Quasi-resonant control with XMC1000 for LED ballast and SMPS

XMC™ Microcontrollers

June 2016
Agenda

1. Overview
2. Introduction
3. Quasi-resonant control
4. Demonstration with Infineon Designer
5. XMC1000 implementation
6. Demo boards & virtual designs
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>Quasi-resonant control</td>
</tr>
<tr>
<td>4</td>
<td>Demonstration with Infineon Designer</td>
</tr>
<tr>
<td>5</td>
<td>XMC1000 implementation</td>
</tr>
<tr>
<td>6</td>
<td>Demo boards & virtual designs</td>
</tr>
</tbody>
</table>
This training slides begin by introducing the losses in various power converter, especially the switching losses and how quasi-resonant control can be used to minimize switching losses.

The second part of this training slides showcase the implementations of quasi-resonant control with XMC1000 using its peripherals and how they can be implemented on LED ballast and other SMPS.
Agenda

1. Overview
2. Introduction
3. Quasi-resonant control
4. Demonstration with Infineon Designer
5. XMC1000 implementation
6. Demo boards & virtual designs
Introduction
Power topologies

› Boost
- $V_{out} > V_{in}$
- Power factor correction
- Constant ON time control

› Flyback
- Buck/boost
- Galvanic isolation
- Power factor correction + constant current control

› Buck
- $V_{out} < V_{in}$
- Peak current control
- Useful for LED driver stage
Introduction
Conduction mode

› Continuous conduction mode (CCM)
› Critical conduction mode (CrCM)
› Discontinuous conduction mode (DCM)

Copyright © Infineon Technologies AG 2016. All rights reserved.
Introduction
Continuous conduction mode

- MOSFET turned on while there is still current in the inductor
- Maximum switching loss. “Hard switching”
Introduction
Discontinuous conduction mode

› MOSFET turned on sometime after inductor current reaches zero
› Zero current isn’t detected
› V_{DS} oscillation is ignored
› This is the simple way
Introduction
Critical conduction mode

› Aka boundary conduction mode
› MOSFET turned on immediately as zero current is detected
 – Reduced turn-on loss
Introduction
LED dimming control

› Analog dimming
 - Need good DAC for accuracy
 - Classical, straightforward method

› Modulation dimming
 - Simple DAC is sufficient.
 - Need modulator. In XMC™: BCCU

› Both dimming controls work on any conduction mode
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>Quasi-resonant control</td>
</tr>
<tr>
<td>4</td>
<td>Demonstration with Infineon Designer</td>
</tr>
<tr>
<td>5</td>
<td>XMC1000 implementation</td>
</tr>
<tr>
<td>6</td>
<td>Demo boards & virtual designs</td>
</tr>
</tbody>
</table>
Quasi-resonant control
Losses & efficiency

› Conduction losses
 - MOSFET: $I_D^2 R_{DS,\text{on}}$
 - Diode: $I_F V_F$
 - Shunt: $I_D^2 R$
 - Inductor/transformer: $I^2 R_{\text{series}}$

› Optimization strategy:
 - Use larger components
 - Wider PCB trace

› Switching losses
 - MOSFET: C_{DS}, C_{GD}, C_{GS}, Q_{GD}, Q_{DS}
 - Diode: I_{RRM}, t_{RRM}

› Optimization strategy:
 - Use faster components
 - **Optimize the switching scheme**

Copyright © Infineon Technologies AG 2016. All rights reserved.
Quasi-resonant control
Losses & efficiency

In CCM steady state, I_D starts from previous current value.

- **T0-T1**: Gate driver charges CGS. VGS slope depends on gate driver current.
- **T1-T2**: VGS passes gate threshold. Conducting channel available. Current starts flowing.
- **T2-T3**: Miller plateau. Depend on CGD and VDS. **Longer plateau results in higher switching loss**.
- **T3 onwards**: MOSFET is conducting, VDS depends on RDS(ON) and I_D.

Switching Loss (area under the curve between I_D and VDS)
Quasi-resonant control
One time switching

- MOSFET turned on once
- V_L oscillates once the inductor current reaches zero
 - Frequency depends on main inductance and MOSFET output capacitance
 - High voltage oscillation that is easy to detect (ZCD)
 - Inductive coupling
 - Capacitive coupling
- ZCD circuits don’t measure the actual inductor current!
Quasi-resonant control

Valley switching

› Wait for V_{DS} to fall when output current is fully discharged.

› Start the next switching cycle at the “valley”

› Known as “valley switching” or “soft switching”

› V_{DS} is ringing due to second order system behavior (LC)

› The lower the valley, the lower the switching loss

No Switching Loss
(area under the curve between I_D and V_{DS})
Quasi-resonant control
Hard switching vs soft switching

› Hard switching

› Soft switching

Switching Loss
(area under the curve between \(I_D \) and \(V_{DS} \))

No Switching Loss
(area under the curve between \(I_D \) and \(V_{DS} \))
Quasi-resonant control
Valley skipping

QR 1st valley

- MOSFET turned on at the first lowest point of V_{DS} oscillation
 - MOSFET turn-on loss minimized to lowest possible level

QR 2nd valley

- MOSFET turned on at the second lowest point of V_{DS} oscillation
 - MOSFET turn-on loss minimized
 - Switching frequency reduced

Copyright © Infineon Technologies AG 2016. All rights reserved.
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>Quasi-resonant control</td>
</tr>
<tr>
<td>4</td>
<td>Demonstration with Infineon Designer</td>
</tr>
<tr>
<td>5</td>
<td>XMC1000 implementation</td>
</tr>
<tr>
<td>6</td>
<td>Demo boards & virtual designs</td>
</tr>
</tbody>
</table>
Infineon Designer
Digital prototyping engine

› **Features**
 - Circuit design
 - Circuit behavior (simulation)
 - Sharing
 - No hassle

› Infineon Designer is available to everyone:
 www.infineon.com/ifxdesigner *(login with MyInfineon account)*
Infineon Designer
Boost converter

- BSZ340N08NS3 G (OptiMOS™)
- MURS120T3G
 - Ultrafast recovery diode
Efficiency: NA Frequency: 56 kHz

power_optimos_24V_boost_1_onetime.tsc
Infineon Designer
Continuous conduction mode

Efficiency: 92.7%
Frequency: 456 kHz
Large spikes

power_optimos_24V_boost_2_CCM.tsc
Infineon Designer
Critical conduction mode

Efficiency: 97.6% Frequency: 132 kHz Medium-sized spikes
Infineon Designer
Quasi-resonant conduction mode – 1st valley

Efficiency: 97.9% Frequency: 120 kHz Small spikes

Diagram showing waveforms of V_G, I_L, V_shunt, and V_DS.

power_optimos_24V_boost_4_QR_1v.tsc
Efficiency: 97.9%
Frequency: 102 kHz
Small spikes
Infineon Designer
Discontinuous conduction mode

Efficiency: 97.5% Frequency: 108 kHz Medium-sized spikes

power_optimos_24V_boost_5_DCM.tsc
Different conduction modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Effic.</th>
<th>Freq.</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>One time</td>
<td>NA</td>
<td>56 kHz</td>
<td><code>power_optimos_24V_boost_1_onetime.tsc</code></td>
</tr>
<tr>
<td>CCM</td>
<td>92.7%</td>
<td>456 kHz</td>
<td><code>power_optimos_24V_boost_2_CCM.tsc</code></td>
</tr>
<tr>
<td>CrCM</td>
<td>97.6%</td>
<td>132 kHz</td>
<td><code>power_optimos_24V_boost_3_CrCM.tsc</code></td>
</tr>
<tr>
<td>QR-1</td>
<td>97.9%</td>
<td>120 kHz</td>
<td><code>power_optimos_24V_boost_4_QR_1v.tsc</code></td>
</tr>
<tr>
<td>QR-2</td>
<td>97.9%</td>
<td>102 kHz</td>
<td><code>power_optimos_24V_boost_4_QR_2v.tsc</code></td>
</tr>
<tr>
<td>DCM</td>
<td>97.5%</td>
<td>108 kHz</td>
<td><code>power_optimos_24V_boost_5_DCM.tsc</code></td>
</tr>
<tr>
<td>1</td>
<td>Overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Quasi-resonant control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Demonstration with Infineon Designer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>XMC1000 implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Demo boards & virtual designs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XMC1000 implementation
Quasi-resonant control

› XMC1000 peripherals + interconnects for quasi-resonant control
 – CCU8/CCU4, ACMP, ERU, BCCU
 – Fully hardware dependent: minimum CPU load
 – Full functionality including valley skipping, leading edge blanking

› Constant ON-time (CON)
 – ON-time is proportional to the amount of power transfer

› Peak current control (PCC)
 – Twofold functionality: power transfer and protection
 – Dynamic OCP
XMC1000 implementation

QR CON

V\text{DS}

I_L

CC82 Timer

ST2 (\sim O UT 2)

CC83 Timer

ST3

counting valleys

valley delay

PERIOD CMP1 CMP2

\Delta X = 28.2000us

1/\Delta X = 36.168kHz

\Delta Y(4) = 440.0mV

\Delta X = 21.4000us

1/\Delta X = 46.728kHz

\Delta Y(4) = 440.0mV

Coupling DC

Coupling

Source

Gain

Mode

Normal

Mode

Normal

Source

Gain

Copyright © Infineon Technologies AG 2016. All rights reserved.
XMC1000 implementation
QR PCC
XMC1000 implementation
QR PCC
Agenda

1. Overview
2. Introduction
3. Quasi-resonant control
4. Demonstration with Infineon Designer
5. XMC1000 implementation
6. Demo boards & virtual designs
Demo board
Two-stage LED ballast with XMC1300
Demo board
Two-stage LED ballast with XMC1300

Specification:
- Rated power = 40 W
- Input voltage = 90 V_{AC} to 277 V_{AC}
- Output voltage = 60 V_{DC} max
- Output current = 1 A max

Two-stage LED ballast:
- AC/DC boost PFC for power factor correction
- DC/DC flyback for LED current and dimming control

Quasi-resonant constant ON-time on PFC boost

Quasi-resonant peak current control on flyback

Tuneable white LED light

Communication:
- DALI, 10 V dimming, LEDset
Virtual designs
QR buck LED driver with XMC1400
Support material:

<table>
<thead>
<tr>
<th>Collaterals and Brochures</th>
<th>Technical Material</th>
<th>Videos</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Briefs</td>
<td>Application Notes</td>
<td>Technical Videos</td>
<td>Forums</td>
</tr>
<tr>
<td>Selection Guides</td>
<td>Technical Articles</td>
<td></td>
<td>Product Support</td>
</tr>
<tr>
<td>Application Brochures</td>
<td>Simulation Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentations</td>
<td>Datasheets, MCDS Files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press Releases, Ads</td>
<td>PCB Design Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.infineon.com/XMC</td>
<td></td>
<td>Infineon Forums</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Assistance Center (TAC)</td>
</tr>
</tbody>
</table>
Glossary abbreviations

› CON Constant ON-time
› DAVE™ Free development IDE for XMC™
› OCP Over Current Protection
› PCC Peak Current Control
› PF Power Factor
› PFC Power Factor Correction
› PWM Pulse Width Modulation
› QR Quasi Resonant
› SMPS Switched-Mode Power Supplies
› THD Total Harmonics Distortion
› ZCD Zero Crossing Detection
Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.
Part of your life. Part of tomorrow.