Driving 600 V CoolGaN™ high electron mobility transistors

Author: Bernhard Zojer

About this document

Scope and purpose

This document deals with the preferred driving scheme for Infineon's first-generation 600 V e-mode gallium nitride (GaN) transistor, a p-GaN-type switch with non-isolated gate, referred to here as 600 V CoolGaN™ High Electron Mobility Transistor (HEMT). A driving concept based on Infineon’s driver IC 1EDI20N12AF together with a dedicated coupling network is described and thoroughly analyzed. Both physical GaN properties and application-specific considerations are taken into account. Theory and simulation results are shown to be in agreement with the measurements.

The purpose of this document is to enable the reader to understand and optimize the driving circuitry according to their particular goals and needs.

Intended audience

This application note is mainly aimed at readers with a basic knowledge of switching circuits and power transistors. However, any particular familiarity with GaN HEMTs is neither assumed nor required.

Table of contents

About this document ... 1
Table of contents .. 1
1 Introduction ... 3
2 General gate-driving considerations .. 4
 2.1 Isolated gate (MOSFET) .. 4
 2.2 Non-isolated gate (p-GaN) .. 5
3 Infineon’s e-mode GaN solution ... 8
 3.1 GaN HEMT properties ... 8
 3.2 Driver properties .. 9
 3.3 Interface circuit .. 10
4 Dimensioning of the RC interface ... 11
 4.1 Basic relations .. 11
 4.2 Driving real GaN transistor gates ... 13
5 Application-specific considerations .. 16
 5.1 Hard-switched applications (totem-pole PFC) ... 16
 5.1.1 Totem-pole PFC topology ... 16
 5.1.2 GaN transistor in reverse conduction (diode) .. 17
 5.1.3 Particular effects in hard-switched topologies ... 18
 5.1.4 Example totem-pole PFC ... 18
Driving 600 V CoolGaN™ high electron mobility transistors

Introduction

1 Introduction

Gallium nitride (GaN) is a very promising material for power semiconductors. Although known for decades, the need for exotic and expensive substrate materials has severely limited its useful application areas. However, this situation has changed in recent years. Efforts worldwide have led to significant progress in the realization of reliable GaN transistors on cheap silicon substrates and this has been key to their economic success. Technically, the wide bandgap of GaN allows higher electric field strengths and thus results in more compact HV switches compared to silicon, thus far surpassing state-of-the-art silicon transistors in terms of all relevant Figures of Merit (FOM).

More importantly, GaN switches are so-called heterojunction High Electron Mobility Transistors (HEMTs). The conducting channel is formed at an AlGaN/GaN interface by a highly conductive two-dimensional electron gas (2DEG). Therefore the device is purely lateral and does not contain physical pn-junctions. And that is why GaN transistors can be operated not only as power switches, but also as diodes, i.e. in reverse direction with negligible reverse recovery charge Q_{rr}. This is not possible with silicon MOSFETs due to the high Q_{rr} of their intrinsic pn-junction diode. A further consequence is the possible substitution of diodes by switches, which enables the utilization of new power topologies with significant advantages in terms of cost and efficiency [1].

But as ever, there is no such thing as a free lunch. In the case of GaN, the payment consists of a property that is not appreciated by engineers dealing with the application of power switches. A GaN HEMT is inherently "normally on", i.e. the electron gas is formed without the need for any external voltage. To interrupt the channel and switch the transistor off, however, a negative voltage at the gate with respect to the source is required. Obviously, if this voltage is not available, e.g. in failure modes or during power-up or down, this behavior can cause power shorts and might even be destructive. The most common solution to this problem is to add a low-voltage e-mode silicon MOSFET in series with the GaN HEMT in a cascode configuration [2]; however, significant drawbacks in terms of additional losses and HV stresses are associated with this approach.

So many attempts have been made to modify GaN transistors in such a way as to achieve a positive threshold voltage. The most mature concept uses a layer of p-doped GaN beneath the gate (Figure 1a). This shifts the device’s threshold voltage to a positive, although typically relatively low, value (1 to 1.5 V). And, more importantly, this concept only works satisfactorily without an insulating layer under the gate. That means the gate forms a pn-diode with a forward voltage of about 3 V and a resistance of a few Ohms (Figure 1b). And this gate characteristic has significant impact on the driving method of such a transistor.

Figure 1 Cross-section (a) and gate characteristics (b) of p-GaN transistor
Driving 600 V CoolGaN™ high electron mobility transistors

General gate-driving considerations

2 General gate-driving considerations

2.1 Isolated gate (MOSFET)

For a better understanding let’s start with a summary of the classic MOSFET gate-driving process. Figure 2a depicts the relevant elements of the equivalent switch and driver circuit. The switch consists of an ideal transistor, i.e. a voltage-controlled current source with the three associated non-linear capacitances C_{GS}, C_{GD} and C_{DS}. In spite of its distributed nature the resistance of the gate electrode is usually modeled by a simple lumped resistor R_{int}. In most applications this approximation is sufficiently accurate.

The driver itself consists of two switches that are utilized to alternately connect the gate to either the positive or the negative driver supply voltage, V_P and V_N, respectively. These voltages are related to the source node of the switch, regardless of whether this is fixed or switching with respect to the system ground. Here the more general case of a bipolar supply voltage is assumed, although often a unipolar voltage V_P is used. As will be explained later, switching dynamics call for a certain minimum resistance in the gate-driving loop, and this is normally realized by adding external gate resistors. If the driver provides separated outputs for the two switches (as the proposed IFX-driver does), these resistors R_{on} and R_{off} can be chosen independently to optimize the switching performance.

Figure 2 MOSFET: equivalent circuit (a), gate-charge characteristic (b) and gate-charge current (c)
General gate-driving considerations

The associated gate-charging curve is shown in Figure 2b. During switch-on first \(C_{GS} \) has to be charged to the Miller plateau voltage \(V_{Miller} \), i.e. the gate voltage level corresponding to the actual switching current \(I_0 \) (which can be derived from transfer characteristics). This requires a charge \(Q_{GS} \) to be delivered from the driver. Then, to allow a change in drain voltage, \(C_{GD} \) has to be charged accordingly, resulting in gate-charge component \(Q_{GD} \). The time needed to provide \(Q_{GS} \) via the gate loop limits the achievable switching speed. When the drain voltage does not change any more, the gate is finally charged up to \(V_S \), and the total gate charge reaches its final value \(Q_{Gtot} \).

The resulting gate-drive current over time is given in Figure 2c, and essentially consists of short positive and negative current peaks of area \(Q_{Gtot} \) for each switching event. The higher the switching current, the faster the switching transient. The current values are given by

\[
I_{on} = \frac{V_P - V_{Miller}}{R_{on} + R_{int}}
\]

for switching on, and similarly by

\[
I_{off} = \frac{V_{Miller} - V_N}{R_{off} + R_{int}}
\]

for switching off. As already mentioned, \(V_N \) is often zero; this is possible, if a sufficiently high \(V_{th} \) ensures a sufficiently high \(I_{off} \).

2.2 Non-isolated gate (p-GaN)

How does our e-mode GaN switch now differ from the described behavior? Clearly the main difference is that physical pn junction diodes are formed between gate and source and also between gate and drain. The forward voltage \(V_f \) of these diodes is defined by the physical band structure of GaN and is in the 3 to 3.5 V range. It is evident that \(V_f \) always has to be higher than the Miller voltage. This is guaranteed from device physics, although the actual difference \(V_f - V_{Miller} \) depends on temperature and current, and is subject to statistical variations. Besides, the achievable GaN threshold voltage is in the 1 V range and thus is significantly lower than a typical MOSFET threshold. So the equivalent circuit of a GaN switch as depicted in Figure 3a is again composed of an ideal MOSFET with low threshold \(V_{th} \), the voltage-dependent non-linear capacitances \(C_{GS}, C_{GD} \) and \(C_{DS} \) and the internal gate resistor \(R_{int} \). But now two diodes from gate-to-source and gate-to-drain, respectively, have to be added. And it is these diodes that preclude the structure from being driven like a conventional MOSFET.

Looking now at the gate-charge diagram of Figure 3b, the switching process takes place as with a conventional MOSFET. The only difference is that after having gone through the Miller plateau, the gate node is clamped by the diode to a voltage close to the diode threshold \(V_f \). As before, the switching speed depends on the gate current available in the Miller plateau according to eqs (1) and (2), respectively. But now, even when the switching transition is over, a permanent current

\[
I_{ss} = \frac{V_P - V_f}{R_{on} + R_{int}}
\]

flows into the gate diode during the on-state, with \(R_{ss} \) denoting the associated drive impedance. This current causes additional losses and thus has to be kept as small as possible. Figure 3c depicts the gate current.
Driving 600 V CoolGaN™ high electron mobility transistors

General gate-driving considerations

waveform. And the rather obvious goal is to provide large peak currents I_{on} and I_{off} at a small steady-state current I_{ss}.

![Figure 3](image)

Figure 3 E-mode GaN HEMT: equivalent circuit (a), gate-charge characteristic (b) and gate-charge current (c)

But how can this be achieved?

Let’s start with the switch-off process. Here the small V_{th} would only allow a small I_{off} current, if no negative supply voltage is used. This is particularly important in hard-switching half-bridge applications with fast transients of the drain voltage of a transistor in the “off” state. The resulting current through C_{GD} has to be sunk by the driver with V_{GS} staying below V_{th}, otherwise the resulting cross-current flow leads to increased losses (“re-turn-on” effect) and can even be destructive. To avoid this, in hard-switched applications a negative driving voltage V_{n} of typically a few Volts is required.

For switching on it is evident that the standard driving scheme of Figure 2a cannot do the job. From eqs (1) and (3), a fixed gate-drive impedance ($R_{on} = R_{on}$) would limit the ratio of I_{on} and I_{ss} to low values, only depending on the difference between V_{t} and V_{Miller}. In order to achieve a high ratio between I_{on} and I_{ss}, a significant difference in the driving impedance during the off-/on-transient and the steady on-state is required. Theoretically this could be achieved utilizing two different driver stages for transients and steady-state with different impedance and/or supply voltage. However, any solution of this kind means high hardware effort, as dedicated integrated drivers do not exist.

That is why Infineon recommends use of the gate-drive concept depicted in Figure 4. Here the R_{on} of the classic drive concept is substituted by an RC network that provides two parallel paths. A small resistor R_{on} is coupled to the gate via a capacitance C_{on}, while a high resistor R_{ss} provides a direct path. If dimensioned properly, the on-transient current I_{on} is defined by R_{on}, while R_{ss} determines the steady-state diode current.
Driving 600 V CoolGaN™ high electron mobility transistors

General gate-driving considerations

It seems that in Figure 4 the negative supply V_N is missing, but this is not true. In fact, V_N is not needed, as through C_{on} a shift of the gate-drive levels to negative values can be achieved.

Details of how to dimension this network will be given in chapter 4. Prior to this, chapter 3 will summarize the main features of the switch and driver.

![Proposed gate-driving scheme of e-mode GaN HEMT](image)

Figure 4 Proposed gate-driving scheme of e-mode GaN HEMT
Driving 600 V CoolGaN™ high electron mobility transistors

Infineon’s e-mode GaN solution

3 Infineon’s e-mode GaN solution

3.1 GaN HEMT properties

Infineon provides a family of 600 V-rated GaN power switches based on the p-GaN concept. The first family of devices available is IGx60R070D1 with a nominal \(R_{DS(on)} \) of 70 m\(\Omega \) [3]. The most important transistor parameters are summarized in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>(V_{DS})</td>
<td>600</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>On-resistance</td>
<td>(R_{DS(on)})</td>
<td>70</td>
<td>m(\Omega)</td>
<td>(T = 25^\circ C)</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>(V_{th})</td>
<td>1.2</td>
<td>V</td>
<td>(T = 25^\circ C)</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{GS} + Q_{GD})</td>
<td>2 + 3</td>
<td>nC</td>
<td>(V_{DS} = 400 \text{ V})</td>
</tr>
<tr>
<td>Gate diode forward voltage</td>
<td>(V_{F})</td>
<td>3.5</td>
<td>V</td>
<td>(I_{gate} = 20 \text{ mA})</td>
</tr>
<tr>
<td>Gate resistance</td>
<td>(R_{int})</td>
<td>1</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>Transconductance (dI_{D}/dV_{GS})</td>
<td>(g_{m})</td>
<td>30</td>
<td>A/V</td>
<td></td>
</tr>
<tr>
<td>Output charge</td>
<td>(Q_{oss})</td>
<td>45</td>
<td>nC</td>
<td>(V_{DS} = 400 \text{ V})</td>
</tr>
<tr>
<td>Energy stored in output capacitance</td>
<td>(E_{oss})</td>
<td>7</td>
<td>(\mu J)</td>
<td>(V_{DS} = 400 \text{ V})</td>
</tr>
</tbody>
</table>

As already mentioned, the threshold voltage \(V_{th} \) is positive, but it is quite low. This impacts the required gate-drive levels. Besides, all terminal capacitances and the associated stored charges are very low, thus enabling extremely fast switching transients. Figure 5 shows the typical voltage dependence of these capacitances with their highly non-linear nature.

To drive the gate, the input capacitance \(C_{iss} \) of several hundred pF has to be charged up to the diode voltage \(V_{F} \) resulting in a gate-charge contribution of around 2 nC. The remaining part of the total gate charge then is due to charging of \(C_{GD} = C_{rss} \). Assuming a drain voltage swing of 400 V, integration of the \(C_{rss} \) curve over voltage gives an additional 3 nC, resulting in a total gate charge of approximately 5 nC.

The GaN die is packaged into a 20-pin DSO package with an exposed bottom-side/top-side cooling die pad. A separate source pin is utilized as the reference for the gate driver to minimize the critical source inductance [4]. The package combines very low parasitic inductances with an excellent thermal behavior.

All GaN HEMTs data in this document refer to IGOT60R070D1, the DSO-20 CoolGaN™ optimized for bottom-side cooling.
Driving 600 V CoolGaN™ high electron mobility transistors

Infineon’s e-mode GaN solution

Figure 5 Voltage dependence of terminal capacitances for IGOT60R070D1

3.2 Driver properties

We recommend driving the GaN switches with Infineon’s 1EDI20N12AF, an integrated galvanically isolated gate-driver IC in a PG-DSO-8 package. Separated sink-and-source outputs are able to provide driving currents up to 2 A. The driver is a member of Infineon’s EiceDRIVER™ Compact family and is particularly well suited to very fast switching, as it realizes the isolation barrier by means of Coreless Transformer Technology (CTT), which among all isolation methods provides the best Common Mode Transient Immunity (CMTI). Table 2 summarizes the key driver parameters [5].

Table 2 Main parameters of 1EDI20N12AF gate driver

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supply voltage</td>
<td>VCC</td>
<td>35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Minimum supply voltage</td>
<td>UVLO</td>
<td>9</td>
<td>V</td>
<td>Under Voltage Lockout (UVLO) function</td>
</tr>
<tr>
<td>Input-to-output isolation</td>
<td>+/- 1200</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum output current</td>
<td>I_{out}</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>R_{out}</td>
<td>2</td>
<td>Ω</td>
<td>Resistive region of output characteristics</td>
</tr>
<tr>
<td>Rise/fall times</td>
<td>t_r/t_f</td>
<td>15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Propagation delay matching</td>
<td>Δt_d</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Common Mode Transient Immunity</td>
<td>CMTI</td>
<td>100</td>
<td>V/ns</td>
<td></td>
</tr>
</tbody>
</table>
Driving 600 V CoolGaN™ high electron mobility transistors
Infineon’s e-mode GaN solution

3.3 Interface circuit

Figure 6 shows the switch, driver and the proposed RC interface together with all relevant parasitic elements.

As indicated, the driver integrates two dies in a package, coupled by an on-chip transformer CT. The driver outputs can be regarded as switches with a rise and fall time of 15 ns, an on-resistance of 2 Ω and a current limit of 2 A. The detailed behavior of the RC circuit will be described in chapter 4. An optional resistor R_{leak} between gate and source may be used to sink potential leakage currents without turning on the switch even under worst-case static conditions (continuous high drain voltage, high temperature). A resistor value of 5 kΩ is recommended. The equivalent switch circuit has been extended by the diode series resistance R_{dio} and the parasitic inductances. L_s denotes the part of the source inductance within the gate loop only. Due to the source sense concept this critical parasitic can be kept negligibly small. The remaining part of L_s can be lumped with the drain inductance to form the effective drain inductance L_d'. Finally also the gate loop inductance L_g influences gate-drive dynamics.

Typical values for these parasitics are:

- $R_{\text{dio}} = 2$ Ω
- $L_s < 0.1$ nH
- $L_d = 3$ nH
- $L_g = 10$ nH

The inductance values are lower than expected, but they could be practically achieved by combining a highly optimized PCB layout with inductance canceling techniques in the power loop [6].
4 Dimensioning of the RC interface

4.1 Basic relations

In order to understand how the proposed interface works, it is helpful to have a closer look at the simple circuit given in Figure 7. Here the transistor is substituted by a constant capacitance C_G of 2 nF in parallel with an ideal diode with a forward voltage of 3.5 V and a series resistance R_{diode} of 3 Ω. A voltage source switching between zero and V_S is connected via a coupling capacitance C_{on} of 2 nF and a small series resistor R_{on} of 10 Ω as the low-impedance AC-path. The parallel DC path is formed by a 500 Ω resistor. For simplicity, the driving voltage is assumed to behave like a step function.

![Circuit Diagram]

Figure 7 Simulation results of simplified gate-charge circuit (a) with gate voltage (b), diode current (c) and gate current (d)

Before the first switching event both C_G and C_{on} are uncharged. With the driving voltage transition from zero to the “on” level V_S, both capacitances are charged until V_G reaches 3.5 V at a charging current:

$$I_G(t) = \frac{V_S - V_G(t)}{R_{on}}$$

As long as no diode current is flowing, the charge in C_G equals the charge in C_{on}:

$$(V_C - V_G) \cdot C_{on} = V_G \cdot C_G$$

$$V_C = V_G \cdot (1 + \frac{C_G}{C_{on}})$$

$$V_C = V_G \cdot (1 + \frac{2}{3})$$
Driving 600 V CoolGaN™ high electron mobility transistors

Dimensioning of the RC interface

Here, as an example, C_{on} has been chosen equal to C_G. Then $V_C = 2 \times V_S$ for V less than V_t. As soon as the diode starts conducting, V_S is clamped to a value close to 3.5 V, corresponding to a V_C of 7 V. If V_S exceeds this value, C_{on} is further charged until V_C reaches V_S. The final charge in C_{on} is thus larger than that in C_G by an amount of $(V_S - 7 \text{ V}) \times C_{on}$. If, on the other hand, V_S is not sufficiently large (here V_S is less than 7 V), then V_G is charged to a level below V_C via the capacitive path, while the remaining gate charge is provided by the resistor R_{ss}.

This behavior is illustrated in Figure 7b. Looking at the first switch-on event, obviously $V_S = 6 \text{ V}$ is too low to fully charge C_G via the fast path. As expected, V_G goes up to 3 V, and is then slowly charged to 3.5 V via the 500 Ω resistor. If V_S is higher than 7 V, charging of C_G to V_F is fast and there is no significant difference in the gate voltage behavior at a V_S of 8 and 10 V, respectively. In general, the steady on-state is characterized by:

$$V_G = V_F \rightarrow Q(C_G) = V_F \cdot C_G$$ \hspace{1cm} (6)

$$V_C = V_S \rightarrow Q(C_{on}) = (V_S - V_F) \cdot C_{on}$$ \hspace{1cm} (7)

$$I_{ss} = \frac{V_S - V_F}{R_{ss}}$$ \hspace{1cm} (8)

If the driving voltage is now switching back to zero (switch-off, assuming $t = 0$), the difference in gate voltage behavior is evident. With 0 V applied externally, fast balancing of the charges in C_G and C_{on} via R_{on} takes place, causing a gate voltage:

$$V_G(0) = -\frac{Q(C_{on}) - Q(C_G)}{C_{on} + C_G}$$ \hspace{1cm} (9)

If $Q(C_{on})$ is smaller than $Q(C_G)$, the charge difference causes a positive gate voltage at the begin of the off phase (red curve in Figure 7b) that is discharged slowly via R_{ss}. Due to the low threshold voltage of GaN such a situation is unacceptable and thus $Q(C_{on})$ greater than $Q(C_G)$ is a mandatory condition to safely turn off the transistor.

![Figure 8](image-url)
Figure 8
Gate-voltage waveform for $V_S = 12 \text{ V}$

Figure 8 shows the gate voltage behavior of Figure 7a once more with $V_S = 12 \text{ V}$. The charge difference in C_{on} and C_G causes V_G to go negative. The initial negative voltage V_{Ni} can be calculated by inserting eqs (6) and (7) into (9) to yield:

$$V_G(0) = V_{Ni} = V_F - V_S \cdot \frac{C_{on}}{C_{on} + C_G}$$ \hspace{1cm} (10)
This initial value $V_{ Ni }$ decreases with a time constant:

$$\tau = R_{ SS } \cdot (C_{ on } + C_{ G })$$

At the end of the off-phase ($t = t_{ off }$) the final value $V_{ Ni }$ is reached:

$$V_g(t_{ off }) = V_{ Nf } = V_{ Ni } \cdot e^{-t_{ off }/\tau}$$

Thus during the off-phase $C_{ on }$ is discharged by an amount:

$$\Delta V_N = V_{ Nf } - V_{ Ni } = -V_{ Ni } \cdot (e^{-t_{ off }/\tau} - 1)$$

The next switching-on event thus starts at the negative gate voltage value $V_{ Ni }$. Due to this pre-charging, the extra charge required to fully charge $C_{ on }$ after V_g has reached V_f is now smaller. This can be seen in the diode current I_D given in Figure 7c, which is lower for the second switching pulse than for the first one. Note also that the gate voltage peak visible at switch-on is no more than the voltage drop I_D causes over the diode’s on-resistance $R_{ on }$. From Figure 7c it is also clear that no diode current is flowing during the switching transient, if V_s is too small (red curve). In any case I_D slowly approaches the steady-state value of eq. (8).

But also the gate-charging current I_G as shown in Figure 7d at a higher time resolution, depends on $V_{ Ni }$ of the previous off phase. Due to the remaining charge in $C_{ on }$, V_c during the charging phase (V_g is less than V_f) is now increased by $-V_{ Ni }$ and eq. (5) has to be modified to:

$$V_c(t) = V_g(t) \cdot \left(1 + \frac{C_G}{C_{ on }}\right) - V_{ Nf }$$

According to eq. (4) this also means a reduction of the gate-charging current I_G compared with the initial switching with discharged $C_{ on }$. From eq. (12), this effect varies with $t_{ off }$. At start-up or with very long $t_{ off }$, $C_{ on }$ gets completely discharged ($V_{ Ni } = 0$), while for short $t_{ off }$, $V_{ Ni } \sim V_{ on }$ and the gate-charging current is smallest. This leads to a variation of switching behavior with duty cycle. To keep this variation small, the minimum necessary $V_{ Ni }$ should be chosen (see section 5.1).

4.2 Driving real GaN transistor gates

Essentially the considerations given above also hold, if we are not driving a constant capacitance by an ideal step-voltage source, but a real switching transistor by a real gate driver. First, the driving voltage is no step function, but has finite rise and fall times. This effect can partly compensate the duty-cycle dependence of the driving voltage, as will be shown section 5.1.4. Second, the $Q_c \sim V_c$ characteristic changes from a straight line for a constant capacitance to the well-known step-charging as given in Figure 2b. The Miller plateau indicates the charge in $C_{ GD }$ associated with the voltage swing at the drain; in this region the gate behaves like a huge capacitance, whereas below and above the Miller level it shows the physical capacitance as depicted in Figure 5.

The total gate charge $Q_{ Gtot }$ denotes the charge required to change $V_{ Gd }$ from 0 to V_f. For a given transistor and switching voltage this value is fixed and close to the specified gate charge of 7 nC for the switch described in 3.1 (as charging from Miller level to V_f only gives a small contribution). $V_{ Ni }$ can again be calculated by the charge redistribution relation of eq. (9). However, in contrast to the constant capacitance case, $C_{ G }$ is now the physical capacitance, i.e. $C_{ G } = C_{ iss }$, while $Q(\cdot C_{ G })$ is the total gate charge $Q_{ Gtot }$. Eq. (10) thus becomes:

$$V_{ Ni } = \frac{C_{ on } \cdot (V_s - V_f) - Q_{ Gtot } \cdot C_{ on } + C_{ iss }}{C_{ on } + C_{ iss }}$$

The optimum value of $V_{ Ni }$ depends on application, but once a target value is defined, eq. (15) can be used to find possible combinations of V_s and $C_{ on }$ with a trade-off between faster switching and higher steady-state current...
Driving 600 V CoolGaN™ high electron mobility transistors

Dimensioning of the RC interface

as described by eqs (4), (8), (11), (12) and (14). Figure 9 gives a graphical representation of eq. (15), assuming a total gate charge of 5 nC.

Regarding the time constant for discharging, again \(C_g \) of eq. (11) has to be substituted by the actual gate capacitance, thus:

\[
\tau = R_{ss} \cdot (C_{on} + C_{iss})
\]

![Figure 9](image)

\(V_{in} \) as a function of \(C_{on} \) and \(V_S \) according to eq. (15)

Besides the strongly non-linear behavior of real transistor capacitances, further differences exist between the simplified circuit of Figure 7a and the more realistic one in Figure 6. It is easy to discern that these are the parasitic inductances. It is not so easy to identify all the effects they are responsible for. And it is very difficult to quantify these effects.

There are certainly two well-known effects that strongly influence gate drive. Both result in minimum values for \(R_{on} \).

1. From Figure 6, the gate loop is essentially an LC circuit formed by the parasitic gate inductance \(L_G \) and the series connection of \(C_{GS} \) and \(C_{on} \). To avoid oscillations in this loop, a sufficiently high damping resistance \(R \) is needed. From simple oscillator theory the aperiodic case (no overshoot) requires a minimum resistance:

\[
R = 2 \cdot \sqrt{L/C}
\]

Although our loop is non-linear and more complex, this can be used for rough estimations. From Figure 5 we know that the gate capacitance is in the 0.5 to 1 nF range. A realistic gate loop inductance ranges from 10 to 20 nH, which yields a damping resistance range of roughly 6 to 12 \(\Omega \). This is the total loop resistance including the driver resistance of approximately 2 \(\Omega \) and the internal gate resistance \(R_{int} \). Although the static \(R_{int} \) is typically small (\(\sim 1 \Omega \)), the distributed nature of \(R_{int} \) limits the validity of the simple model. Anyhow, in most applications a small external gate resistor in the 5 to 10 \(\Omega \) range should help to avoid unwanted oscillations.

2. Yet there is another effect setting limits to the switching speed. This is caused by the inductances in the power loop (in Figure 6 lumped in \(L_D \)). Fast switching transients typically happen in only a few ns. The
Driving 600 V CoolGaN™ high electron mobility transistors

Dimensioning of the RC interface

associated di/dt values can reach some tens of Amps per ns with an associated high voltage drop across the power-loop inductance. This voltage is subtracted from the drain-to-source voltage for rising current, but added for falling currents. Thus particular care has to be taken that the voltage limitation for the GaN switch is not exceeded. This may require reducing switching speed, i.e. increasing R_{on}, as typically the highest di/dt values are seen at switch-on leading to voltage stress for the diode part in a half-bridge configuration.
5 Application-specific considerations

With the theoretical background given in the previous chapter we are now able to dimension the proposed gate-drive network in a reasonable manner. As requirements and properties may vary widely, examples covering the most important and also the most promising applications for GaN switches shall be given in the following.

5.1 Hard-switched applications (totem-pole PFC)

5.1.1 Totem-pole PFC topology

The most significant advantage of a GaN HEMT is not the small area and capacitance, but the lack of a body diode. This simply means that a GaN transistor can be operated not only as a switch, but also as a diode, i.e. with negative polarity of V_{DS}. This is not valid for MOSFETs due to the slow physical pn diode between source and drain. And it is essentially this feature of GaN that causes the decisive benefits.

![Figure 10](image)

Figure 10 Classic (a) and totem-pole PFC (b)

Figure 10 a shows a classical Power Factor Correction (PFC) stage. The AC input voltage is rectified and boosted to 400 V. As usual, the boost converter consists of switch Sw, inductance L and diode D. The (continuous) current in L is switched between Sw and D at a frequency in the 100 kHz range. During the transients the switch sees both high voltage and high current, resulting in high switching power. Thus in such a “hard-switched” case the transient should be as short as possible.

If the diode could be substituted by a transistor, the so called totem-pole topology of Figure 10 b is made possible to fulfill the same function. The main idea behind this is that, if both transistors Sw_a and Sw_b can take over both switch and diode function, a diode bridge for rectification is not needed any more; it can be substituted by the two diodes D_a and D_b in Figure 10 b. During the positive half-wave of the input voltage, Sw_a is the active switch, while Sw_b takes over the diode functionality. The return path is formed by diode D_b. In the negative half-wave Sw_a and Sw_b interchange their function and the current flows via D_a. As D_a and D_b change their state at a very low rate (with the mains polarity change), they can also easily be substituted by standard MOSFETs operating as synchronous rectifiers. Thus in the totem-pole topology the losses caused by the input rectifier are reduced significantly.
5.1.2 GaN transistor in reverse conduction (diode)

Figure 1a shows a GaN transistor as quite a simple lateral device. Functionally it is symmetrical with respect to source and drain, i.e. it operates in basically the same way for positive and negative voltage between drain and source. However, as the distance between gate and drain is larger than between gate and source, slight differences in electrical parameters between normal and reverse mode can be observed. The reverse behavior of a GaN transistor is in clear contrast to a normal MOSFET with its inherent body diode, and results in an electrical behavior as shown in Figure 11.

![Figure 11](image)

Figure 11 Basic electrical characteristics of GaN transistor in normal (switch) and reverse (diode) operation

Basically a switch is operated in the first quadrant of V_{DS} and I_D only. It is either on or off (low or high impedance). A diode, however, always has to block voltage in one polarity and has to conduct in the other. An ideal diode behavior is thus characterized by the red branch in the first quadrant and the low-impedance green branch in the third. This corresponds to a switched-on transistor (V_{GS} is greater than V_{th}), whereas a real diode follows the solid red curve, i.e. it exhibits a higher voltage drop due to its threshold voltage. This basic advantage of a transistor switch compared with a diode is often utilized in power circuits (synchronous rectification).

However, such a “diode” transistor must never be switched on when the associated active switch is on to avoid high and potentially destructive shoot-through current. As a consequence, a certain time delay between the “switch off” and “diode on” transitions is required. During this time, often called dead-time t_d, the gate of the diode transistor is maintaining its off level. This causes increased voltage drop in reverse operation (V_{DS} is less than 0), as shown by the red curves in Figure 11.

The reason is simple. A transistor always conducts if the gate exceeds the threshold V_{th} with respect to the more negative of the source and drain electrode, respectively. In normal operation this means V_{GS} greater than V_{th}, in reverse operation V_{GD} greater than V_{th}. As V_{GS} greater than V_{th} obviously causes V_{GD} greater than V_{th}, for V_{GD} greater than 0, a transistor in the on-state remains on also in reverse direction. This is reflected in the symmetrical characteristic in Figure 11 (green line). With $V_{GS} = 0$, apparently in normal operation the transistor is off. In the reverse direction, it starts conducting, if V_{GD} exceeds V_{th}, as then $V_{GD} = V_{OS} + V_{SD}$ greater than V_{th} (solid red line). Similarly, if V_{GS} in the off-state is the negative voltage V_{N}, V_{GD} has to exceed $V_{th} - V_{N}$ to start conduction. The characteristic is thus further shifted to the left by an amount of V_{N} (dashed red line).
This means that a GaN transistor exhibits a diode-like behavior in the reverse direction, when it is in the off-state. The associated diode voltage drop \(V_{\text{dio}} \) is determined by the difference of transistor threshold and off-state gate voltage level:

\[
V_{\text{dio}} = V_{\text{th}} - V_{\text{GSoff}}
\]

Thus, if a negative voltage \(V_n \) is applied at the gate to switch a GaN transistor off, it is still able to conduct in the reverse direction, but the voltage drop will increase by \(V_n \). This is not a GaN-specific behavior, as any lateral symmetric transistor would behave similarly.

5.1.3 Particular effects in hard-switched topologies

As explained, hard-switching calls for fast transients. If in Figure 10b switch \(Sw_b \) is switched on, the switching node swings from 400 V to 0 at a very steep slope that might exceed 200 V/ns. Clearly the passive switch \(Sw_b \) then has to be kept off during this transient, otherwise cross-conduction and high losses would result. A falling switching node is equivalent to a fast rising drain node of \(Sw_b \). From Figure 6, a rising drain leads to current into \(C_{GD} \), which has to be sunk by the gate driver. If the voltage drop between gate and source exceeds \(V_{\text{th}} \), the transistor turns on, thereby increasing switching current and losses. This effect is often called “re-turn-on”. It can be minimized by a low driving impedance and, more efficiently, by a low driving voltage level in the off-state.

Obviously, e-mode GaN HEMTs are particularly sensitive to re-turn-on due to their low threshold voltage. And this is why the shift to a negative off voltage, resulting from the proposed gate drive, is highly valuable in hard-switching. It is the initial negative voltage \(V_{\text{Nf}} \), as discussed in section 4.1, that appears at the gate of the passive transistor (diode) and helps to avoid re-turn-on during the switching transient.

A further effect of hard-switching is voltage overshoot. The worst situation happens at the passive transistor (“diode”) during the falling edge of the switched current. It must therefore be ensured that even in the worst case with \(V_{\text{Nf}} = 0 \) at the switch (fastest switching) the voltage ratings are not exceeded. Besides, situations with both transistors in the off-state for extended periods require careful consideration, as a switch-on event with \(V_{\text{Nf}} = 0 \) at the diode leads to a significant re-turn-on. As such situations only happen at low rates, if at all, the resulting high switching loss is of minor importance; however, the increased current may lead to higher voltage overshoot, although strong re-turn-on also has a damping effect on over-voltage. Anyway, the situation can be avoided, if after long off-times for both switches the diode is always the first to be switched on.

5.1.4 Example totem-pole PFC

Now a concrete example for dimensioning the gate-drive network can be given. The totem-pole PFC of Figure 10b shall be switched at 100 kHz with operating current levels going up to 10 A (the maximum current to be handled is 30 A, but only for several tenths of a ms. Dead-times are assumed to be two times 100 ns per switching period of 10 \(\mu \)s. Both switches \(Sw_a \) and \(Sw_b \) consist of the elements shown in Figure 6.

Switching simulations as well as measurements indicate that a \(V_{\text{Nf}} \) of a few Volts is required to minimize re-turn-on. On the other hand, during the dead-time the inductor current is flowing over a diode with negative gate voltage \(V_{\text{Nf}} \) (before “switch on”) and \(V_{\text{Nf}} \) (before “diode on”), respectively, causing additional losses by the increased voltage drop. From these considerations the best strategy is to minimize \(V_{\text{Nf}} \) and maximize \(\Delta V_{\text{Nf}} \).

Simulations have been carried out according to the schematic given in Figure 12. As a reference \(C_{\text{on}} = 2 \) nF and \(V_S = 12 \) V have been chosen to yield a \(V_{\text{Nf}} \) of about -4 V (see Figure 9). From switching simulations, a total gate resistor of 10 \(\Omega \) seems adequate to limit the drain and gate voltage overshoots to safe values (with 6 nH of total power-loop and 10nH of gate-loop inductance). Taking into account driver and intrinsic gate resistance, 5 \(\Omega \) for \(R_{\text{on}} \) and \(R_{\text{off}} \) are the initial choice. An \(R_{\text{on}} \) of 1 k\(\Omega \) leads to a discharge time constant \(\tau \) of 2 \(\mu \)s. This is a reasonable
Applica­tion-s­pe­cific con­si­der­a­tions

value, as at 100 kHz the total switching period is 10 μs; so even for short off-times some discharge occurs (duty­cy­cles are typ­i­cal­ly re­stric­ted to a mini­mum of 0.1).

Figure 12 Simulation circuit for totem-pole PFC stage

The sim­u­lat­ed wave­forms of switch­ing cur­rents and volt­ages are de­picted in Fig­ure 13. Ob­vi­ously before first switch­on (“on1”), C on of switch Sw is com­pletely dis­charged. The di­ode trans­is­tor D is switch­ed from the on­to the off-stat­e, re­sult­ing in a neg­a­tive volt­age V N i_D at its gate. Cur­rent I load (10 A) is still flow­ing through the “di­ode”, caus­ing a rel­a­tive­ly high volt­age drop of about 8 V that can even be seen as a small step in V DS (graph d). Af­ter a dead-time of 100 ns Sw is switch­ed and causes the as­oci­ated switch­ing node trans­ients. Chargin­g of the out­put ca­pac­i­tances by the switch cur­rent peak seen in graph c is main­ly re­spon­si­ble for the switch­ing losses. 1 μs after “on1” Sw is switch­ed off and I load causes the switch­ing node to go up. Af­ter a short off-stat­e of only 0.5 μs the sec­ond switch­on event “on2” takes place. As C on is now still charged, the gate volt­age does not start at zero, but at ap­prox­i­ma­tely -4 V. From the pre­vi­ous con­sid­er­a­tions, we would ex­pect a sig­nifi­cantly slower tran­si­ent due to a re­duced gate­charge cur­rent, as can be seen in Fig­ure 13 b. How­ever, this seems not to be re­flect­ed in the trans­i­ents of Fig­ures 13 c and d.

Even at a sig­nifi­cantly higher time res­olu­tion (Fig­ure 14) the two switch­ing tran­si­ents look rather sim­i­lar in spite of the obvi­ous dif­fer­ences in the re­spec­tive gate volt­age and cur­rent wave­forms. The rea­son is the lim­ited rise time of the driv­ing volt­age that de­fi­nitely can­not be con­sid­ered as a step func­tion. Thus, when the gate volt­age of Sw is at the Miller plateau, the driv­ing volt­age V dr_Sw has not re­ached its final value for the “on1” tran­si­ent (left graph of Fig­ure 14 a. “On2” starts from a neg­a­tive V GS, thus the time re­quired to reach the Miller plateau in­creases. This leads to a higher V dr_Sw in the tran­si­ent phase (right graph of Fig­ure 14 a) thereby partly
compensating for the effect of the pre-charged C_{on}. As a result the switching waveforms of Figure 14 c and d look rather similar, with a slightly slower “on2” transient. We also will see that the impact of the duty cycle on switching losses is less severe than expected.

Figure 13 Simulated waveforms of PFC stage: gate-to-source voltages (a), gate currents (b), switch drain current (c) and drain-to-source voltages (d)
Driving 600 V CoolGaN™ high electron mobility transistors

Application-specific considerations

The waveforms of Figure 13 deserve an even closer look. As can be seen, the gate current stays at a relatively low level of several hundred mA. Due to the very small capacitances this is sufficient to achieve the fast transients of Figure 14 with voltage slew rates close to 200 V/ns. Of course the question arises of whether a higher gate-charging current would make sense. From our perspective it would not, as an increase in switching speed means higher peak current, thus higher di/dt and higher voltage peaks compared to those observed in Figure 14c. And it should be pointed out that the assumed power-loop inductance value of only 6 nH is not easy to achieve. So, even if there seems to be some margin, it cannot be recommended to significantly exceed voltage overshoots of 100 V, even in the worst case. A more ideal driving voltage would in practice result in the need for higher gate resistors, leaving only very limited potential for the reduction of switching losses.

A further interesting detail can be derived from the gate-current waveforms in Figure 13b. Obviously there is a difference in the behavior of the switch and the diode. The gate current for the switch shows a single peak that provides the total gate charge \(Q_{Gtot}\), whereas the diode waveform exhibits two smaller peaks. The reason is evident: diode gate voltage and switching node transient do not coincide. So the diode is switched on leading to the associated \(Q_{GS}\) peak 100 ns before the on-transient, which is responsible for the second peak with charge \(Q_{GD}\). This is also reflected in the \(V_{GS}\) waveform. The gate voltage for the diode shows a lower initial voltage \(V_{N_D}\) with a step after the switching transient. \(V_{N_D}\) can still be calculated by eq. (15), but \(Q_{Gtot}\) has to be replaced by \(Q_{GS}\) to yield the correct value during the dead-time. This is important, as the diode’s reverse voltage drop is thus increased by \(Q_{GD}/(C_{on} + C_{iss})\), in our case by approximately 1.5 V.

Figure 15 also indicates that the relatively high negative \(V_{GS}\) leads to high reverse voltage and diode conduction losses during the dead-times.
Driving 600 V CoolGaN™ high electron mobility transistors

Application-specific considerations

Figure 15 Total switching loss associated with waveforms of Figure 13 for \(I_{\text{load}} = 1 \) and 10 A

Based on similar simulations, in Tables 3 and 4 different parameter combinations together with the resulting switching losses \(P_{\text{sw}} \) are listed. Also included are the simulated dead-time losses \(P_{\text{dio}} \) and the losses caused by the steady-state gate current \(P_{\text{ss}} \). For \(P_{\text{dio}} \) two dead-times \(t_d \) of 100 ns each are assumed per switching period. The losses can be calculated to be:

\[
P_{\text{sw}} = f_{\text{sw}} \cdot E_{\text{tot}}
\]

\[
P_{\text{dio}} = f_{\text{sw}} \cdot I_L \cdot (2 \cdot (V_{\text{th}} - V_{\text{NL,D}}) - \Delta V_N) \cdot t_d
\]

\[
P_{\text{ss}} = I_{\text{ss}} \cdot V_S
\]

Table 3 Drive-circuit parameter combinations used for loss simulations

<table>
<thead>
<tr>
<th>Drive circuit</th>
<th>(R_{\text{on}}/R_{\text{off}}) [(\Omega)]</th>
<th>(V_S) [V]</th>
<th>(C_{\text{on}}) [nF]</th>
<th>(R_{\text{ss}}) [(\Omega)]</th>
<th>(V_{\text{NL,D}}) [V]</th>
<th>(\Delta V_N) (1 (\mu)s) [V]</th>
<th>(I_{\text{ss}}) [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5 / 5</td>
<td>12</td>
<td>2</td>
<td>1000</td>
<td>-5.9</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>5 / 5</td>
<td>12</td>
<td>2</td>
<td>500</td>
<td>-5.6</td>
<td>2.6</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>10 / 10</td>
<td>12</td>
<td>2</td>
<td>1000</td>
<td>-6</td>
<td>1.6</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>5 / 5</td>
<td>12</td>
<td>3.3</td>
<td>1000</td>
<td>-7</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>5 / 5</td>
<td>12</td>
<td>1.5</td>
<td>1000</td>
<td>-5.2</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>5 / 5</td>
<td>15</td>
<td>1</td>
<td>1000</td>
<td>-6</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>
Driving 600 V CoolGaN™ high electron mobility transistors

Application-specific considerations

Table 4 Simulated power losses in Watts of 400 V/100 kHz totem-pole PFC stage for drive circuits in Table 3

<table>
<thead>
<tr>
<th></th>
<th>P_{sw}</th>
<th>P_{dio}</th>
<th>P_{ss}</th>
<th>P_{cond}</th>
<th>$P_{\text{sw1/2}}$</th>
<th>P_{dio}</th>
<th>P_{ss}</th>
<th>P_{cond}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_{\text{Load}} = 1 \text{ A}$</td>
<td></td>
<td></td>
<td></td>
<td>$I_{\text{Load}} = 10 \text{ A}$</td>
</tr>
<tr>
<td>A</td>
<td>2.2</td>
<td>.1</td>
<td>.1</td>
<td>.07</td>
<td>3.0 / 3.3</td>
<td>1.4</td>
<td>.1</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>2.2</td>
<td>.1</td>
<td>.2</td>
<td>.07</td>
<td>3.0 / 3.1</td>
<td>1.3</td>
<td>.2</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>2.2</td>
<td>.1</td>
<td>.1</td>
<td>.07</td>
<td>3.1 / 3.5</td>
<td>1.4</td>
<td>.1</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>2.2</td>
<td>.1</td>
<td>.1</td>
<td>.07</td>
<td>3.1 / 3.6</td>
<td>1.7</td>
<td>.1</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>2.2</td>
<td>.1</td>
<td>.1</td>
<td>.07</td>
<td>3.1 / 3.1</td>
<td>1.35</td>
<td>.1</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>2.2</td>
<td>.1</td>
<td>.18</td>
<td>.07</td>
<td>3.0 / 3.0</td>
<td>1.45</td>
<td>.18</td>
<td>7</td>
</tr>
</tbody>
</table>

For comparison purposes in Table 4 the conduction losses

$$P_{\text{cond}} = I_{\text{Load}}^2 \cdot R_{\text{ds(on)}}$$

have also been included (at room temperature). Obviously at low current the switching losses are dominant and they are independent of the gate-drive circuitry used. At larger I_{Load} the switching losses also increase and a slight dependence on gate-drive circuitry can be observed. In Table 4 therefore P_{sw1} and P_{sw2} denote the respective losses for long and short diode off-times, corresponding to the “on1” and “on2” transitions in the previous graphs. Although in the 10 A range conduction losses dominate, both switching and diode dead-time losses are significant. The loss values clearly confirm the theoretical considerations. Drive circuitry A, B, E and F show similar small losses, whereas C trades slightly higher losses for reduced voltage overshoots. A further increase in V_n as resulting from circuit D is neither required nor recommended.

5.2 Soft-switched applications (LLC)

“Soft-switching” means to avoid simultaneous high current and high voltage in a power switch, i.e. to operate the switch at either zero voltage or zero current. This can be achieved by utilizing resonant transitions to charge the switching node capacitance, as is done in the well-known LLC topology of the DC-DC converter stage following the PFC stage in today’s most common SMPS architecture [7].

As soft-switching yields much slower voltage transients with typical slopes of only a few V/ns, the RC driving network should be slightly changed to optimize performance. In particular there is no need for significant negative off-voltages, and thus V_{n} should be chosen to be as low as possible. Safe operation is a must, and thus a slightly negative V_{n} in the -1 V range is recommended. R_{on} and R_{off} are obviously less critical and can be chosen higher than in hard-switched applications, e.g. 10 to 20 Ω. The total gate charge stays the same, as it depends only on the overall voltage swing. Thus, from Figure 9 we find 12 V/1 nF or 10 V/1.5 nF to be reasonable V_s/C_{on} combinations. Unfortunately, as explained above, the negative gate voltage V_{Nloff} during the diode’s dead-time is increased by approximately $Q_{\text{Gd}}/C_{\text{on}}$ and thus still stays in the -4 V range. Although the dead-time losses per cycle can be slightly reduced, the significance of P_{dio} increases, as LLC circuits are switched at frequencies going up to 300 kHz. Switching losses are determined by the energy stored in the output capacitances and thus correspond to P_{sw} at low current, as given in Table 4.
As already mentioned, soft-switched systems are much less sensitive to re-turn-on in regular operation. Thus, if the reverse diode losses P_{dio} are still considered too high, clamping of the negative V_{GS} could be an option. However, the details of such an approach are beyond the scope of this application note.
6 Measurement results

To verify the theory and simulation results given in the previous chapters, a commutation board with two IGOT60R070D1 GaN switches and two 1EDI20N12AF gate drivers has been designed (Figure 16). Particular compensation techniques are used to minimize the power-loop inductance. Q3D simulations finally yielded a very low value of 6 to 7 nH.

![Figure 16 PCB for switching measurements](image)

Although the accurate measurement of switching transients at the extreme speed of GaN is a critical task and would merit a dedicated application note, our results so far agree with the theory. As an example Figure 17 shows measured switch-on waveforms for a load current of 10 A using driving circuit D of Table 3. Although it is difficult to reproduce the exact waveforms seen in simulation, the main parameters like peak current, voltage overshoot, switching times and switching losses are in agreement. This enables prediction of the performance of real systems with sufficient accuracy.

![Figure 17 Measured switching voltage and current for I_{Load} = 10 A](image)
7 Summary and guidelines

To achieve optimum switching performance with Infineon’s e-mode GaN HEMTs driven by Infineon’s isolated gate-drive IC 1EDI20N12AF, we recommend the following:

- Choose the minimum possible gate resistors R_{on} and R_{off}. The actual values depend on the power-loop design. As a criterion, voltage stress must not exceed specified limits even with a completely discharged C_{on}.

- Choose a combination of supply voltage V_S and coupling capacitance C_{on} that fulfills the requirements for the initial negative switch-off voltage V_{Ni}. As a rule of thumb, $V_{Ni} = -3$ to -4 V for hard-switching and $V_{Ni} = -1$ to -2 V for soft-switching are good choices.

- At a given V_{Ni}, high V_S and low C_{on} is preferable with hard-switching, whereas low V_S and high C_{on} are recommended for soft-switching.

- Driver and switch dynamic properties are well balanced, resulting in robust operation, and relatively insensitive with respect to the driving-circuit parameters.

- Choice of R_{ss} is therefore not critical; a time-constant $\tau = R_{ss} \times (C_{on} + C_{iss})$ in the range of a few μs is recommended.

- In soft-switching applications clamping of the negative V_{gs} can be a worthwhile option.

- If the system allows long off-times for both switches (both C_{on} discharged), it is recommended to start switching with the “diode” to avoid an excessive current peak due to re-turn-on.
8 References

[3] Infineon Technologies, Datasheet IGOT60R070D1, to be published

[5] Infineon Technologies, Prel. Datasheet 1EDI20N12AF Rev. 1.02, April 2014, available online

Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.