure 7 **Transformer structure**

Measurement data and graphs

9 Measurement data and graphs

Table 5 Measurement data

Table 5	MEasure	ement dat	а 						
Input (V AC/Hz)	Loading condition	P _{IN} (W)	V _{оит} (V)	I _{оит} (А)	Р _{оит} (W)	Efficiency (%)	Average efficiency (%)	OLP P _{IN} (W)	OLP I _{OUT} (A)
	No load	0.034	12.055	0.0000	0.00				
	10 percent load	1.413	12.054	0.1000	1.21	85.29			
	25 percent load	3.404	12.052	0.2506	3.02	88.73			
85 V AC/ 60 Hz	50 percent load	6.776	12.050	0.5006	6.03	89.03		17.11	1.24
	75 percent load	10.165	12.047	0.7506	9.04	88.96	88.64		
	100 percent load	13.720	12.044	1.0006	12.05	87.84			
	No load	0.038	12.055	0.0000	0.00				
	10 percent load	1.424	12.053	0.1000	1.21	84.65			
	25 percent load	3.394	12.052	0.2506	3.02	89.00			
115 V AC/ 60 Hz	50 percent load	6.730	12.049	0.5006	6.03	89.62		18.56	1.36
	75 percent load	10.066	12.047	0.7506	9.04	89.84	89.51		
	100 percent load	13.453	12.044	1.0006	12.05	89.58			
	No load	0.057	12.056	0.0000	0.00				
	10 percent load	1.419	12.049	0.1000	1.20	84.94			
	25 percent load	3.447	12.045	0.2506	3.02	87.57			
220 V AC/ 50 Hz	50 percent load	6.739	12.043	0.5006	6.03	89.46		19.83	1.48
	75 percent load	10.051	12.039	0.7506	9.04	89.91	89.25		
	100 percent load	13.373	12.036	1.0006	12.04	90.06			
	No load	0.069	12.055	0.0000	0.00				
264 V AC/	10 percent load	1.445	12.049	0.1000	1.20	83.39		20.69	1.54
50 Hz	25 percent load	3.491	12.043	0.2506	3.02	86.46	88.69	20.09	1.34
	50 percent	6.781	12.040	0.5006	6.03	88.89			

Measurement data and graphs

load						
75 percent load	10.090	12.036	0.7506	9.03	89.53	
100 percent load	13.396	12.033	1.0006	12.04	89.88	

Measurement data and graphs

9.1 Efficiency curve

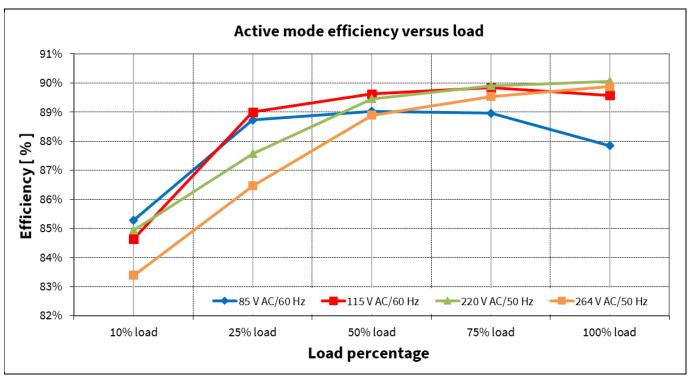


Figure 8 Active mode efficiency vs. load

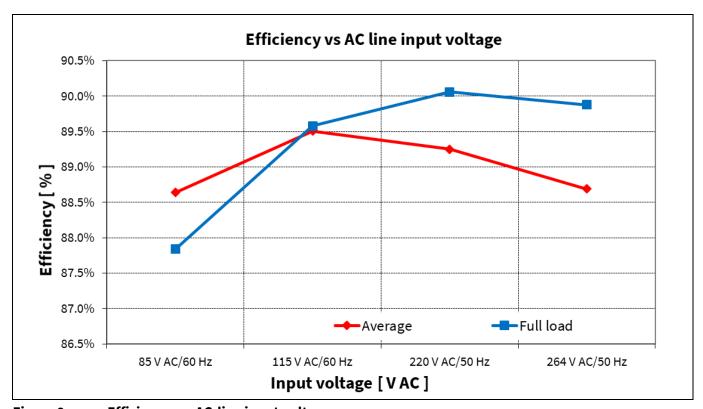


Figure 9 Efficiency vs. AC-line input voltage

Measurement data and graphs

9.2 Standby power

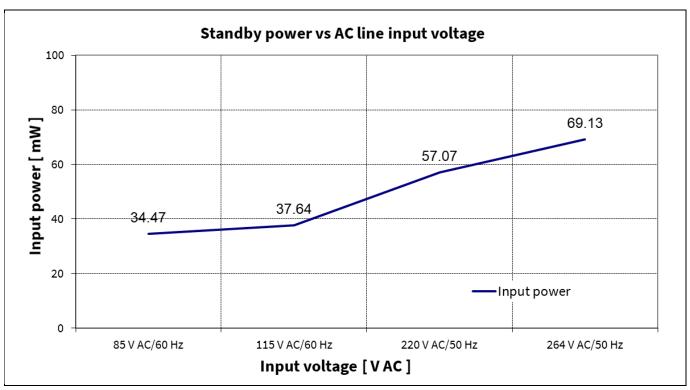


Figure 10 Standby power at no load vs. AC-line input voltage (measured by Yokogawa WT210 power meter – integration mode)

9.3 Line and load regulation

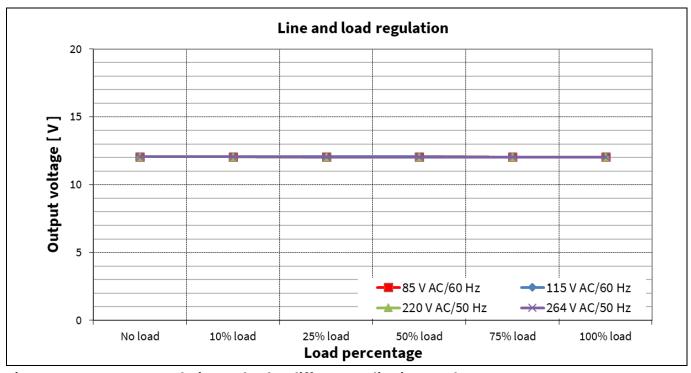


Figure 11 Output regulation vs. load at different AC-line input voltages

Measurement data and graphs

9.4 Maximum input power

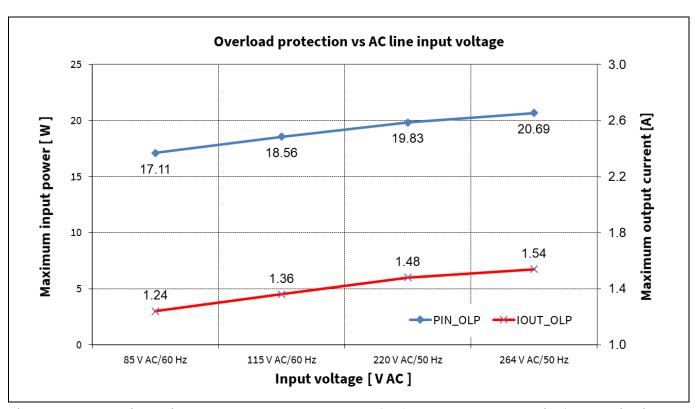


Figure 12 Maximum input power and output current (before over-load protection) vs. AC-line input voltage

9.5 Switching frequency through digital frequency reduction

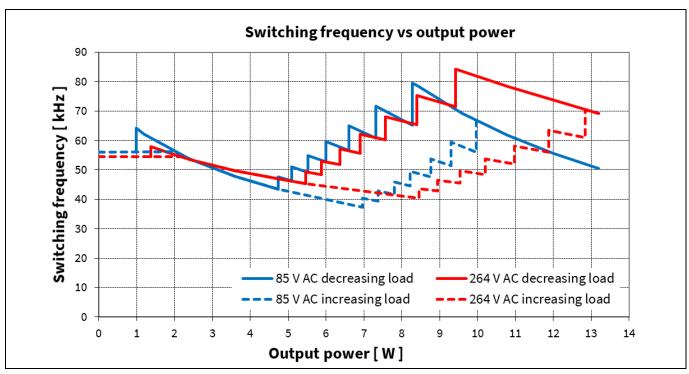


Figure 13 Switching frequency vs. output load

Measurement data and graphs

9.6 ESD immunity (EN 61000-4-2)

The reference board was subjected to a ± 8 kV contact and air discharge ESD test according to EN 61000-4-2. It was tested at full load (12 W) using resistive load (12 Ω) at an input voltage of 115 V AC and 220 V AC. A test failure was defined as non-recoverable and/or system auto-restart.

- ±8 kV contact discharge: pass
- ±8 kV air discharge: pass

Table 6 System ESD test result

B	ESD		Number		
Description	test	Level	+12 V _{оυт}	GND	Test result
	Contact	+8 kV	10	10	Pass
115 V AC, 12 W	Contact	-8 kV	10	10	Pass
$(12 \Omega R_{LOAD})$	۸:۳	+8 kV	10	10	Pass
	Air	-8 kV	10	10	Pass
	Caratasat	+8 kV	10	10	Pass
220 V AC, 12 W	Contact	-8 kV	10	10	Pass
$(12 \Omega R_{LOAD})$	Air	+8 kV	10	10	Pass
	AII	-8 kV	10	10	Pass

9.7 Surge immunity (EN 61000-4-5)

The reference board was subjected to a surge immunity test (± 2 kV DM and ± 4 kV CM) according to EN 61000-4-5. It was tested at full load (12 W) using resistive load (12 Ω) at an input voltage of 220 V AC. Output GND is connected to P.E. during testing. A test failure was defined as non-recoverable.

±2 kV DM: pass±4 kV CM: pass

Table 7 System surge immunity test result

				Number of strikes				
Description	Test	L	Level		90	180	270	Test result
					degrees degrees degrees			
	DM	+2 kV	$L \rightarrow N$	3	3	3	3	Pass
		-2 kV	$L \rightarrow N$	3	3	3	3	Pass
220 V AC, 12 W		+4 kV	L → GND	3	3	3	3	Pass
$(12 \Omega R_{LOAD})$	CM	+4 kV	$N \rightarrow GND$	3	3	3	3	Pass
	СМ	-4 kV	L → GND	3	3	3	3	Pass
		-4 kV	$N \rightarrow GND$	3	3	3	3	Pass

Measurement data and graphs

9.8 Conducted emissions (EN 55022 class B)

The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN55022 (CISPR 22) class B. The reference board was tested at full load (12 W) using resistive load (12 Ω) at an input voltage of 115 V AC and 220 V AC.

- 115 V AC: pass with more than 9 dB margin
- 220 V AC: pass with more than 9 dB margin

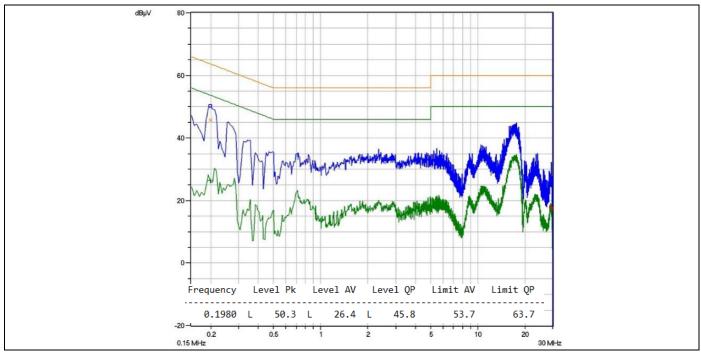


Figure 14 Conducted emissions (line) at 115 V AC and full load

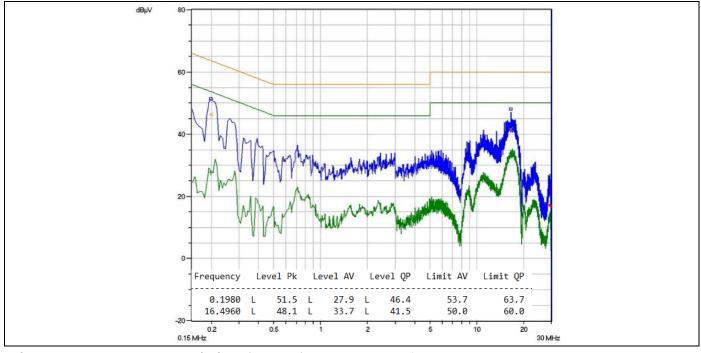


Figure 15 Conducted emissions (neutral) at 115 V AC and full load

Measurement data and graphs

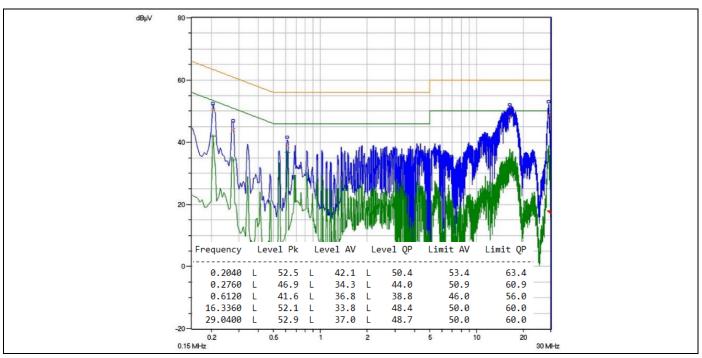


Figure 16 Conducted emissions (line) at 220 V AC and full load

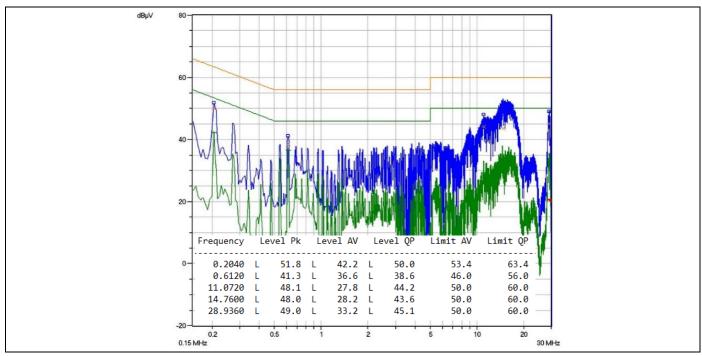
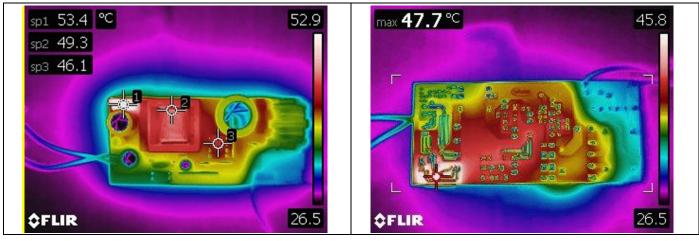


Figure 17 Conducted emissions (neutral) at 220 V AC and full load


Measurement data and graphs

9.9 Thermal measurement

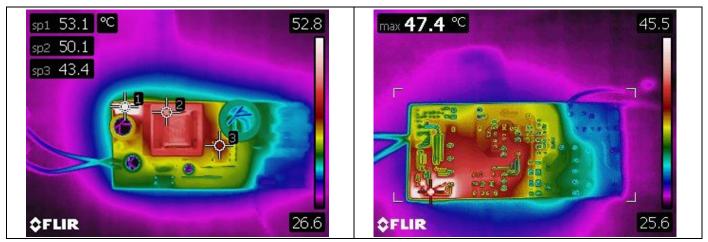

Thermal measurement was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C, after one hour running at full load. The temperature of the components was taken in an open-frame set-up.

Table 8 Thermal measurement on components (open frame)

No.	Component	Temperature at 85 V AC (°C)	Temperature at 264 V AC (°C)
1	D4 (secondary diode)	53.4	53.1
2	T1 (transformer)	49.3	50.1
3	IC1 (ICE5QR2270AZ)	46.1	43.4
4	PCB (under secondary diode)	47.7	47.4

Top layer (left) and bottom layer (right) thermal image at 85 V AC input voltage Figure 18

Top layer (left) and bottom layer (right) thermal image at 264 V AC input voltage Figure 19

Waveforms and oscilloscope plots

Waveforms and oscilloscope plots 10

All waveforms and scope plots were recorded with a LeCroy 44Xi oscilloscope.

Start-up at full load 10.1

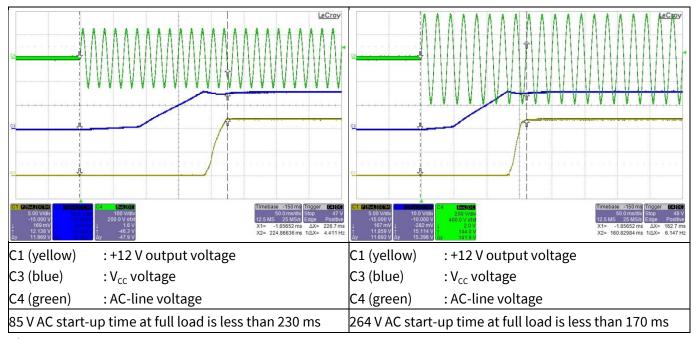


Figure 20 Start-up

10.2 Soft-start at full load

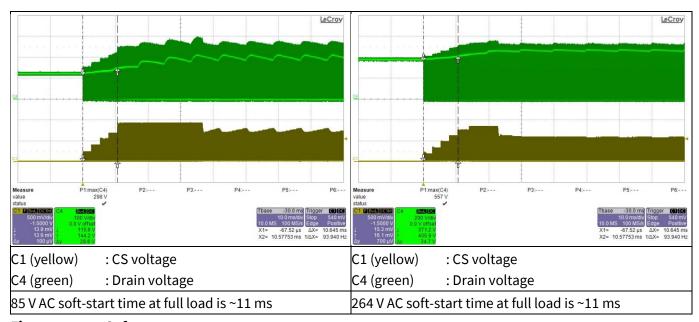


Figure 21 **Soft-start**

Waveforms and oscilloscope plots

Drain and CS voltage at full load 10.3

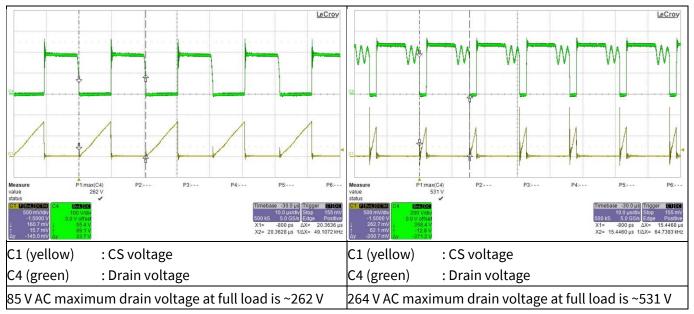


Figure 22 **Drain and CS voltage**

Output ripple voltage at full load 10.4

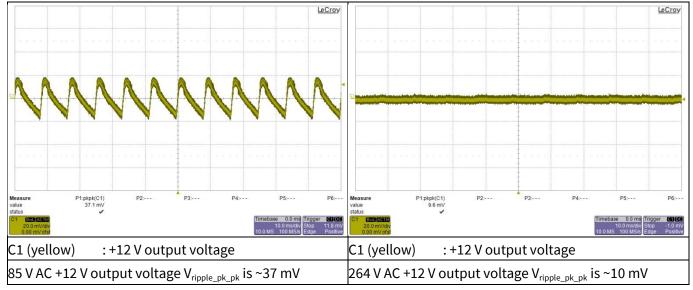


Figure 23 Output ripple voltage at full load. Probe terminals are connected on the PCB end and decoupled with 1 μ F electrolytic and 0.1 μ F ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

Waveforms and oscilloscope plots

10.5 Output ripple voltage at ABM (100 mA load)

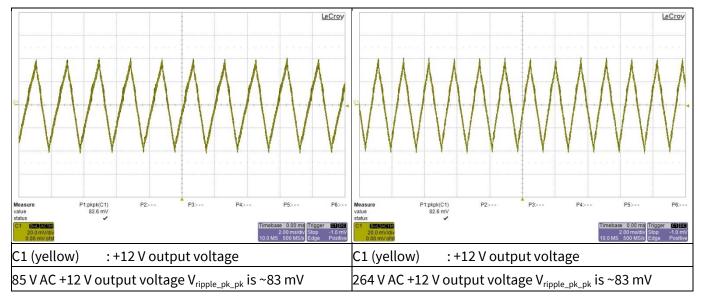


Figure 24 Output ripple voltage at 100 mA load. Probe terminals are connected on the PCB end and decoupled with 1 μ F electrolytic and 0.1 μ F ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

10.6 Load transient response (dynamic load from 10 percent to 100 percent)

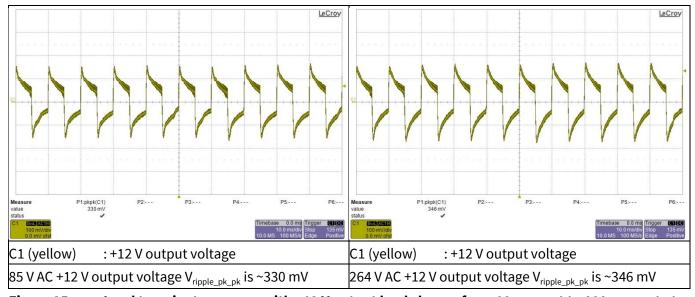


Figure 25 Load transient response with +12 V output load change from 10 percent to 100 percent at 0.4 A/ μ s slew rate, 100 Hz. Probe terminals are connected on the PCB end and decoupled with 1 μ F electrolytic and 0.1 μ F ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

Waveforms and oscilloscope plots

10.7 Entering ABM

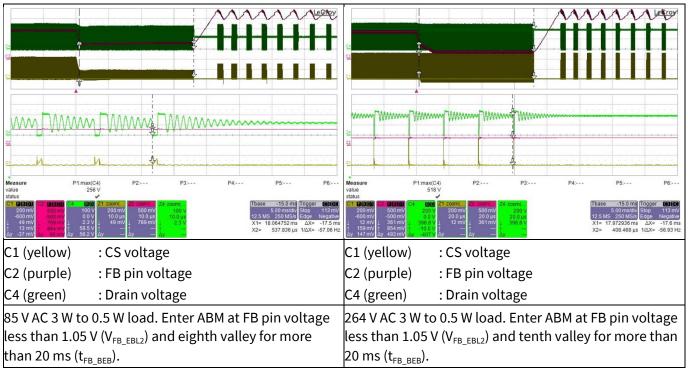


Figure 26 Entering ABM. Output at 3 W to 0.5 W load.

10.8 During ABM

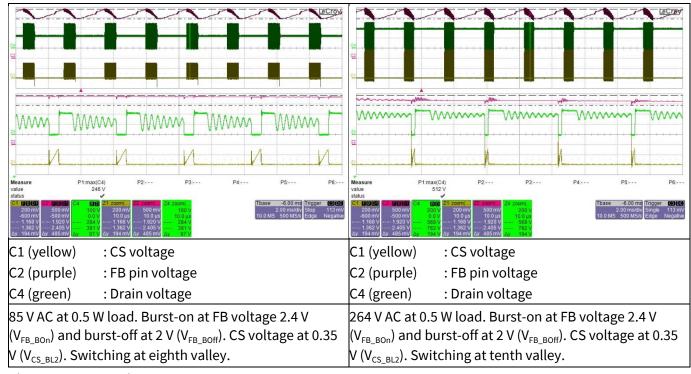
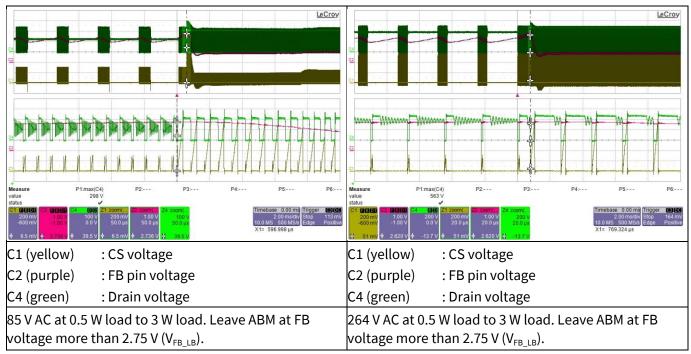



Figure 27 During ABM. Output at 0.5 W load.

Waveforms and oscilloscope plots

10.9 **Leaving ABM**

Leaving ABM. Output at 0.5 W load to 3 W load. Figure 28

Over-load protection 10.10

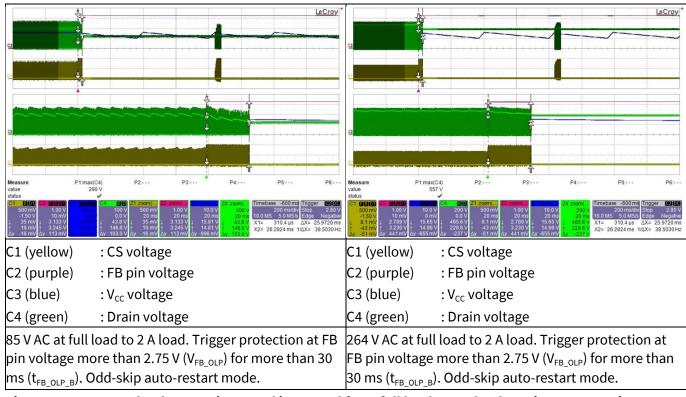
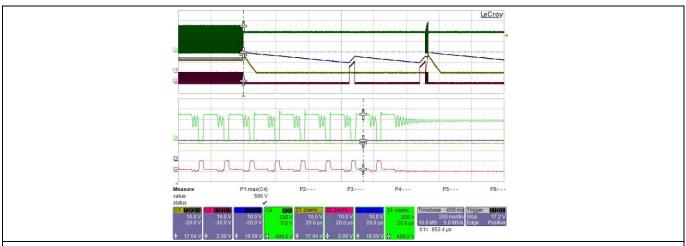



Figure 29 Over-load protection. Load increased from full load to 2 A load to trigger protection.

Waveforms and oscilloscope plots

10.11 Output over-voltage protection

C1 (yellow) : +12 V output voltage
C2 (purple) : ZCD pin voltage
C3 (blue) : V_{cc} voltage

C4 (green)

264 V AC 3 W load output over-voltage at ZCD more than 2 V (V_{ZCD_OVP}) for 10 consecutive pulses. Protection triggered at ~17 V output voltage and V_{CC} voltage at ~19.6 V. Odd-skip auto-restart mode.

Figure 30 Output over-voltage protection

: Drain voltage

10.12 Brown-in/brown-out protection

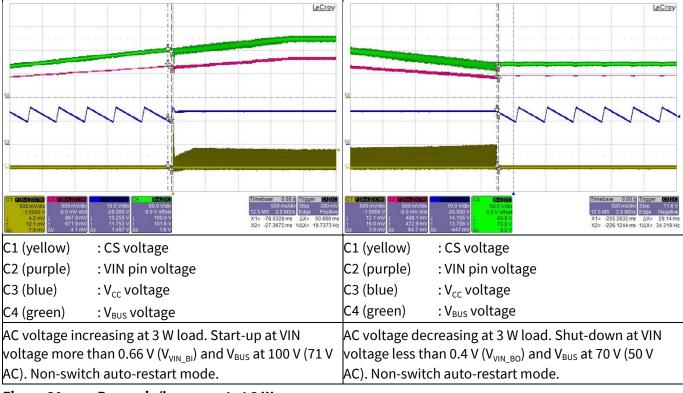
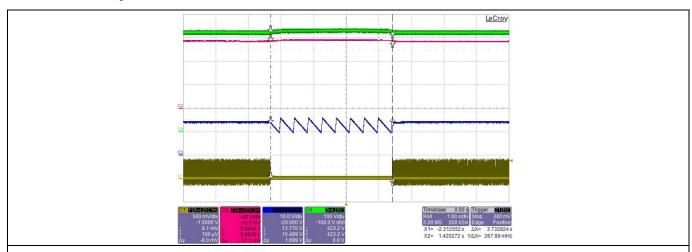



Figure 31 Brown-in/brown-out at 3 W

Waveforms and oscilloscope plots

10.13 Input line OVP

C1 (yellow) : CS voltage
C2 (purple) : VIN pin voltage
C3 (blue) : V_{cc} voltage
C4 (green) : V_{BUS} voltage

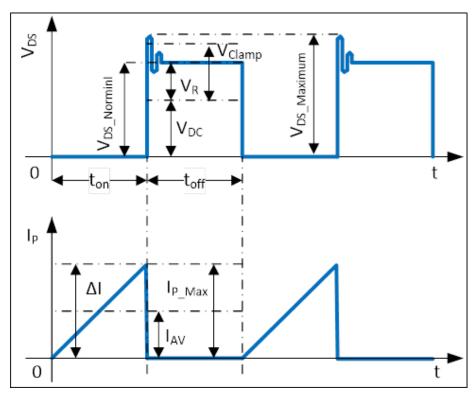
AC voltage increasing and decreasing at 3 W load. Shut-down and restart at VIN voltage 2.9 V (V_{VIN_LOVP}) and V_{BUS} at 423 V (300 V AC). Non-switch auto-restart mode.

Figure 32 Input line over-voltage protection at 3 W

Appendix A: Transformer design and spreadsheet [3]

11 Appendix A: Transformer design and spreadsheet [3]

Design procedure for QR Flyback converter using Q5 CoolSET[™] 5QrxxxxAx (version 1.1)


Project:	12 W auxiliary SMPS for refrigerator using ICE5QR2270AZ
Application:	85 to 264 V AC, 12 V/1 A single-output FB
CoolSET:	ICE5QR2270AZ
Date:	
Revision:	

Enter design variables in orange colored cells

Read design results in green colored cells

Equation numbers are according to the application note

			Unit	Value
Input	Minimum AC input voltage	V AC Min	[V]	85
Input	Maximum AC input voltage	V AC Max	[V]	264
Input	Line frequency	f _{AC}	[Hz]	60
Input	Bus capacitor (C13) DC ripple voltage	V _{DC} Ripple	[V]	26
Input	Output voltage 1	V _{Out1}	[V]	12
Input	Output currnet 1	l _{Out1}	[A]	1.00
Input	Forward voltage of output diode (D21)	V _{F Out1}	[V]	0.3
Input	Output ripple voltage	V _{Out Ripple}	[V]	0.24
Input	Maximum output power for start-up, transient response and OLP	P _{Out Max}	[W]	12
Result	Nominal output power	Pout Nor	[W]	12.00
Input	Minimum output power	P _{Out Min}	[W]	3
Input	Efficency	н		0.88
Result	Drain-to-source capacitance of MOSFET (including Co(er) of MOSFET)	C _{DS} +Co _(er)	[pF]	10.00

Appendix A: Transformer design and spreadsheet [3]

Input	Reflection voltage	V _R	[V]	85
Input	V _{cc} voltage	V _{Vcc}	[V]	14
Input	Forward voltage of V _{CC} diode (D12)	VFVcc	[V]	0.6
Result	CoolSET™	CoolSET™ Q5		ICE5QR2270AZ
Input	Low-line min. switching frequency	fs	[Hz]	55000
Input	Targeted max. drain source voltage	V DS Max	[V]	600
Input	Max. ambient temperature	Ta	[°C]	50
Diode bridge (BF	•			
Result	Eq1	P _{In Max}	[W]	13.64
Result	Eq 2	I _{AC RMS}	[A]	0.267
Result	Eq 3	V _{DC Max Pk}	[V]	373.35
Result	Eq 4	V _{DC Min Pk}	[V]	120.21
Result	Eq 10	V _{DC Min}	[V]	95.04
Result	Eq 6	T _D	[ms]	6.56
Result	Eq 7	W _{In}	[Ws]	0.09
Result	Eq 11	D _{Max}	[110]	0.4721
Input capacitor (•			
Result	Eq 8	C _{In} (C13)	[μF]	32.07
Input	Select input capacitor	C _{in} (C13)	[μF]	33
Transformer (TR		(1-27	Elec 2	
Result	Eq 12	Lp	[H]	1.290E-03
Result	Eq 13	I _{AV}	[A]	0.30
Result	Eq 14	ΔΙ	[A]	0.632
Result	Eq 15	I _{P Max}	[A]	0.62
Result	Eq 16	I _{Valley}	[A]	0.0
Result	Eq 17	I _{P RMS}	[A]	0.24
Select core type	<u> </u>			
Input	Select core type			1
Result		Core type		EE20/10/6
Result		Core material		TP4A(TDG)
Result	Maximum flux density	B _{Max}	[T]	0.3
Result	Effective magnetic cross-section	Ae	[mm²]	32
Result	Bobbin width	BW	[mm]	11
Result	Winding cross-section	A _N	[mm²]	34
Result	Average length of turn	l _N	[mm]	41.2
Winding calculat	ion			
Result	Eq 18	N _P	Turns	83.33
Input	Choose number of primary turns	N _P	Turns	84
Result	Eq 19	N _{S1}	Turns	12.16
Input	Choose number of secondary turns	N _{S1}	Turns	12
Result	Eq 20	N _{Vcc}	Turns	14.24
Input	Choose number of auxiliary turns	Nvcc	Turns	14
Result	Auxiliary supply voltage (Eq 21)	V _{Vcc}	[V]	13.75
Post calculation				
Result	Eq 23	V _R	[V]	86.10
Result	Eq 24	D _{Max}		0.47
Result	Eq 25	D _{Max} '		0.52

CS resistor (R14)

Appendix A: Transformer design and spreadsheet [3]

Input	CS threshold value from datasheet	V _{csth}	[V]	1
Result	Eq 21	R _{Sense} (R14)	[Ω]	1.61
Result	Eq 22	P _{SR}	[W]	0.10
Input	PWM-OP gain from datasheet	Av		2.05
Result	Eq 94	Z _{PWM}	[V/A]	3.3
Transformer w	inding design			
Input	Margin according to safety standard	М	[mm]	0
Input	Copper space factor	f _{cu}		0.4
Primary	'	'		
Input	Insulation thickness	INS	[mm]	0.02
Result	Eq 32	A _p (area of primary wire)	[mm²]	0.08
Result	Eq 36	d (diameter of primary wire)	[mm]	0.32
Result	Eq 35	AWG		28
Input	Selected wire size	AWG		32
nput	Number of parallel wires	Np		1
Result	Eq 37	d (diameter of primary wire)	[mm]	0.20
Result	Eq 38	(Eff. copper area of primary)	[mm ²]	0.0326
Result	Eq 39	Sp (primary current density)	[A/mm ²]	7.47
Result	Eq 30	BW _e (effective bobbin width)	[mm]	11.0
Result	Eq 40	Od _p (diameter of primary wire including insulation)	[mm]	0.24
Result	Eq 41	NL _P (max. primary turns/layer)	Turns/layer	45
Result	Eq 42	Ln _P (primary layers)	layers	2
Secondary	-			
nput	Insulation thickness	INS	[mm]	0.02
Result	Eq 33	A _s (area of secondary wire)	[mm²]	0.51
Result	Eq 36	d (diameter of secondary wire)	[mm]	0.81
Result	Eq 35	AWG		20
Input	Selected wire size	AWG		27
nput	Number of parallel wires	Np		3
Result	Eq 37	dia (diameter of secondary wire)	[mm]	0.36
Result	Eq 38	(Eff. copper area of secondary)	[mm²]	0.3103
Result	Eq 39	S _s (secondary current density)	[A/mm ²]	5.81
Result	Eq 30	BW _E (effective bobbin width)	[mm]	11.0
Result	Eq 40	Ods(diameter of secondary wire including insulation)	[mm]	0.40
Result	Eq 41	NL _s (max. secondary turns/layer)	Turns/layer	9
Result	Eq 42	Ln _s (secondary layers)	Layers	2
Leakage induct	tance	·		
nput		Leakage Inductance as percentage of L _P	[%]	1
Result	Eq 45	Lık	[H]	1.29E-05
RCD clamper ci	rcuit (D11, R11 and C15)			
Result	Eq 44	V _{Clamp}	[V]	140.55
Result	Eq 46	C _{clamp} (C15)	[nF]	0.2
Input	Selected C _{clamp} capacitor value	C _{clamp} (C15)	[nF]	0.22
Result	Eq 47	R _{Clamp} (R11)	[kΩ]	322.2
NESULL		stamp (···/		

Result Eq 43a V _{RDiode1} (for output diode D21) [V] 65.34	
---	--

Appendix A: Transformer design and spreadsheet [3]

Result	Eq 28	I _{S Max1}	[A]	4.34
Result	Eq 29	I _{S RMS1}	[A]	1.80
Result	Eq 43b	V _{Rdiode} (for V _{CC} diode)	[V]	76.23
	or (C22 and C23)	Vidiode (101 VCC d.10d.c)	[4]	10.23
	Max. voltage overshoot at output capacitor	av.	D/I	0.25
Input	(C22, C23)	ΔV _{Out}	[V]	0.36
Input	Number of clock periods	n _{cp}		20
Result	Eq 49	I _{Ripple}	[A]	1.50
Result	Eq 50	C _{Out}	[μF]	1010
Zero frequency	of output capacitor (C22 and C23) and associated	IESR	1	
Input	Selected output capacitor value	C22	[μF]	1000
Input	ESR (Z _{max}) value from datasheet at 100 kHz	ESR	[Ω]	0.018
Input	I _{ACmax} value from datasheet at 100 kHz	І астах	[Arms]	1.76
Input	Number of parallel capacitors	n _c		1
Result	Eq 51	fzcout	[kHz]	8.84
Ripple voltage f	first stage			
Result	Eq 52	V _{Ripple 1}	[V]	0.08
Input	Selected LC filter inductor value	Lout (L21)	[μH]	2.2
Calculating the	necessary capacitance for the output LC-filter (C	24)		
Result	Eq 53	C _{LC} (C24)	[μF]	147.3
Input	Selected output inductance value	C _{LC} (C24)	[μF]	220
Result	Eq 54	f _{LC}	[kHz]	7.23
Ripple voltage	second stage			
Result	Eq 55	V _{Ripple 2}	[mV]	1.33
Soft-start time				
Input	Chosen soft-start time from datasheet	tsoftstart	[ms]	12
V _{cc} capacitor (C	16) and start-up time		1	
Input	Chosen I _{VCC,Charge3} from datasheet	IVCC,Charge3	[mA]	3
Input	Chosen V _{VCChys} from datasheet	Vvcchys	[mV]	6
Result	Eq 56A	C _{VCC}	[μF]	6.00
Input	Select V _{CC} capacitor	C _{Vcc} (C16)	[μF]	22
Input	Select V _{VCC,STG} from datasheet	V _{VCC,STG}	[V]	1.1
Input	Select Ivcc,Charge1 from datasheet	IVCC,Charge1	[mA]	0.2
Input	Select V _{VCC,ON} from datasheet	V _{VCC,ON}	[V]	16
Result	Eq 56B	t _{StartUp}	[ms]	238.333
Calculation of le				
Input diode brid				
Result	Eq 57	P _{DIN}	[W]	0.53
Transformer co				
Result	Eq 58	R _{PCu}	[mΩ]	1826.18
Result	Eq 58	R _{SCu}	[mΩ]	27.40
Result	Eq 59	P _{PCu}	[mW]	108.37
Result	Eq 60	Pscu	[mW]	89.09
Result	Eq 61	P _{Cu}	[W]	0.1975
Output rectifier	r diode			
Result	Eq 62	Pout DIODE (D21)	[W]	0.54
RCD clamper cir	rcuit			
KCD Clamper Ci				
Result	Eq 63	P _{Clamper}	[W]	0.22
	Eq 63 R _{DS(on)} from datasheet	PClamper	[W]	0.22

Appendix A: Transformer design and spreadsheet [3]

Injust External drain to-source capacitance of MoSFET losses at V.com * Prom. Cos [pF] 0 MOSFET losses at V.com * Prom. Read to Eg 6 Prom. [W] 0.000001867 Result Eg 66 Prom. MOSFET losses INJ 0.2558 Result Eg 68 Prom. MOSFET losses INJ 0.0258 Result Eg 68 Prom. MOSFET losses INJ 0.0278 Result Eg 69 Prom. MOSFET losses INJ 0.0278 Result Eg 70 MOSFET losses MOSFET losses INJ 0.0264 Input Enter MOSFET losses MOSFET losses INJ 0.026 1.0114 76.3 <th>Input</th> <th>C_{o(er)} from datasheet</th> <th>C_{o(er)}</th> <th>[pF]</th> <th>10</th>	Input	C _{o(er)} from datasheet	C _{o(er)}	[pF]	10
MOSFET Grasses at Vaccium P Page Reside Reg					-
Result Eq 65 Psoc [V] 0.00001967 Result Eq 66 Psoc [V] 0.2558 MOSFET losses [V] 0.2558 MOSFET losses IVI 0.0258 MOSFET losses IVI 0.0295 Result Eq 68 Poor IVI 0.0295 Result Eq 69 Psual IVI 0.0246 Result Eq 79 MOSFET losses IVI 0.1141 Temperature calculation Imput Enter MOSFET losses MOSFET losses IVI 0.66 Input Enter MOSFET losses MOSFET losses IVI 0.6 Input Enter MOSFET losses MOSFET losses IVI 0.6 Input Eq 74 AT (VI) 0.6 Result Leg 74 AT (VI) 0.0124 Sum of losses IVI 0.0124 0.0124 Eq 75 Proper Proper IVI 0.0124 Sum of losses Eq 72	•		CDS	[bi]	Ū
Result Eq 66			ı		
Result Eq 67 MOSFET Losses at Vacanu+ Panux MOSFET Losses at Vacanu+ Panux Result Eq 68 Panux [M] 0.0295 Result Eq 69 Panux [M] 0.0284 Result Eq 70 MOSFET Losses [M] 0.1141 Imput Enter MOSFET Losses MOSFET Losses [M] 0.26 Input Enter Hormal resistance junction – ambient Ra [M] 0.26 Input Enter thermal resistance junction – ambient Ra [M] 0.26 Result Eq 75 Type TC 76.3 Result Eq 75 Type TC 76.3	Result	-		[W]	0.000021967
MOSFET losses at V _{scans} + P _{scan} Eq 68 P _{scan} [W] 0.0295 Result Eq 68 P _{scan} [W] 0.0286 Result Eq 69 P _{cond} [W] 0.1141 Temperature calculation Imput Enter MOSFET losses [W] 0.26 input Enter thermal resistance junction – ambient R _{to} PK(W) 103.0 Result Eq 75 ΔT PK 26.3 Result Eq 75 Controller Controller Result Eq 77 P _{cons} [W] 0.024 Sum of losses Energy at the poly of the properties of	Result				0.2558
Result Eq 68 Point [W] 0.0295 Result Eq 69 Point [W] 0.0266 Result Eq 69 Point [W] 0.0266 Result Eq 70 MOSFET losses [W] 0.1214 Temperature calculation MOSFET losses [W] 0.26 Input Enter themal resistance junction – ambient Res [PK,W] 10.30 Result Eq 74 AT [PK,W] 10.30 Result Eq 75 Descriptions (PK,W) 20.31 Controller Feature Point (PK,W) 0.0124 Sum of Uses Feature Point (PK,W) 0.0124 Sum of Uses Feature Point (PK,W) 0.0124 Sum of Uses [W] 0.0124 Controller Part (PK,W) 0.0124 0.0124 Email Eq 77 Point (PK,W) 0.0124 Email <th< td=""><td></td><td>-</td><td>MOSFET losses</td><td>[W]</td><td>0.2558</td></th<>		-	MOSFET losses	[W]	0.2558
Result Eq 90 Pood [W] 0.00846 Result Eq 70 MOSFET losses [W] 0.1141 Temperature-Lation Temperature-Lation MOSFET losses [W] 0.26 Input Enter MOSFET losses MOSFET losses [W] 0.26 Input Enter Home Temperature sistance junction – ambient Ra ("K"W) 10.30 Result Eq 74 ΔT ("K"W) 10.30 Result teg 75 Temperature very very very very very very very ve	MOSFET losses at	V _{ACmax} + P _{max}			
Result Eq 70 MOSFET losses [W] 0.1141 Temperature calculation	Result	Eq 68		[W]	0.0295
Temperature calculation Imput	Result	Eq 69	P _{cond}	[W]	0.0846
input Enter Hornal resistance junction – ambient Rm [™, M] 1.03.0 Result Eq 74 ΔT (™, M) 1.03.0 Result Eq 75 T _{max} °C 76.3 Controller Num of losses [№] 0.0124 Weg and the properties of the propertie	Result	Eq 70	MOSFET losses	[W]	0.1141
Input	Temperature cald	culation			
Result Eq 74 ΔT [**] 26.3 Result Eq 75 T _{max} *C 76.3 Controller Result MccammatWace Controller losses [**] 0.0124 Summissions Fessilt Eq 77 Power Power [**] 1.76 Efficiency attention of the Eq 78 ft. [**] 1.76 1.76 Calculation of the Testal reference Income [mA] 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.5 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.0 1.5 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.0 1.0 1.2 1.2 1.0	Input	Enter MOSFET losses	MOSFET losses	[W]	0.26
Result Eq 75 Tymax °C 76.3 CONTOCITE Nesult Increminat/Vec Controller losses [W] 0.0124 Sum of losses [W] 0.0124 Efficiency Efficiency Floored [W] 0.0124 Efficiency Floored [W] 0.0124 Efficiency Efficiency Efficiency Floored Input Min. current for TL431 reference Losses Input Optocoupler gain Gc 200 percent) [mA] 1 Input Selected value of R23 R22 [ma] <th< td=""><td>Input</td><td>Enter thermal resistance junction – ambient</td><td>R_{th}</td><td>[°K/W]</td><td>103.0</td></th<>	Input	Enter thermal resistance junction – ambient	R _{th}	[°K/W]	103.0
Controller Result Noc.neural Musc. Controller losses [M] 0.0124 Sum of losses Fessult Eq 77 Picasis [M] 1.76 Efficiency after Uses Fessult Eq 78 n. 0.8720 Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Input Min. current for TL431 reference Issues [mA] 1 Input Optocoupler gain Gc (200 percent) 1.5 1 Input Max. current for optocoupler diode Imma [mA] 10 Input Second resistor of TL431 voltage divider R26 [kin] 1.2.2 Input Second resistor of TL431 voltage divider R26 [kin] 46.36 Result Eq 81 R25 [kin] 46.36 Input Selected value of R25 R25 [kin] 0.8250 Input Selected value of R22 R22 [kin] 0.825 Input Vess from datasheet Vess (20)	Result	Eq 74	ΔΤ	[°K]	26.3
Result Nece,manN Vecc Controller losses [W] 0.0124 Sum of losses Result Eq 77 PLones [W] 1.76 Efficiency after losses Result Eq 78 n. 0.8720 Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Imput Min. current for TL431 reference Lossian [mA] 1 Imput Max. current for optocoupler diode Imput Max. current for optocoupler diode Imput E(mA) 10 Imput Second resistor of TL431 voltage divider R26 [kn] 12.2 Imput Second resistor of TL431 voltage divider R26 [kn] 46.3 Imput Second resistor of TL431 voltage divider R26 [kn] 46.3 Imput Second resistor of TL431 voltage divider R26 [kn] 46.3 Imput Selected value of R23 R22 [kn] 47.0 48.0 Imput Selected value of R	Result	Eq 75	T _{jmax}	°C	76.3
Sum of losses Result Eq 77 Planter [W] 1.76 Efficiency after losses Result Eq 78 n₁ 0.8720 Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Imput Min. current for TL431 reference locom [mA] 1 Imput Optocoupler gain Gc (200 percent) 1.5 Imput Second resistor of TL431 voltage divider R26 [kG] 12.2 Imput Odb crossover frequency Fg [kHz] 3 Result Eq 81 R25 [kG] 46.36 Imput Selected value of R25 R25 [kG] 47 Result Eq 82 R22 [kG] 0.82 Input Viscor from datasheet Vers [V] 3.3 Input Viscor from datasheet R23 [kG] 1.27 Input R25 from datasheet R23 [kG] 1.27 Inp	Controller				
Result Eq 77 Plomes [W] 1.76 Efficiency after constructions Festult Eq 78 n. 0.8720 Calculation for regulation loop (R22, R23, R24, R25, R26, C25, C26) Imput Min. current for TL431 reference Imput [mA] 1 Imput Optocoupler gain Gc (200 percent) Imput Imput Max. current for optocouple diode Imput Max. current for optocouple diode Imput Gc (200 percent) Imput Imput Max. current for optocouple diode Imput Max. current for optocouple diode Imput Gc (200 percent) Imput Imput Max. current for optocouple diode R26 Imput Gc (Ac) Imput Age 20 Imput Max. current for ptocouple diode R25 Imput Max. current for face division face face face face face face face face	Result	Ivcc,NormalXVvcc	Controller losses	[W]	0.0124
Efficiency after losses Result § 178 n. 0.8720 Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Inform Image: Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Imput Min. current for TL431 reference Inform [mA] 1 Input Optocoupler gain Gc (200 percent) 1.5 1 Input Max. current for optocoupler diode Irman [mA] 10 Input Second resistor of TL431 voltage divider R26 [k0] 12.2 Input Obderossover frequency Fg [k12] 3 Result Eq 81 R25 [k0] 46.36 Input Selected value of R25 R25 [k0] 47 Result Eq 82 R22 [k0] 0.8250 Input Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin) Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin) Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin R23 [k0] 1.2 Result Eq 83 (K0 1.5 1.5	Sum of losses				
Efficiency after losses Result § 178 n. 0.8720 Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Inform Image: Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Imput Min. current for TL431 reference Inform [mA] 1 Input Optocoupler gain Gc (200 percent) 1.5 1 Input Max. current for optocoupler diode Irman [mA] 10 Input Second resistor of TL431 voltage divider R26 [k0] 12.2 Input Obderossover frequency Fg [k12] 3 Result Eq 81 R25 [k0] 46.36 Input Selected value of R25 R25 [k0] 47 Result Eq 82 R22 [k0] 0.8250 Input Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin) Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin) Vrocat from datasheet (over-load/open-loop) detection limit at F8 pin R23 [k0] 1.2 Result Eq 83 (K0 1.5 1.5	Result	Eq 77	P _{Losses}	[W]	1.76
Calculation of the regulation loop (R22, R23, R24, R25, R26, C25, C26) Input Min. current for TL431 reference Indimit [mA] 1 Input Optocoupler gain Gc (200 percent) 1.5 Input Max. current for optocoupler diode Inmax [mA] 10 Input Second resistor of TL431 voltage divider R26 [kQ] 12.2 Input O db crossover frequency Fg [kA0] 46.36 Input Selocted value of R25 R25 [kQ] 46.36 Input Selected value of R25 R25 [kQ] 47 Result Eq 82 R22 [kQ] 0.8250 Input Selected value of R22 R22 [kQ] 0.8250 Input Vescretor datasheet Vesc [V] 3.3 Input Vescretor datasheet (over-load/open-loop) detection limit at FB pin) Vescretor datasheet [VRZ [VI 2.75 Result Eq 83 R23 [kQ] 1.27 Input Selected value of R23 R23	Efficiency after lo	osses			
input Min. current for TL431 reference hosmin [mA] 1 input Optocoupler gain Gc (200 percent) 1.5 input Max. current for optocoupler diode Irmse [mA] 10 input Second resistor of TL431 voltage divider R26 [kG] 12.2 input Ob crossover frequency Fg [kH2] 3 result E q 81 R25 [kO] 46.36 input Selected value of R25 R25 [kO] 47 Result E q 82 R22 [kO] 0.8250 input Selected value of R22 R22 [kO] 0.82 input Vers from datasheet R23 [kO] 1.27 input Re from datasheet R23 [kO] 1.27 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 <td>Result</td> <td>Eq 78</td> <td>ηι</td> <td></td> <td>0.8720</td>	Result	Eq 78	ηι		0.8720
Input Optocoupler gain Gc (200 percent) 1.5 Input Max. current for optocoupler diode Irmax [mA] 10 Input Second resistor of TL431 voltage divider R26 [kΩ] 12.2 Input Obb crossover frequency Fg [kΩ] 46.36 Result Eq 81 R25 [kΩ] 46.36 Input Selected value of R25 R25 [kΩ] 0.8250 Input Selected value of R22 R22 [kΩ] 0.8250 Input Selected value of R22 R22 [kΩ] 0.822 Input Vers from datasheet Vers [V] 3.3 Input Vers from datasheet (over-load/open-loop detection limit at FB pin) Vers [V] 2.75 Input Res from datasheet Rrs [kΩ] 1.2 Result Eq 83 [kΩ] 1.2 Result Eq 84 Vout,st [V] 1.2.1 Result Eq 84 Vout,st [V] 1.2.1	Calculation of the	e regulation loop (R22, R23, R24, R25, R26, C25, G	C26)		
input Max. current for optocoupler diode Irmax [mA] 10 Input Second resistor of TL431 voltage divider R26 [kQ] 12.2 input 0 db crossover frequency Fg [kHz] 3 Result Eq 81 R25 [kQ] 46.36 input Selected value of R25 R25 [kQ] 47 Result Eq 82 R22 [kQ] 0.825 input Selected value of R22 R22 [kQ] 0.822 input Vescrim datasheet Vesc [V] 3.3 input Vescrim datasheet (over-load/open-loop) detection limit at FB pin) Vesc.DP [V] 2.75 input Result at FB pin R23 [kQ] 1.27 input Selected value of R23 R23 [kQ] 1.2 Result Eq 84 Vout, R. [V] 12.1 Result Eq 85 KrB [kQ] 1.2.7 Result Eq 86 Gro [db] 28.77	Input	Min. current for TL431 reference	IKAmin	[mA]	1
input Second resistor of TL431 voltage divider R26 [κΩ] 12.2 input 0 db crossover frequency Fg [κΩ] 43 Result Eq 81 R25 [κΩ] 46.36 input Selected value of R25 R25 [κΩ] 47 Result Eq 82 R22 [κΩ] 0.8250 input Selected value of R22 R22 [κΩ] 0.82 input Vasc from datasheet Vesc [V] 3.3 input Vasc from datasheet (over-load/open-loop detection limit at FB pin) Vrs.OLP [V] 2.75 Input Res from datasheet REB [κΩ] 1.5 Result Eq 83 R23 [κΩ] 1.2 Input Selected value of R23 R23 [κΩ] 1.2 Result Eq 84 Vou.x.R. [V] 1.2.1 Result Eq 85 KrB [db] 28.77 Result Eq 86 GrB [db] -13.72	Input	Optocoupler gain	Gc (200 percent)		1.5
Input 0 db crossover frequency Fg [kHz] 3 Result Eq 81 R25 [kQ] 46.36 Input Selected value of R25 R25 [kQ] 47 Result Eq 82 R22 [kQ] 0.8250 Input Selected value of R22 R22 [kQ] 0.82 Input Vare from datasheet Vare [V] 3.3 Input Proportion datasheet (over-load/open-loop detection limit at FB pin) Vare [V] 2.75 Input Rrs from datasheet Rrs [kQ] 1.5 Result Eq 83 R23 [kQ] 1.27 Input Selected value of R23 R23 [kQ] 1.2 Result Eq 84 Vout_RL [V] 1.2.1 Result Eq 85 Krs [V] 1.2.1 Result Eq 86 Grs [db] 28.77 Result Eq 87 Krs [db] -13.72 Result Eq 99	Input	Max. current for optocoupler diode	I _{Fmax}	[mA]	10
Input 0 db crossover frequency Fg [kHz] 3 Result Eq 81 R25 [kQ] 46.36 Input Selected value of R25 R25 [kQ] 47 Result Eq 82 R22 [kQ] 0.8250 Input Selected value of R22 R22 [kQ] 0.82 Input Vare from datasheet Vare [V] 3.3 Input Proportion datasheet (over-load/open-loop detection limit at FB pin) Vare [V] 2.75 Input Rrs from datasheet Rrs [kQ] 1.5 Result Eq 83 R23 [kQ] 1.27 Input Selected value of R23 R23 [kQ] 1.2 Result Eq 84 Vout_RL [V] 1.2.1 Result Eq 85 Krs [V] 1.2.1 Result Eq 86 Grs [db] 28.77 Result Eq 87 Krs [db] -13.72 Result Eq 99	Input		R26	[kΩ]	12.2
Result Eq 81 R25 [ko] 46.36 Input Selected value of R25 R25 [ko] 47 Result Eq 82 R22 [ko] 0.8250 Input Selected value of R22 R22 [ko] 0.82 Input Ver from datasheet Vere from datasheet [v] 3.3 Input Ver from datasheet (over-load/open-loop detection limit at FB pin) Ver Boult [v] 3.27 Input Are from datasheet Res [ko] 1.27 Result Eq 83 R23 [ko] 1.27 Input Selected value of R23 R23 [ko] 1.27 Result Eq 84 Vout,RL [v] 1.21 Result Eq 85 KrB 27.44 Result Eq 86 GrB [db] 28.77 Result Eq 87 KrD 0.21 0.21 Result Eq 88 GvD [db] -13.72 Result Eq 89 Rul	Input	0 db crossover frequency	Fg	[kHz]	3
Imput Selected value of R25 R25 R20 R	Result			[kΩ]	46.36
Result Eq 82 R22 [kΩ] 0.8250 Input Selected value of R22 R22 [kΩ] 0.82 Input Vare from datasheet Vare [V] 3.3 Input Vre, our from datasheet (over-load/open-loop detection limit at FB pin) Vre, our from datasheet Res [V] 2.75 Input Rres from datasheet Rres [kΩ] 1.5 Result Eq 83 R23 [kΩ] 1.27 Input Selected value of R23 R23 [kΩ] 1.2 Result Eq 84 Vout, RL [V] 1.2.1 Result Eq 85 KrB 27.44 Result Eq 86 GrB [db] 28.77 Result Eq 87 KvD 0.21 28.77 Result Eq 88 GvD [db] -13.72 Result Eq 89 RL [Ω] 48.00 Result Eq 90 RL [HZ] 26.53 Result Eq 92	Input		R25		47
Input		Eq 82			0.8250
Input Ver From datasheet Ver Ve	Input	-			0.82
Input VFB,OLP from datasheet (over-load/open-loop detection limit at FB pin) VFB,OLP [V] 2.75 Input Rep from datasheet Rep				+	
Input R _{FB} from datasheet R _{FB} [kΩ] 15 Result Eq 83 R23 [kΩ] 1.27 Input Selected value of R23 R23 [kΩ] 1.2 Result Eq 84 Vout,RL [V] 12.1 Result Eq 85 K _{FB} 27.44 Result Eq 86 G _{FB} [db] 28.77 Result Eq 87 K _{VD} 0.21 28.77 Result Eq 88 G _{VO} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72					
Result Eq 83 R23 [kΩ] 1.27 Input Selected value of R23 R23 [kΩ] 1.2 Result Eq 84 Vout_RL [V] 12.1 Result Eq 85 KFB 27.44 Result Eq 86 GFB [db] 28.77 Result Eq 87 KVD 0.21 Result Eq 88 GVD [db] -13.72 Result Eq 89 RLH [Ω] 12.00 Result Eq 90 RLL [Ω] 48.00 Result Eq 91 foH [Hz] 26.53 Result Eq 92 foL [Hz] 6.63 Result Eq 93 foM [Hz] 13.26 Result Eq 95 [FpwR(fg)] 0.052 Result Eq 96 GpwR(fg) [db] -25.72	Input	detection limit at FB pin)	V _{FB,OLP}	[V]	2.75
Input Selected value of R23 R23 [kΩ] 1.2 Result Eq 84 Vout,RL [V] 12.1 Result Eq 85 K _{FB} 27.44 Result Eq 86 G _{FB} [db] 28.77 Result Eq 87 K _{VD} 0.21 Result Eq 88 G _{VD} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 foH [Hz] 26.53 Result Eq 92 foL [Hz] 6.63 Result Eq 93 foM [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Input	R _{FB} from datasheet	R _{FB}	[kΩ]	15
Result Eq 84 Vout.RL [V] 12.1 Result Eq 85 KFB 27.44 Result Eq 86 GFB [db] 28.77 Result Eq 87 K _{VD} 0.21 Result Eq 88 G _{VD} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	,	R23	[kΩ]	1.27
Result Eq 85 K _{FB} 27.44 Result Eq 86 G _{FB} [db] 28.77 Result Eq 87 K _{VD} 0.21 Result Eq 88 G _{VD} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Input	Selected value of R23	R23	[kΩ]	1.2
Result Eq 86 GFB [db] 28.77 Result Eq 87 K _{VD} 0.21 Result Eq 88 G _{VD} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	Eq 84	V _{Out_RL}	[V]	12.1
Result Eq 87 K _{VD} 0.21 Result Eq 88 G _{VD} [db] -13.72 Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	Eq 85	K _{FB}		27.44
Result Eq 88 GvD [db] -13.72 Result Eq 89 RLH [Ω] 12.00 Result Eq 90 RLL [Ω] 48.00 Result Eq 91 foH [Hz] 26.53 Result Eq 92 foL [Hz] 6.63 Result Eq 93 foM [Hz] 13.26 Result Eq 95 [FpwR(fg)] 0.052 Result Eq 96 GpwR(fg) [db] -25.72	Result	Eq 86	G _{FB}	[db]	28.77
Result Eq 89 R _{LH} [Ω] 12.00 Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	Eq 87	K _{VD}		0.21
Result Eq 90 R _{LL} [Ω] 48.00 Result Eq 91 f _{OH} [Hz] 26.53 Result Eq 92 f _{OL} [Hz] 6.63 Result Eq 93 f _{OM} [Hz] 13.26 Result Eq 95 [F _{PWR} (fg)] 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	Eq 88	G _{VD}	[db]	-13.72
Result Eq 91 foH [Hz] 26.53 Result Eq 92 foL [Hz] 6.63 Result Eq 93 foM [Hz] 13.26 Result Eq 95 Fpwr(fg) 0.052 Result Eq 96 Gpwr(fg) [db] -25.72	Result	Eq 89	R _{LH}	[Ω]	12.00
Result Eq 92 foL [Hz] 6.63 Result Eq 93 foM [Hz] 13.26 Result Eq 95 FpwR(fg) 0.052 Result Eq 96 GpwR(fg) [db] -25.72	Result	Eq 90	R _{LL}	[Ω]	48.00
Result Eq 93 fom [Hz] 13.26 Result Eq 95 Fpwr(fg) 0.052 Result Eq 96 Gpwr(fg) [db] -25.72	Result	Eq 91	f _{он}	[Hz]	26.53
Result Eq 95 F _{PWR} (fg) 0.052 Result Eq 96 G _{PWR} (fg) [db] -25.72	Result	Eq 92	foL	[Hz]	6.63
Result Eq 96 GPWR(fg) [db] -25.72	Result	Eq 93	fом	[Hz]	13.26
Result Eq 96 GPWR(fg) [db] -25.72	Result		F _{PWR} (fg)		0.052
	Result			[db]	-25.72

Maximum DC voltage

Output voltage

Maximum output power

пррепак	A: Transformer design and spread			
Result	Eq 100	R24	[kΩ]	33.09
Input	Selected value of R24	R24	[kΩ]	33
Result	Eq 101	C26	[nF]	1.608
Input	Selected value of C26	C26	[nF]	1
Result	Eq 102	C25	[nF]	362.64
Input	Selected value of C25	C25	[nF]	470
Zero crossing o	detection and output OVP calculation			
Input	Designed V _{OUT_OVP}	Vout_ovp	[V]	16
Input	V _{ZC_OVP_MIN} from datasheet	V _{ZC_OVP_MIN}	[V]	1.9
Input	R _{ZCD_MIN} from datasheet	R _{ZCD}	[kΩ]	3
Result	Eq 103	R _{ZC} (R15)	[kΩ]	27.03
Input	Selected value of R15	R _{zc} (R15)	[kΩ]	27
Input	f _{OSC2} by measurement	f _{osc2}	[kHz]	1000
Result	Eq 104	C _{ZC} (C19)	[pF]	81
Input	Selected value of Czc (C19)	C _{ZC} (C19)	[pF]	47
Line OVP is the	e first priority and its associated brown-out, l	brown-in and line selection		
Input		R ₁₁ (R18)	[Ω]	9,000,000
Input		Line over-voltage (V _{OVP_AC})	[V _{AC}]	300
Input		V _{DC} Ripple	[V]	26
Result	Eq 105A	R ₁₂ (R19)	[Ω]	61,942
Input	Selected value of R19 (R ₁₂)	R ₁₂ (R19)	[Ω]	62,000
Result	Eq 106	Brown-in voltage (V _{Brownin_AC})	[V AC]	68
Result	Eq 107	Brown-out voltage for full load which considers VDC RIPPLE (VBrownout_AC)	[V AC]	60
Result	Eq 107	Brown-out voltage for light load which neglects V _{DC RIPPLE} (V _{Brownout_AC})	[V AC]	41
Result	Eq 108	Line selection threshold with $V_{DC RIPPLE}$ (V_{VIN} = 1.52 V)	[V AC]	175
Result	Eq 108	Line selection threshold without $V_{DCRIPPLE}$ ($V_{VIN} = 1.52V$)	[V AC]	157
Brown-out is t	he first priority and its associated line OVP ar	nd line selection		
Input		R ₁₁ (R18)	[Ω]	9,000,000
Input		Brown-in voltage (V _{OVP_AC})	[V AC]	70
Input		V _{DC} Ripple	[V]	26
Result	Eq 105B	R ₁₂ (R19)	[Ω]	60,406
Input	Selected value of R19(R ₁₂)	R ₁₂ (R19)	[Ω]	62
Result	Eq 107	Brown-out voltage for full load which considers VDC RIPPLE (VBrownout_AC)	[V AC]	41076
Result	Eq 107	Brown-out voltage for light load which neglects VDC RIPPLE (VBrownout_AC)	[V AC]	41058
Result	Eq 114	Line over-voltage (VovP_AC)	[V AC]	297671
Result	Eq 108	Line selection threshold with V _{DC RIPPLE} (V _{VIN} = 1.52 V)	[V AC]	156039
Result	Eq 108	Line selection threshold without $V_{DCRIPPLE}$ (V_{VIN} = 1.52 V)	[V AC]	156021
	Electrical			
	Minimum AC voltage		[V]	85
	Maximum AC voltage		[V]	264
	Maximum input current		[A]	0.16

373

12.0

12.0

[V]

[W]

Appendix A: Transformer design and spreadsheet [3]

Output ripple voltage	[mV]	1.3
Inductor peak current	[A]	0.62
Maximum duty cycle		0.47
Reflected output voltage	[V]	86
Copper losses	[W]	0.20
MOSFET losses	[W]	0.26
Sum of losses	[W]	1.76
Efficiency		0.87

Transformer

Core type		EE20/10/6
Core material		TP4A(TDG)
Effective core area	[mm²]	32
Maximum flux density	[mT]	298
Inductance	[µH]	1290
Magin	[mm]	0
Primary turns	Turns	84
Primary copper wire size	AWG	32
Secondary turns (N _{S1})	Turns	12
Secondary copper wire size	AWG	27
Number of parallel secondary wires		3
Auxiliary turns	Turns	14
Leakage inductance	[µH]	12.9
Turns ratio		7.00
Primary layers	Layer	2
Secondary layers	Layer	2

Components

Input capacitor	C13	[μF]	33.0
Output capacitor	C22	[μF]	1000.0
LC filter capacitor	C24	[μF]	220.0
LC filter inductor	L21	[µH]	2.2
V _{cc} capacitor	C16	[µH]	22.0
ZC capacitor	C19	[pF]	47
ZC resistor	R15	[kΩ]	27
Sense resistor	R14	[Ω]	1.61
Clamping resistor	R11	[kΩ]	240.0
Clamping capacitor	C15	[nF]	0.22
Voltage divider	R25	[kΩ]	46.4
Voltage divider	R26	[kΩ]	12.2
Regulator component	R22	[kΩ]	0.82
Regulator component	R23	[kΩ]	1.2
Regulator component	R24	[kΩ]	33.0
Regulator component	C25	[nF]	470.0
Regulator component	C26	[nF]	1.00

Appendix B: WE transformer specification

Appendix B: WE transformer specification 12

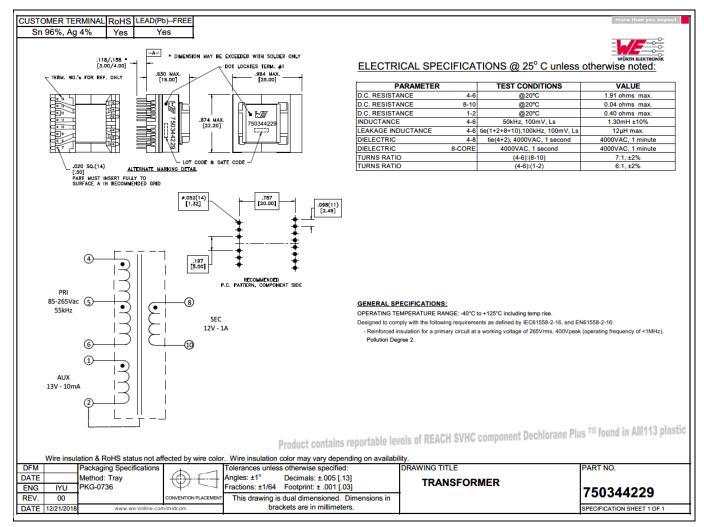


Figure 33 WE transformer specification

References

References **13**

- [1] ICE5QRxxxxAx datasheet, Infineon Technologies AG
- [2] AN-201609 PL83 026-5th Generation QR Design Guide
- [3] <u>Calculation Tool Quasi Resonant CoolSET™ Generation 5</u>

Revision history

Revision history

Document version	Date of release	Description of changes
Rev. 1.0	2019-03-26	First release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-03-26 **Published by Infineon Technologies AG** 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_1903_PL83_1904_083141

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.