Wireless charging solutions
Cost-effective and secure offerings for consumer, industrial and automotive applications

www.infineon.com/wirelesscharging
Powering today and tomorrow
Mastering all power technologies based on silicon, silicon carbide, and gallium nitride

Infineon is the leader in the power semiconductor market, mastering all power technologies and offering the broadest product and technology portfolio of silicon (such as SJ MOSFETs, IGBTs), silicon carbide (such as Schottky diodes, MOSFETs) and gallium nitride-based (e-mode HEMTs) devices, covering bare die, discretes and module solutions.

Interested? Learn more at: www.infineon.com/power
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless charging solutions</td>
<td>4</td>
</tr>
<tr>
<td>Wireless charging product offering</td>
<td>8</td>
</tr>
<tr>
<td>Inductive</td>
<td>8</td>
</tr>
<tr>
<td>Resonant</td>
<td>9</td>
</tr>
<tr>
<td>Automotive</td>
<td>10</td>
</tr>
<tr>
<td>Security</td>
<td>11</td>
</tr>
<tr>
<td>Product highlights</td>
<td>13</td>
</tr>
<tr>
<td>Automotive in-cabin solutions</td>
<td>13</td>
</tr>
<tr>
<td>Consumer solutions</td>
<td>15</td>
</tr>
<tr>
<td>System solutions for wireless charging</td>
<td>17</td>
</tr>
</tbody>
</table>
Wireless charging solutions

Over the last few years, wireless charging has been increasingly gaining traction in the market and is expected to continue to heavily influence our daily lives. Infineon offers a broad portfolio of efficient, high-quality products and solutions to serve the key requirements of the dominant market standards: inductive (Qi (WPC)) and resonant (AirFuel). Whether you charge a smartphone (e.g. at home or in the car), a handful of wearables, a power tool, a laptop or a service robot, Infineon’s components and solutions help you overcome a wide range of common wireless power transfer challenges for consumer, industrial and automotive wireless charging designs.

What is wireless charging?

Wireless charging uses electromagnetic fields to transfer power from a transmitter to a receiver application to charge the battery. This erases the need for physical connectors and cables to transfer power – one of many benefits of this technology.

The wireless charging market is dominated by two standards: inductive (Qi) and resonant (resonant AirFuel). Infineon offers solutions for both standards and is an active member of the leading wireless charging alliances - the Wireless Power Consortium (WPC) and AirFuel Alliance.

<table>
<thead>
<tr>
<th>Available solutions from Infineon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various adapters/chargers</td>
</tr>
<tr>
<td>AC-DC adapters</td>
</tr>
<tr>
<td>Wireless charging pads/sockets</td>
</tr>
<tr>
<td>Transmitters (Tx)</td>
</tr>
<tr>
<td>Wireless charging receivers</td>
</tr>
<tr>
<td>Receivers (Rx)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards for wireless charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi inductive 110-205 kHz</td>
</tr>
<tr>
<td>Resonant AirFuel 6.78 MHz</td>
</tr>
</tbody>
</table>

www.infineon.com/wirelesscharging
Different standards addressing wireless charging requirements

Currently two wireless charging standards stand out on the market: inductive and resonant. Qi (WPC) is dominating the market in the smartphone segment as measured by volume. Their widespread use can be attributed to their cost-efficiency. For the resonant that operates at 6.78 MHz, the advantages include better user-friendliness because it allows the user to freely place the device in the vicinity of the transmitter (typically up to 30 mm of vertical freedom), and it charges multiple devices of different size and power in parallel. Find below some details about the standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Inductive single-coil</th>
<th>Inductive multi-coil</th>
<th>Magnetic resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi inductive</td>
<td>110-205 kHz</td>
<td></td>
<td>Resonant AirFuel</td>
</tr>
<tr>
<td>Resonant AirFuel</td>
<td></td>
<td></td>
<td>6.78 MHz</td>
</tr>
<tr>
<td>Positioning of receiver application</td>
<td>Exact positioning</td>
<td>Positioning more flexible (X and Y direction)</td>
<td>Free positioning (up to >30 mm vertical freedom)</td>
</tr>
<tr>
<td>Number of devices charged</td>
<td>Charges only one device</td>
<td>Charges one device but with better user experience</td>
<td>Charges multiple devices</td>
</tr>
<tr>
<td>Rx-Tx communication</td>
<td>In-band communication</td>
<td></td>
<td>Bluetooth low energy or in-band communication</td>
</tr>
</tbody>
</table>

Why to use wireless charging

Imagine your smartphone's battery is dead. Until now, you first had to find the charging cable, then connect it to your phone and finally plug it into an outlet. The process works, but it can be a nuisance, especially if your cable is playing hide and seek or if you have incompatible connectors. Wireless charging removes the hassle of re-fueling your devices.

www.infineon.com/wirelesscharging
Applications that benefit from wireless charging

- Wearables
- Mobile phone
- Service and household robots
- Tablets
- Power tools
- Multicopter
- Notebooks
- In-car charging
- Public infrastructure
- Internet of Things (IoT)
- Medical
- Smart home

www.infineon.com/wirelesscharging
Choose Infineon to address your wireless charging requirements

Having a reliable partner by your side is the key to maximize the performance and consumer appeal of your wireless charging designs. At Infineon, we help you master every design challenge with our broad selection of semiconductors and reference designs.

Key benefits to choose Infineon

› Offering MOSFETs, drivers ICs, voltage regulators, MCUs or wireless power controllers with software IP
› Addressing both inductive and resonant standards
› Providing powerful and cost-effective solutions for high performance, smart, and secure wireless charging solutions supported by Infineon’s unique wireless power controllers
› Reducing customers’ bill-of-material owing to cost effective packages, leading silicon technology, and new technologies (e.g. GaN e-mode HEMTs)
› Providing solutions for applications beyond smartphones
› Meeting charging requirements by ensuring better user experience for consumers
› Offering innovative and unique reference designs for better transmitter and receiver performance

Infineon’s key enabling products for consumer and automotive solutions

› Low and medium voltage power MOSFETs – OptiMOS™ and StrongIRFET™
› Gate driver ICs – EiceDRIVER™ or DC-DC low voltage gate driver
› 32-bit microcontrollers – XMC™ and AURIX™
› Wireless power controller (including software IP) – XMC™-SC and AURIX™
› P-channel and N-channel small signal power MOSFETs
› High voltage power MOSFETs – CoolMOS™ superjunction MOSFETs
› PWM/flyback controllers and integrated power stage ICs – CoolSET™
› Gallium nitride (GaN) – CoolGaN™ e-mode HEMTs
› Dedicated automotive power products – MOSFETs, DC-DC, LDO, PMIC with ASIL qualification
› Voltage and buck regulators for component and bridge supply
› Authentication – OPTIGA™ Trust UWP

www.infineon.com/wirelesscharging
Inductive wireless charging for consumer applications

Equipping your half- or full-bridge with components from the OptiMOS™ 30 V product family will pay off with superior power transfer performance, especially for the emerging higher power (15 W+) transmitter applications. Single and dual N-channel OptiMOS™ products with excellent $R_{\text{ds(on)}}$ and charge characteristics are available in small footprint packages for your wireless power transmitter design. For multi-coil designs, there are ready to use IRMOSFET™ devices in 2 x 2 mm packages. In addition, Infineon’s XMC™ 32-bit industrial microcontrollers provide the flexibility to charge “just about anything”. Our portfolio supports individual needs with either an ARM® Cortex®-M0 core (XMC1000 family) or a Cortex®-M4 core with a floating point unit (XMC4000 family). We also have wireless power controllers – XMC™-SC, including software IP, for selected applications in our portfolio.

System diagram: Inductive wireless charging

<table>
<thead>
<tr>
<th>Sub-application</th>
<th>Voltage class</th>
<th>Package</th>
<th>Part number</th>
<th>$R_{\text{DS(M)}} \text{ max } @ V_{GS} = 4.5 \text{ V} [\text{mQ}]$</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFETs</td>
<td>20 V</td>
<td>PQFN 2 x 2</td>
<td>IRLHS6242</td>
<td>11.7 (= 2.5 V drive capable)</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td>25 V</td>
<td></td>
<td>IFRHS8242</td>
<td>21</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td>30 V</td>
<td>Super SO8</td>
<td>BS0996NS</td>
<td>11.8</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS0995ND</td>
<td>7</td>
<td>Best performance</td>
</tr>
<tr>
<td></td>
<td>PQFN 3.3 x 3.3</td>
<td></td>
<td>BS20569NS</td>
<td>4.4</td>
<td>Best performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS0994NS</td>
<td>8.6</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS0909NS</td>
<td>15</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td>PQFN 3.3 x 3.3 dual</td>
<td></td>
<td>BS0909ND</td>
<td>25</td>
<td>Best performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS0910ND</td>
<td>13</td>
<td>Best performance</td>
</tr>
<tr>
<td></td>
<td>PQFN 2 x 2</td>
<td></td>
<td>IFRHS8342</td>
<td>25</td>
<td>Right fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IRLHS6342</td>
<td>15.5 (= 2.5 V drive capable)</td>
<td>Best performance</td>
</tr>
<tr>
<td>40 V</td>
<td>PQFN 3.3 x 3.3</td>
<td></td>
<td>BS097N04LS</td>
<td>14.2</td>
<td>Right fit</td>
</tr>
<tr>
<td>Driver IC</td>
<td></td>
<td></td>
<td>PX3519, IRS2301S, WCDS006*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcontroller or wireless power controller</td>
<td>XMC™ MCU and wireless power controller XMC™-SC* (including software IP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage regulators</td>
<td></td>
<td></td>
<td>IR841M, IFX20002, IFX91041EJVS0, IFX90121ELVS0, IFX81481ELV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small signal MOSFETs</td>
<td></td>
<td></td>
<td>Please check online</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
<td></td>
<td>SLS32AIA020UX – OPTIGA™ Trust UWP (USON10 3x3 package)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*coming soon

www.infineon.com/wirelesscharging
Resonant wireless charging for consumer applications

Infineon offers a superior power MOSFET technology to address frequency switching implementations, especially in the 30 - 100 V areas for class D inverter designs and in the 150 - 250 V voltage class for class E inverter designs. We provide the leading products in the industry when it comes to fast switching and have the best figure-of-merit for gate charge times $R_{D\text{son}}$ and for C_{oss}, thus enabling our customer to achieve 6.78 MHz inverter designs using robust silicon MOSFET technology. There are even more targeted products in the pipeline and Infineon is bringing its own GaN technology to market with a significant performance increase over silicon MOSFETs. Infineon offers the “coolest” driver ICs in the industry, already available as low side drivers for class E implementations and very soon as level-shifted half-bridge driver for class D topologies. If your transmitter design includes a pre-regulator (buck or buck/boost) to control the input voltage of your amplifier, we offer our OptiMOS™ solutions in different voltage classes ranging from 12 V to 400 V. Here again, the XMC™ industrial microcontroller and the XMC™-SC wireless power controller, including software IP, are a great fit to charge “just about anything”.

System diagram: Resonant wireless charging – class D, full-bridge

Please note also other topologies can be applied:
Class D half-bridge, Class E differential or Class E single-ended.

Sub-application	Voltage class	Package	Part number	$R_{D\text{son}}$ max @ $V_{GS} = 4.5$ [mΩ]	Q_g typical [nC]	C_{oss} typical [pF]	Topology
MOSFETs	30 V	PQFN 2 x 2 dual	IRLHS6317GPKG	48	2.8	32	Class D
30 V	PQFN 3.3 x 3.3 dual	BSZ0909ND	25	1.8	120	Class D	
30 V	SOT 23	IRLML0303PBF	33	2.75	84	Class D	
40 V	SOT 23	IRLML0404	62	2.8	49	Class D	
40 V	SOT 23	IRLML0606	98	2.6	37	Class D	
60 V	PQFN 2 x 2	IRL80H5120	32	3.5	68	Class D/E	
80 V	PQFN 2 x 2	IRL100H5121	42	2.7	62	Class D/E	
100 V	PQFN 3.3 x 3	BSZ900N15NS3	75**	4.1**	46	Class E	
150 V	PQFN 3.3 x 3	BSZ250N15NS3	42**	7.2**	80	Class E	
150 V	BSZ900N20NS3	78**	7.2**	52	Class E		
150 V	BSZ22DN20NS3	200**	3.5**	24	Class E		
150 V	BSZ12DN20NS3	111**	5.4**	39	Class E		
250 V	BSZ42DN25NS3	375**	3.6**	21	Class E		

Driver ICs
- EiceDRIVER™ 2EDL71*, 1EDN7524, 2EDN7524
- EiceDRIVER™ GaN HEMT driver IC 1ED5668H, 1ED5673F, 1ED5673K

GaN e-mode HEMTs
- CoolGaN™ 600 V e-mode GaN HEMT IGT60R190DLS (HDSOF-8-3)

Microcontroller
- XMC™ MCU and wireless power controller XMC™-SC* (including software IP)

Voltage regulators
- IR3841M, IFX20002, IFX301041EJV50, IFX90121ELV50, IFX81481ELV

Small signal MOSFETs
- Please check online

*coming soon
** $V_{GS} = 8$ V

www.infineon.com/wirelesscharging
Inductive wireless in-car charging (automotive)

The next-generation of in-cabin wireless charging systems must meet strict automotive safety, security, environmental, and regulatory requirements while still enabling industry-leading charging performance and efficiency. Infineon’s AURIX™ microcontrollers, voltage regulators, power MOSFETs, and network ICs will easily support these requirements with a complete charging solution. With 15 W charging that meets existing standards, including fast charge smartphones, the solution readily adapts to future changes with a software update. A new innovative foreign object detection (FOD) system or our unique improved power drive architecture that provides unparalleled EMI performance are just some benefits to address the design challenges in the automotive wireless charging market. Discover our complete offerings for in-cabin charging on a system level on our webpage - something you will not find just anywhere.

System diagram: AURIX™ based wireless charger – 3 coil

Automotive products for wireless charging

<table>
<thead>
<tr>
<th>Product type</th>
<th>Voltage class</th>
<th>Package</th>
<th>Part number</th>
<th>(R_{\text{on(max)}}) max @ (V_{GS} = 4.5) V [mΩ]</th>
<th>(Q_{\text{G}}) typical [nC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter automotive grade MOSFETs</td>
<td>40 V</td>
<td>SuperS08 5 x 6 Dual</td>
<td>IPG20N0454-12A</td>
<td>15.5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S308 3.3 x 3.3</td>
<td>IP242N0455L-4R8</td>
<td>6.7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IP242N0455L-7R4</td>
<td>10.7</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>100 V</td>
<td>TDSON-8</td>
<td>IPG20N0654L-11A</td>
<td>15.8</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SuperS08 5 x 6 Dual</td>
<td>IPG20N1054L-22A</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPG20N1054L-35A</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPG16N1054L-61A</td>
<td>78</td>
<td>61</td>
</tr>
</tbody>
</table>

Automotive products for wireless charging

<table>
<thead>
<tr>
<th>Product type</th>
<th>Voltage class</th>
<th>Package</th>
<th>Part number</th>
<th>(R_{\text{on(max)}}) max @ (V_{GS} = 4.5) V [mΩ]</th>
<th>(R_{\text{on(max)}}) max @ (V_{GS} = 10) V [mΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil selection switch</td>
<td>60 V</td>
<td>TDSON-8</td>
<td>IPG20N0654L-11A</td>
<td>15.8</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>100 V</td>
<td>SuperS08 5 x 6 Dual</td>
<td>IPG20N1054L-22A</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPG20N1054L-35A</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPG16N1054L-61A</td>
<td>78</td>
<td>61</td>
</tr>
</tbody>
</table>

Microcontroller and wireless power controller

- AURIX™ SAK-TC212S-4F1335, SAK-TC212S-8F1335
- Power supply: TLD5190 – buck-boost controller/TLE8366, TLE4120x, TLS5203y/TLD35584 – safety MCU supply + CAN supply
- CAN: TLE7250SJ – high-performance CAN transceiver
- Drivers: AURIS2301S

www.infineon.com/wirelesscharging
Authentication for USB-C and Qi wireless charging

A turnkey security solution

Manufacturers of wireless charging devices notice a threateningly fast increase of poor quality chargers, cables, and accessories congesting the market not compliant with requirements for protecting data and preventing major damage of the host devices. The only way to fight this phenomenon is to utilize standards for achieving a uniform level of safety, security and conformity. Condition will be the exchange of verification information right at the point of devices being connected, before any data or energy is transferred.

Certified authentication standards
With both USB Type-C and the WPC Qi authentication standard, the USB Implementers Forum (USB-IF) and the Wireless Power Consortium (WPC) are enabling certified authentication standards which will be adopted by the leading industry players in the consumer and the industrial field.

OPTIGA™ Trust UWP - turnkey device security solution
In response to the above described development, Infineon adds a new member to its OPTIGA™ Trust family – the OPTIGA™ Trust UWP. Based on the USB-C and the WPC Qi standard, it protects devices from being charged with the incorrect load, which could result in damage.

Key features
› Global turnkey solution for USB-C authentication and wireless charging to Qi (WPC) open standard
› Common criteria certified, EAL6+ (high) hardware
› Authentication based on ECDSA NIST-P256
› Cryptographic supporting: ECC256, SHA-256
› X509v3 certificate format support USB-C
› Certificate and key format supporting Qi standard
› PKI
› I2C serial interface
› Up to 10 kB user memory
› USON10-2 package (3x3 mm)
› Extended temperature range option
› Full system integration support including fully integrated evaluation kit (plus host software)

Key benefits
› Safeguarding Qi security for consumers and devices globally
› Built-in IoT protection (CC/EAL6+)
› Full turnkey solution HW / host / certification / timing implementation WPC Qi-certified
Example: Qi transmitter for charging smartphones including OPTIGA™ Trust UWP

VIN 9 V/12 V

IFX20002MBV33 (LDO) XMC6521SCQ040X (WP MCU) WCDSC006 (Driver) BSZ097N04 (FET 2×)

L

5 V

1EDN7512B (Driver) BSZ097N04 (FET)

BSS223PW (Supply switch) BSS138W (Small signal)

C

WPC Qi Authentication
OPTIGA™ Trust UWP

www.infineon.com/optiga-trust-uwp
Infineon’s AURIX™ wireless power controller, based on the TriCore™, provides a flexible platform for high performance, smart, and secure wireless charging applications.

The AURIX™ wireless power controller helps the next-generation in-cabin wireless charging systems meet strict automotive safety, security, environmental and regulatory requirements, while still enabling industry-leading charging performance and efficiency. This controller works seamlessly with Infineon’s power and interface devices to provide a complete charging solution for smartphones and other connected devices.

Key features

- Features SAK-TC212S-8F133SC
- TriCore™ with 133 MHz
- TriCore™ DSP functionality
- 0.5 MB flash w/ECC protection
- 64 KB EEPROM at 125 k cycles
- Up to 56 KB RAM w/ECC protection
- 16x DMA channels
- 24x 12-bit SAR ADC converter
- Powerful generic timer module (GTM)
- 4x SENT sensor interfaces
- State-of-the-art connectivity: 2x LIN, 4x QSPI, 3x CAN including data rate enhanced CAN FD
- Single voltage supply 3.3 V
- TQFP-80 package
- On-demand:
 - 100/144 pin package
 - TC22xSC, TC23xSC

Transmitter features

- Supports 15 W power output
- Multiple industry standard and custom charging profiles using the same hardware architecture
- Single and multi-coil architectures
- Full-bridge support
- Fixed frequency transmitter types
- Buck/boost topology for support of full automotive power supply range

Key benefits

- Supports 15 W charging and all existing standards, including 7.5 W and fast charge smartphones
- Easily supports future standards with a software update
- Single MCU supports wireless charging, system application, CAN and external NFC interface
- Infineon power drive stage which improves EMI performance 10 – 15 dB over existing solutions
- Foreign object detection (FOD) with improved accuracy quality-factor monitoring
- FOD capability can be extended beyond existing standards to improve detection
- Supports custom coils, and more than three coils
- Supports charging two devices using a single controller
- Full power charging with a 6 – 19 V input supply
- Built in security functionality that meets latest automotive requirements
<table>
<thead>
<tr>
<th>Type</th>
<th>eFlash [KB]</th>
<th>Data flash [KB]</th>
<th>Frequency [MHz]</th>
<th>SRAM [KB]</th>
<th>Package</th>
<th>Temperature range [°C]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAK-TC212S-8F133SC</td>
<td>512</td>
<td>64</td>
<td>133</td>
<td>56</td>
<td>TQFP-80</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC213S-8F133SC</td>
<td>512</td>
<td>64</td>
<td>133</td>
<td>56</td>
<td>TQFP-100</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC222S-16F133SC</td>
<td>1000</td>
<td>96</td>
<td>133</td>
<td>96</td>
<td>TQFP-80</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC223S-16F133SC</td>
<td>1000</td>
<td>96</td>
<td>133</td>
<td>96</td>
<td>TQFP-100</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC224S-16F133SC</td>
<td>1000</td>
<td>96</td>
<td>133</td>
<td>96</td>
<td>TQFP-100</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC233S-32F200SC</td>
<td>2000</td>
<td>128</td>
<td>200</td>
<td>192</td>
<td>TQFP-100</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC234S-32F200SC</td>
<td>2000</td>
<td>128</td>
<td>200</td>
<td>192</td>
<td>TQFP-144</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
<tr>
<td>SAK-TC237S-32F200SC</td>
<td>2000</td>
<td>128</td>
<td>200</td>
<td>192</td>
<td>LFBGA-292</td>
<td>-40 ... +125</td>
<td>Including wireless charging IP</td>
</tr>
</tbody>
</table>

- On request
- EEPROM emulation (up to 125 k w/e cycles)

www.infineon.com/wirelesscharging
Product highlights for consumer solutions

Wireless power controllers – XMC™-SC

Infineon’s XMC™-SC wireless power controller, based on the ARM® Cortex®-M0 core, provides a powerful and cost-effective platform for high performance, smart and secure wireless charging applications.

The XMC™-SC wireless power controller helps the next-generation wireless charging systems meet strict safety, environmental, and regulatory requirements, while still enabling industry-leading charging performance and efficiency. This controller works seamlessly with Infineon’s power devices in a scalable architecture to provide a complete charging solution for everything from a fast charge smartphone, to a 20 W robot, to a 60 W drone and beyond.

Key features

› Supports inductive and resonant charging methods
› Power levels up to 80 W
› Multiple industry standard and custom charging profiles using the same hardware architecture
› Single- and multi-coil transmitters
› Half- and full-bridge support
› Variable and fixed frequency transmitter types
› Buck and boost topologies
› Integrated flash for parameter storage
› Voltage supply 1.8–5.5 V
› Space saving VQFN-40 package

Key benefits

› Supports 15 W charging and existing standards, including fast charge smartphones
› Provides full power without exotic thermal management
› Achieves charging rates equivalent to wired charging
› Supports custom charging profiles and industry standards on the same hardware
› Foreign object detection (FOD) with improved accuracy quality-factor monitoring
› FOD capability can be extended beyond existing standards to improve detection
› Supports custom coils, and more than three coils

www.infineon.com/wirelesscharging
BSZ0909ND
Half-bridge in PQFN 3.3 x 3.3 package
Order now

IRL80/100 IRMOSFET™
PQFN 2 x 2 for half-bridge and full-bridge
Order now

BSZ0910ND
Half-bridge in PQFN 3.3 x 3.3 package
Order now

WCDSC006
Fast half-bridge driver for high-and low-side MOSFETs
Coming soon

EiceDRIVER™ 1EDN
Rugged, cool and fast 1-channel low-side 4/8 A gate driver ICs
Order now

EiceDRIVER™ 2EDL71
Fast switching logic level half-bridge driver
Coming soon

BSZ0994NS
OptiMOS™ in PQFN 3.3 x 3.3 package
Order now

BSC0996NS
OptiMOS™ in SuperSO8 package
Order now

BSZ097N04LS G
OptiMOS™ in PQFN 3.3 x 3.3 package
Order now

IGT60R190D1S
CoolGaN™ 600 V e-mode HEMT in HDSOF-8-3
Order now

Wireless power controllers
Available in VQFN-24 and VQFN-40 packages
Coming soon

SLS32A1A020Ux
OPTIGA™ Trust UWP USON10 3x3 package
Coming soon

TLD5190
Automotive buck-boost controller
Order now

TLS20380LDV
Automotive post LDO
Order now

TLE8366EV
Automotive DC-DC buck converter
Order now

AURIX™ TC2xx
Wireless power controller
Coming soon

TLF35584
Automotive ASIL D system supply IC
Order now

TLE7250SJ
CAN transceiver
Order now

IPG20N10S4L-22A
100 V Automotive MOSFET for coil selection
Order now

IPG20N04S4L-11A
40 V automotive MOSFET for H-bridge
Order now

www.infineon.com/wirelesscharging
System solutions for wireless charging

Master your design challenges with Infineon. With our broad range of designs customers have the possibility to make wireless charging available for different kinds of applications. For more information on the availability of our boards please visit www.infineon.com/wirelesscharging or get in contact with us via www.infineon.com/support.

Find the right solutions for your wireless charging designs in four steps

Infineon’s selection tool for wireless charging designs that allows you to find the right solutions for your designs in just four steps. Select the application, power range, standard and the topology you want to apply and get an overview of Infineon’s most recommended offerings for your design.

www.infineon.com/wirelesscharging
A world leader in semiconductor solutions

Our vision
We are the link between the real and the digital world.

Our values
We commit
We partner
We innovate
We perform

Our mission
We make life easier, safer and greener.

Part of your life. Part of tomorrow.
Service hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

› Germany 0800 951 951 951 (German/English)
› China, mainland 4001 200 951 (Mandarin/English)
› India 000 800 4402 951 (English)
› USA 1-866 951 9519 (English/German)
› Other countries 00* 800 951 951 951 (English/German)
› Direct access +49 89 234-0 (interconnection fee, German/English)

* Please note: Some countries may require you to dial a code other than “00” to access this international number.
Please visit www.infineon.com/service for your country!

Mobile product catalog
Mobile app for iOS and Android.

Please note!
THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUSTOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFORMATION GIVEN HEREIN AT ANY TIME.

Additional information
For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings
Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.