Washing machine motor control solution with XMC™, IGBT, CoolSET™

January 2017

Learning objectives

- To demonstrate sensorless FOC for washing machine PMSM motor control
- Yey software functions, a step-by-step implementation, and linking up with µC/Probe™ XMC™
- To use of µC/Probe™ XMC™ to visualise data and fine-tune FOC
- After the learning of this PPT, users will be able to fine-tune XMC1302 FOC example SW for own washing machine motor control

Agenda (1/2)

- 1 Overview
- 2 Key features
- 3 Specification
- 4 System block diagram
- 5 Hardware overview
- 6 Software overview
- 7 Highlight MCU features
- 8 Get started

Agenda (2/2)

Resource listing

Washing machine motor control - Overview

- The purpose of the training slides is to elaborate a low-cost and high-performance washing machine motor control solution, using
 - XMC[™] 750 watt motor control application kit
 - XMC1300 drive card
 - DAVE[™] 4 example project PMSM_FOC_SL_XMC13
- The HOT examples cover the key features and controls of the washing machine motor control application

Washing machine motor control - the solution focuses on mainly 2 areas

Infineon focus areas for washing machine motor control

Focus of this value proposition

Infineon can provide all the critical components for washing machine motor control

Motor control

Functionality

FOC controller (3-phase PWM generation, motor phase current sensing, bus voltage sensing, over-current & over-voltage protection)

IFX components

XMC1302: ARM® Cortex®-M0 32-bit processor @ 32 MHz, up to 200 kB flash,16 kB SRAM,MATH coprocessor, 12-bit ADC with 2 sample & hold stages, motor control PWM timer (CCU8), general purpose timer (CCU4), serial communication (USIC)

Power management

Functionality

Power inverter

IKD10N60R: discrete IGBT with anti-parallel diode, 600

IFX components

- → 6EDL04I06NT: EiceDRIVER™ gate driver IC
- Auxiliary power supply
- → 3F/2QR CoolSET™ flyback controller family e.g.: ICE3RBR47651G
- > **IFX1763XEJV33**: wide input range low noise LDO

Why Infineon? Washing machine motor control solution

Benefits	Addressed customer needs
Small code size and fast execution time	Allows ample CPU time for more tasks Small code size < 16 kB, and super-fast code execution < 20 μ s (for optimized code)
Robust start-up	Direct-sensorless-FOC startup is robust, smooth and energy efficient at various load conditions of washing machine
Less dependencies more robust	Only need one motor parameter to estimate rotor angle and speed for sensorless FOC
Ultra-low speed sensorless control	Robust / quieter operation with sensorless FOC drive even at ultra- low speed (e.g.: 0.8% of max speed)
BOM savings	€ 0.49-0.9 reduction of system BOM using XMC [™] on-chip ADC gain. Complete sensorless motor control eliminating Hall sensors / tachometer
ARM® Cortex®-M0 with MATH coprocessor	Replace costly MCUs (e.g. ARM® Cortex®-M3)
Embedded security solutions	Protect customer solution from being copied by customer's competitors
Product portfolio	Infineon a "one-stop-shop" for motor control applications with complete power semiconductor portfolio
Knowledge of vendor	Dedicate motor control expert team support with multiple connection of expertise for local support

Washing machine motor control - Key features

Target application

Washing machine motor control

Key features

- Sensorless FOC control even at ultra-low speed
- Robust direct-sensorless-FOC startup
- Smooth bi-directional control at low-speed
- > Flux Weakening (FW) at high speed for spin dry
- XMC[™] on-chip ADC gain to reduce system BOM cost

Washing machine motor control - Specification

Specifications

- AC input voltage: 230 V_{AC}
- Motor mechanical speed
 - Minimum 100 rpm
 - Maximum speed 16,000 rpm at Flux Weakening (FW) for spin dry
 - Motor speed at washing: 600 rpm
- Drum speed: 10 rpm to 1,600 rpm
- › Bi-directional control at low-speed (e.g.: 100 rpm)
- No failure at least 500 times for motor startup bi-directionally at various load conditions

Washing machine motor control - System block diagram

11

Washing machine motor control - Hardware overview

Kit information

No.	Kit name	Kit description	Order number
1	KIT_XMC1300_DC_ V1	XMC1300 drive card	KIT_XMC1300_DC_V1
2	KIT_XMC750WATT_ MC_AK_V1	XMC [™] 750 watt motor control application kit	KIT_XMC750WATT_MC _AK_V1

Key Infineon components utilized on kit:

No.	Infineon components	Order number	Quantity per kit
1	XMC [™] microcontroller	XMC1302-T038X0200	1
2	3F/2QR CoolSET™ flyback controller family	e.g.: ICE3RBR4765JG	1
3	EiceDRIVER™ gate driver IC	6EDL04I06NT	1
4	Discrete IGBT with anti-parallel diode, 600 V	IKD10N60R	6
5	LDO, wide input range, low noise	IFX1763XEJV33	1

Washing machine motor control - 5 V and 15 V flyback converter schematics

Infineon offers both Quasi Resonant (QR) CoolSET™ and Fixed Frequency CoolSET™ in various packages, below design is an example

Schematic: washing machine motor control - 5 V and 15 V flyback converter

Washing machine motor control - Microcontroller schematics

Washing machine motor control -High-voltage gate driver schematics

Washing machine motor control - 3-phase power inverter schematics

Washing machine motor control - Software overview

Washing machine motor control - Highlight MCU features

MATH coprocessor

- 38x faster sine, cosine and arctangent calculations
- High-resolution Park/Inverse Park Transforms at 24-bit in less than 1 μ s
- 7x faster division compared to other ARM® Cortex®-M0 devices

CCU8 PWM

- Generate PWM patterns for all kind of motors
- Interact with ADC for ADC triggering at sensorless control of motors
- Operate always in a safe state even in an error condition
- Dead time control to minimum hardware effort
- 16-bit resolution for high precision space vector PWM generation

ADC

- On-chip ADC gain (x1, x3, x6, or x12) to eliminate external Op-Amp
- Simultaneously sample of multiple analog channels
- Fast ADC reduces torque ripple due to minimized blind angle in sensorless FOC
- Used to sense motor three phase current as feedback to the system

Washing machine motor control - Get started - HW connections

Connect washing machine PMSM motor U, V and W phases to Infineon XMC[™] 750 watt motor control application kit

Washing machine PMSM motor

- Power board 110V -230 V / 750 W
- To motor phases U, V and W

XMC1300 drive card

Op-Amp gain changed to x6 (R205, R206, R207, R212, R214, R216 reworked to 2 k Ω)

Washing machine motor control -Get started - DAVE™ 4

- Download the latest DAVE™ 4 installer package from DAVE™ (Version 4) - Development Platform for XMC™ Microcontrollers
- Installation requirements
 - PC with Windows 7, Windows 8.1, Windows 10, Windows Vista -32bit & 64bit
 - 2. RAM 4 GB or more
 - Remember to install SEGGER J-Link when installing DAVE™ 4 (if not done so) Dave™ - professional development platform

DAVE™ Free Eclipse based integrated development environment (IDE) including GNU C-compiler, debugger, comprehensive code repository, hardware resource management, and code generation plug-in. Download A complete download package is provided, including IDE, XMC[™] Lib, DAVE[™] APPs, EXAMPLES, and DAVE[™] SDK. DAVE™ Release Note

DAVE™ software download DAVE™ and complementary tools supporting the entire development process from evaluation-to-production (E2P). Experience DAVE™ IDE, XMC™ Lib (Low Level Driver), DAVE™ APPs and DAVE™ SDK (Software Development Kit for DAVE™ APPs) and examples and reuse in one of the major ARM® compiler/IDEs such as Altium, Atollic, ARM/KEIL, IAR Systems, Rowley. The current versions are: DAVE™ v4.2.6 and DAVE™ SDK v4.2.6. Please choose in below registration form which installer package you would like to download, you can choose more than 1 package The following installer packages are available for downlo after registration: DAVE™ including the device support package and the DAVE™ including the device support package and the

for XMC™ microcontrollers

Washing machine motor control -Get started - µC/Probe™ XMC™

- Download the latest μC/Probe™ XMC™ installer package from https://infineoncommunity.com/uC-Probe-XMC-software-download_ID712
- Installation requirements
 - 1. PC with Windows Vista, Windows 7, Windows 8, Windows 10 32bit & 64bit
 - 2. RAM 3 GB or more

Washing machine motor control -Get started - import SW to DAVE™ 4 (1/2)

- Open DAVE™ 4
- Click on File > Import to import sample code
- Select Infineon > DAVE project and click "Next"

Washing machine motor control -Get started - import SW to DAVE™ 4 (2/2)

- Next click on Select Archive File > Browse
- Select the folder containing the sample code and click "OK"
- Click on "Finish" to import the code into DAVE™ 4

Washing machine motor control - Get started - build SW in DAVE™ 4

Click "Rebuild Active Project"

"text" in red box indicates the code size, e.g.: about 13 kB

```
■ Console 

Properties Problems 

Problems 

Properties Problems 

Prob
                                                                                                                                                                                                                                                                                                                                                                                   CDT Build Console [BaseCode_XMC1302_SensorlessFOC_DAVE4_WM]
13:06:49 **** Build of configuration Debug for project BaseCode XMC1302 SensorlessFOC DAVE4 WM ****
"\"C:\\DAVEv4\\DAVE-4.2.6\\eclipse\\ARM-GCC-49\\bin\\make\"" --output-sync -j4 all
  'Invoking: ARM-GCC Print Size'
  "C:\DAVEv4\DAVE-4.2.6\eclipse\ARM-GCC-49/bin/arm-none-eabi-size" --format=berkeley "BaseCode XMC1302 SensorlessFOC DAVE4 WM.elf
         text
                                                                             bss
                                                                                                             dec
                                                                                                                                            hex filename
     13016
                                                                        1824 15120
                                                                                                                                       3b10 BaseCode XMC1302 SensorlessFOC DAVE4 WM.elf
  'Finished building: BaseCode XMC1302 SensorlessFOC DAVE4 WM.siz'
13:06:49 Build Finished (took 539ms)
```

Washing machine motor control -Get started - download SW in DAVE™ 4

Click "Debug Configuration" to download the code

Click "Resume" to start the motor control application SW

Washing machine motor control - Get started - SW configuration (1/3)

- The FOC example SW enables the user to change certain parameters in order to fine tune motors
- To access the code within DAVE™ 4:
 - Under "C/C++ Projects" section, you will find your project (with Active - Debug on it)
 - Select "Project Title" > PMSM_FOC >
 Configuration >
 pmsm_foc_user_parameter.h
 - Double click to open the file
- Note: Files with "user" in it indicates that there are parameters that can be changed as per hardware and user requirements

Washing machine motor control - Get started - SW configuration (2/3)

- #1: The motor type can be changed according to the motor being used
- #2: The control scheme can also be modified according to user requirements
- #3: The speed of the motor and its ramping can be modified as per the user's requirements

Washing machine motor control - Get started - SW configuration (3/3)


```
庙 pmsm_foc_user_parameter.h 🔀
212 #define USER ROTOR PREPOSITION TIME MS
                                   (100U)
                                              /* Rotor startup pre alignment time in miliseconds */
213 #define USER REFERENCE SPEED RPM
                                   (500U)
214 #define USER SPEED THRESHOLD FW RPM PER S
                                   (7200U)
                                            /* Threshold speed to use Flux Weakening */
                                  ------ MET Fine-tuning ------*/
215 /*
216 #define USER MET THRESHOLD HIGH
217 #define USER MET THRESHOLD LOW
                                   (320)
218 #define USER_MET_LPF
      221 #define PWM_PERIOD_TS_US
                                   (1.0f/(USER CCU8 PWM FREQ HZ)*1000000)
                                   (1.0f/USER INVERSE SVM LAMDA)
222 #define SVM LAMDA
223 #define SVM TZ PZV
                                   (uint32 t)((CCU8 PERIOD REG * SVM LAMDA) + 0.5f)
224 #define uTZ LAMDA TS US
                                   (SVM LAMDA * PWM PERIOD TS US)
(CCU8 PERIOD_REG / MAX_VREF_AMPLITUDE)
226 #define KS_SCALE_SVM
228 #define VAREF V
229 #define G OPAMP
                                   (USER_R_FEEDBACK_KOHM / USER_RIN_KOHM)
230 #define I MAX A
                                   ((VAREF V/ (USER R SHUNT OHM *G OPAMP)) / 2.0)
231 #define VADC DCLINK
                                   (uint32_t)(((USER_VDC_LINK_V * USER_VBEMF_RATIO)/VAREF_V) * (1<<12))</pre>
                                   ((uint16_t)((VADC_DCLINK * 19U)>>4U))
232 #define VDC_MAX_LIMIT
                                                                      /* Vdc ideal + 18.7%, DC link voltage Vdc maximum limit */
234 #define N I UVW A
                                   I MAX A
235 #define N_VREF_SVM_V
                                   VREF MAX V
237 #define N I ALPHABETA A
                                  I MAX A
238 #define N VREF ALPHABETA V
                                  VREF MAX V
240 #define N_I_DQ_A
                                   I MAX A
                                   VREF MAX V
241 #define N V DQ V
243 #define BOOTSTRAP BRAKE TIME
                                  ((USER BOOTSTRAP PRECHARGE TIME MS * 1000) / PWM PERIOD TS US)
244 #define PRE_ALIGNMENT_TIME
                                   (uint32 t)(((USER ROTOR PREPOSITION TIME MS * 1000) / PWM PERIOD TS US))
246 #define MAX_VREF_AMPLITUDE
                                   (32768 - 0.5f)
247 #define VREF MAX V
                                   (USER VDC LINK V / USER SQRT 3 CONSTANT)
249 #define STARTUP_CURRENT_A
                                  (uint32_t)((USER_STARTUP_VF_OFFSET_V / USER_MOTOR_R_PER_PHASE_OHM))
250 #define STARTUP SPEED
                                  (uint32_t)(((USER_STARTUP_SPEED_RPM * USER_MOTOR_POLE_PAIR)/(USER_CCU8_PWM_FREQ_HZ*60))*65536 * (1<< USER_RES_INC))
251 #define STARTUP SPEED THRESHOLD
                                  (uint32 t)(((USER STARTUP SPEED THRESHOLD RPM * USER MOTOR POLE PAIR)/(USER CCU8 PWM FREQ HZ*60))*65536 * (1<< USER RES INC))
252 #define STARTUP VF OFFSET
                                  (uint32 t)((USER STARTUP VF OFFSET V * 32768) / (N VREF SVM V))
253 #define STARTUP VF SLEWRATE
                                  (uint32_t)(((USER_STARTUP_VF_SLEWRATE_V_PER_HZ * 32768) / (N_VREF_SVM_V) * (USER_MOTOR_POLE_PAIR))/(USER_CCU8_PWM_FREQ_HZ*60)*65536)
256 #define SPEED LOW LIMIT RPM
                                  (uint32 t)(((USER SPEED LOW LIMIT RPM * USER MOTOR POLE PAIR) /(USER CCU8 PWM FREQ HZ*60))*65536 * (1<< USER RES INC))
257 #define REFERENCE_SPEED_USER
                                  (uint32_t)(((USER_REFERENCE_SPEED_RPM * USER_MOTOR_POLE_PAIR) /(USER_CCU8_PWM_FREQ_HZ*60))*65536 * (1<< USER_RES_INC))
```

Washing machine motor control - Get started - pmsm_foc_user_parameters.h

- XMC[™] can use fixed points numbers / integers to represent floating-point quantities of the physical value (e.g.: in SI unit)
- User can defined different level of configurations (beginner level, intermediate level, advanced level)

Washing machine motor control - Get started - pmsm_foc_user_mcuhwconfig.h

- MCU hardware resource management (VADC, CCU8)
- NVIC interrupts service routine resource management
- Debugging IO (DAC functionality)

Washing machine motor control -Get started - starting µC/Probe™ XMC™

- Double-click **"*.wspx**" file in the DAVE™ 4 IDE to start µC/Probe™
- Click "**Run**" to control the speed of the motor using µC/Probe™

Washing machine motor control -Get started - start motor using µC/Probe™

The motor can be started by keying in a number in rpm (e.g.: 600) in the "Set Speed" box

Washing machine motor control -Get started - wash cycle set using µC/Probe™

- Motor run time / motor stop time in each wash cycle can be modified on-the-fly at µC/Probe™
- Default timing configured at pmsm_foc_user_parameter.h

```
#define USER_MOTOR_RUN_TIME_S (5U) /* Motor run time in second*/
#define USER_MOTOR_STOP_TIME_S (3U) /* Stop time in second*/
#define USER_ENABLE_WASHING_CYCLE (1U) /* 1U: Enable washing (wash/stop/wash), 0U: disable*/
```

 Total wash cycles undergone successfully is counted by XMC™, and displayed by µC/Probe™

Washing machine motor control -Get started - fine-tune Kp/Ki using µC/Probe™

- If the motor does not spin in FOC close loop, ↑ the SCALEKPKI of PLL Control and check the motor behavior. If motor start to move slowly, ↑ the SCALEKPKI further, else, ↓ the SCALEKPKI
- Apply similar tactic for the tuning of Speed Control

PI gains:
$$K_p = \frac{P \ setting}{2^{SCALEKPKI}}$$
, $K_i = \frac{I \ setting}{2^{SCALEKPKI}}$

P setting I setting SCALEKPKI ↑ this value by 1 will ↓ 65535 256 Speed Control gain of Speed controller by half 22934 256 **Torque Control** 22934 256 Flux Control ↑ this value by 1 will 6962 **PLL Control** gain of PLL estimator controller by half

Washing machine motor control - Get started - pmsm_foc_pi.h

In DAVE™ 4, user needs to input /save the final optimal PI parameters to pmsm_foc_pi.h

Washing machine motor control - Key features

- Key feature sensorless FOC control even at ultra-low speed
- 2. Key feature robust direct-sensorless-FOC startup
- 3. Key feature smooth bi-directional control at low-speed
- 4. Key feature Flux Weakening (FW) at high speed for spin dry
- Key feature XMC[™] on-chip ADC gain to reduce system BOM cost

1. Key feature - sensorless FOC control even at ultra-low speed

Washing machine - sensorless FOC - Block diagram

Sensorless FOC control at ultra-low speed - Waveforms

Ultra-low speed: 100 rpm

200 rpm

CH4 (Pink) - phase current Iu, from current probe (2 A/div)

Motor parameter:

L (per phase): 14 mH R (per phase): 2.5 Ω Pole-pair No.: 4

2. Key feature - robust direct-sensorless-FOC startup

Startup with load @ quilt + 37 kg water - Waveforms

Competitor solution

XMC[™] sensorless FOC

CH4 (Pink) - phase current Iu, from current probe (2 A/div)

Motor parameter:

L (per phase): 14 mH R (per phase): 2.5 Ω Pole-pair No.: 4

Washing machine - sensorless FOC - Robustness of direct-sensorless-FOC startup

 No failure in more than 500 wash cycles for motor startup bidirectionally at various load conditions

During the test, one wash cycle is: ... → motor start clockwise → washing → motor stop → motor start anticlockwise → washing → motor stop → ...

3. Key feature - smooth bi-directional control

Wash cycle @ 600 rpm, quilt + 38 kg water - Waveforms

Wash cycles

Direct-FOC-startup each time

CH4 (Pink) - phase current Iu, from current probe (2 A/div)

Motor parameter:

L (per phase): 14 mH R (per phase): 2.5 Ω Pole-pair No.: 4

Washing @ 600 rpm, quilt + 38 kg water -Waveforms

600 rpm (quilt + 38 kg water)

600 rpm (quilt + 50 kg water)

CH4 (Pink) - phase current Iu, from current probe (2 A/div)

Motor parameter:

L (per phase): 14 mH R (per phase): 2.5Ω Pole-pair No.: 4

4. Key feature - Flux Weakening (FW)

Safety precautions

- ATTENTION: Washing machine motor phase-to-phase BEMF is kilovolts (kV) at high speed (e.g.: 1.6 kV_{p-p} @ 12,000 rpm motor mechanical speed)
- Any loss of control at Flux Weakening (FW) range can result in equipment / board / component damage
- Only personnel familiar with the advanced motor control / FW should implement and test FW

Washing machine - Flux Weakening (FW) -Waveforms

Competitor solution 11,280 rpm

XMC[™] FOC 11,000 rpm

CH4 (Pink) - phase current Iu, from current probe (2 A/div)

Motor parameter:

L (per phase): 14 mH R (per phase): 2.5 Ω Pole-pair No.: 4

5. Key feature - XMC™ on-chip ADC gain

Washing machine motor control - Current sensing schematics

Washing machine motor control -XMC[™] on-chip ADC gain for current sensing

- R₁ limits current flow in / out of XMC1302 ADC pin. R₂ offset ADC input
- e.g.: for an application G=6, R_{dc} =0.05 Ω , R_1 =1 $k\Omega$, R_2 =11 $k\Omega$, C_1 =47 pF

$$V_{ADC} \approx \frac{GR_1}{R_1 + R_2} V_{dd} + \frac{R_2}{R_1 + R_2} G \cdot R_{dc} \cdot I_{dc}$$

Resource listing

- Washing machine motor control
 - Documentation
 - XMC[™] 750 watt motor control application kit
 - DAVE[™] project

Support material:

Collaterals and Brochures

- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

- www.infineon.com/XMC

Technical Material

- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVE™
- Software and Tool Ecosystem

Videos

- Technical Videos
- Product InformationVideos
- Infineon Media Center
- XMC Mediathek

Contact

- Forums
- Product Support

- Infineon Forums
- <u>Technical Assistance Center (TAC)</u>

Glossary abbreviations (1/2)

AC Alternating Current

ADC Analog-to-Digital Converter

BEMF Back ElectroMotive Force

BOM Bill Of Material

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DAVE™ Digital Application Virtual Engineer

DC Direct Current

FOC Field-Oriented Control

GUI Graphical User Interface

HMI Human-Machine Interface

> HW Hardware

Glossary abbreviations (2/2)

IDE Integrated Development Environment

IGBT Insulated-Gate Bipolar Transistor

MCU MicroController Unit

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Motor

PWM Pulse Width Modulation

RAM Random-Access Memory

SW Software

SWD Serial Wire Debug

UART Universal Asynchronous Receiver / Transmitter

USIC Universal Serial Interface Channel

→ XMC[™] Cross-Market Microcontrollers

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

