Digital power conversion basics: from analog to digital control

XMC™ microcontrollers
May 2016
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Why digital control in power conversion?</td>
</tr>
<tr>
<td>2</td>
<td>What to expect when moving from analog to digital control</td>
</tr>
<tr>
<td>3</td>
<td>Basics of digital control</td>
</tr>
<tr>
<td>4</td>
<td>XMC™ power conversion peripherals</td>
</tr>
<tr>
<td>5</td>
<td>Development steps vs. XMC™ support</td>
</tr>
<tr>
<td>6</td>
<td>Development tools and software</td>
</tr>
<tr>
<td>7</td>
<td>General information</td>
</tr>
</tbody>
</table>
Agenda

1. Why digital control in power conversion?
2. What to expect when moving from analog to digital control
3. Basics of digital control
4. XMC™ power conversion peripherals
5. Development steps vs. XMC™ support
6. Development tools and software
7. General information
Digital control is a natural evolution

Evolution

Would you get stock in the past?

(Source: Freepik)
Benefits of digital control

<table>
<thead>
<tr>
<th>Adaptability</th>
<th>Advance control</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Allow full performance by tuning SW to specific design</td>
<td>› Adaptive control</td>
</tr>
<tr>
<td>› Programmable operation limits</td>
<td>› Multimode operation: CCM, DCM</td>
</tr>
<tr>
<td>› Scalable to different designs</td>
<td>› Auto calibration</td>
</tr>
<tr>
<td>› Programmable fault handling</td>
<td>› Non lineal control</td>
</tr>
<tr>
<td></td>
<td>› System linearization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Implement and protect your own IP from read access</td>
<td>› Housekeeping: diagnostics, metering & reporting</td>
</tr>
<tr>
<td>› Embedded HW protections in case of SW fault</td>
<td>› Remote SW update</td>
</tr>
<tr>
<td></td>
<td>› Remote controllable, i.e. diming</td>
</tr>
</tbody>
</table>
What to expect when moving from analog to digital control?

Don’t panic! XMC™ ecosystem will provide you with what you need!

I heard I can do anything!?

The major problem that digital control has is: freedom!

Together with freedom comes: responsibility!

(Source: Pixabay)
What to expect when moving from analog to digital control?

XMC™

XMC™ + SW example + demo board

Extra steps
› Adapt SW parameters for new design

Empty µC (without SW)

Extra steps
› Design control algorithms
› Resources assignment: pins, PWM, ADC...
› Code algorithms
› Debug
Agenda

1. Why digital control in power conversion?
2. What to expect when moving from analog to digital control
3. Basics of digital control
4. XMC™ power conversion peripherals
5. Development steps vs. XMC™ support
6. Development tools and software
7. General information
Simple PI regulator: Analog vs. digital

Analog

Feedback pin
Reference pin

PWM pin

Digital

ADC

Calculate error

Reference

PI regulator

PWM unit

feedback pin

HW
SW
HW

Copyright © Infineon Technologies AG 2016. All rights reserved.
Digital PI regulator in C code

Digitalized feedback → Calculate error → PI regulator → Digital PI_output

error = reference - feedback;
PI_storage = (error * PI_ki) + PI_storage_1;
PI_storage_1 = PI_storage;
PI_output = (error * PI_kp) + PI_storage;

Where are the PI parameters?
The impact of the execution time

- Execution time add a delay to the control loop
- Due to execution time we may not be able to “regulate” the system every switching cycle
- The faster the CPU the faster we can close the loop
- Executing the control loop faster than switching frequency may not help
Fix point vs. floating point

<table>
<thead>
<tr>
<th>Fix point</th>
<th>Floating point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheaper HW</td>
<td>Do not need variables scaling</td>
</tr>
<tr>
<td>Faster execution (in general)</td>
<td>Low overflow risk</td>
</tr>
<tr>
<td>Danger of operations overflow</td>
<td>Easy coding and easy to understand</td>
</tr>
<tr>
<td>May required scaling factors</td>
<td>Higher code reusability</td>
</tr>
<tr>
<td></td>
<td>More expensive HW (or slow execution)</td>
</tr>
<tr>
<td></td>
<td>Type conversion to access HW registers</td>
</tr>
</tbody>
</table>
XMC™ examples SW architecture

Control loop

APIs

Hardware access layer (HAL)

XMC™ peripherals

HW

Target: Ensure code reusability and reliability by isolating control loops from HW

Options
- Low level drivers
- DAVE™ APPs (based on LLDs)
- Custom
- Combination of previous
Agenda

1. Why digital control in power conversion?
2. What to expect when moving from analog to digital control
3. Basics of digital control
4. XMC™ power conversion peripherals
5. Development steps vs. XMC™ support
6. Development tools and software
7. General information
How key peripherals help? CPU usage

- Peripherals are state machines which can run independently and interact with the CPU or with other peripherals.

While(1)
{
 signal_high= 100;
 while (signal_high--);
 set_pin_low();
 signal_low= 200;
 while (signal_low--);
 set_pin_high();
}

- Precise
 - CPU is free

- Block CPU
 - It is unprecise

Key peripherals are a must to enable high performance control.
Key peripherals

Peripherals for power conversion applications

- CCU8/4
- HRPWM
- VADC
- ACMP
- ERU
- CSG

Highlights

Analog front end together with full configurability allows most advanced power supply control.

With the support of ARM® Cortex® cores and high resolution PWM (150 ps), accurate and fast control loops execution are possible for improved figure of merits in power supply design.

Key feature

- High resolution PWM (150 ps)
- Smart analog comparators
- Fast and flexible ADC and timers

Customer benefits

- Regulate voltages/current with higher accuracy
- Analog comparators with smart features such as slope compensation
- Permit complex PWM patterns and sophisticated measure sequences

Copyright © Infineon Technologies AG 2016. All rights reserved.
Key peripheral example 1: High Resolution PWM

Higher accuracy
Better control
stability

1.8 V +/- 65 mV

With HRPWM
1.8 V +/- 35 mV

No HRPWM

V_{out}

Stepwidth 12.5 ns

PWM

Stepwidth 150ps
Key peripheral example 2: Smart analog comparators

- XMC4000 comparators include **filtering, blanking and clamping** capabilities as well as a **DAC** for automatic reference or slope generation.
- XMC1000 comparators can configure **hysteresis** and output **filtering**.
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Why digital control in power conversion?</td>
</tr>
<tr>
<td>2</td>
<td>What to expect when moving from analog to digital control</td>
</tr>
<tr>
<td>3</td>
<td>Basics of digital control</td>
</tr>
<tr>
<td>4</td>
<td>XMC™ power conversion peripherals</td>
</tr>
<tr>
<td>5</td>
<td>Development steps vs. XMC™ support</td>
</tr>
<tr>
<td>6</td>
<td>Development tools and software</td>
</tr>
<tr>
<td>7</td>
<td>General information</td>
</tr>
</tbody>
</table>
Development flow vs. Infineon support

- System specification
- Converter topology
- Control concept
- HW / SW function split
- HW
 - Parts selection
 - Schematic design
 - Board design
- SW
 - SW architecture
 - resource assignment
 - Coding

- Test / debugging

- Demo boards
- Code example
- Application notes
- DAVE™
- XMC™ pinout
- APPs / LLDs
- uC-Probe

Implementation

specs

concept
Shorten your development time

Which entry point do your target?

Want to reuse SW from a running system?

Want to code your own control loop?

Want to configure MCU peripherals?

System concept

Control loop

APIs

Hardware access layer (HAL)

XMC™ peripherals

HW
Agenda

1. Why digital control in power conversion?
2. What to expect when moving from analog to digital control
3. Basics of digital control
4. XMC™ power conversion peripherals
5. Development steps vs. XMC™ support
6. Development tools and software
7. General information
Development tools and software
DAVE™ – software development made easy

From evaluation to production

Third parties
Hand-in-hand with third party tools

Idea
- XMC™ Lib
 - Low-level driver library/ APIs for peripherals
- DAVE™ SDK
 - Modify, enhance, and develop DAVE™ Apps

Product
- DAVE™ Apps
 - Graphical-configurable application-oriented software components
- Examples
 - XMC™ Lib and DAVE™ Apps composed to create more complex applications
- Professional free-of-charge IDE

XMC™ 32-bit industrial microcontroller portfolio
Development tool and software

› DAVE™ – Free development platform for code generation
 - Eclipse IDE
 - Compiler
 - Debugger
 - Application library and examples
 - Software can be used with 3rd party tools

› For download and support:

DAVE™ website
μC/Probe™: Read/write your data on the fly without code modification!

Debug

Built your own GUI

Parametrize your system

Digital scope*

PFC example GUI:

* Digital scope functionality requires adding of debug code
XMC™ Flasher

› Easy code download to your XMC™
Agenda

1. Why digital control in power conversion?
2. What to expect when moving from analog to digital control
3. Basics of digital control
4. XMC™ power conversion peripherals
5. Development steps vs. XMC™ support
6. Development tools and software
7. General information
Support material:

<table>
<thead>
<tr>
<th>Collaterals and Brochures</th>
<th>Technical Material</th>
<th>Videos</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Product Briefs</td>
<td>› Application Notes</td>
<td>› Technical Videos</td>
<td>› Forums</td>
</tr>
<tr>
<td>› Selection Guides</td>
<td>› Technical Articles</td>
<td>› Product Information Videos</td>
<td>› Product Support</td>
</tr>
<tr>
<td>› Application Brochures</td>
<td>› Simulation Models</td>
<td>›</td>
<td></td>
</tr>
<tr>
<td>› Presentations</td>
<td>› Datasheets, MCDS Files</td>
<td>›</td>
<td></td>
</tr>
<tr>
<td>› Press Releases, Ads</td>
<td>› PCB Design Data</td>
<td>›</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>›</td>
<td></td>
</tr>
</tbody>
</table>

- www.infineon.com/XMC
- www.infineon.com/XMC
- [Kits and Boards](http://www.infineon.com/XMC)
- [DAVE™](http://www.infineon.com/XMC)
- [Software and Tool Ecosystem](http://www.infineon.com/XMC)
- [Infineon Media Center](http://www.infineon.com/XMC)
- [XMC Mediathek](http://www.infineon.com/XMC)
- [Infineon Forums](http://www.infineon.com/XMC)
- [Technical Assistance Center (TAC)](http://www.infineon.com/XMC)
Glossary abbreviations

› VADC Versatile Analog Digital Converter
› CCU Capture Compare Unit
› ACMP Analog Comparator
› PWM Pulse Width Modulation
› HRPWM High Resolution Pulse Width Modulation
› DAVE™ Free development IDE for XMC
› CSG Comparator & Slow Generator
› ERU Event Request Unit
› PFC Power Factor Correction
Part of your life. Part of tomorrow.
Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

The images were designed by Freepik and Pixabay, see footer.