
AURIX™ TC3xx Microcontroller Training

V1.0.1

SPI_DMA_1

for KIT_AURIX_TC397_TFT
SPI data communication via DMA

Please read the Important Notice and Warnings at the end of this document

Scope of work

QSPI is used to conduct SPI Master Slave communication using the

DMA module.

This example implements an SPI full duplex communication.

QSPI2 is configured as an SPI master and QSPI3 is configured as an SPI

slave. Both master and slave exchange eight bytes of data.

Four DMA channels are used to enable data transfer between RAM and

QSPI FIFOs without CPU intervention:

› DMA channel 1 is configured as SPI master Tx

› DMA channel 2 is configured as SPI master Rx

› DMA channel 3 is configured as SPI slave Tx

› DMA channel 4 is configured as SPI slave Rx

An LED is used to signal the successful data communication.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Introduction

› The Queued Synchronous Peripheral Interface (QSPI) enables any

synchronous serial communication with external devices based on the

standardized SPI-bus signals: clock, data-in, data-out and slave select.

› The QSPI works in full duplex mode either as Master or Slave with up to

50 Mbit/s.

› The DMA module channels can be configured to transfer data from/to

QSPI FIFOs to/from internal RAM Memory without any CPU intervention.

› This example is based on the Infineon Low Level Drivers to demonstrate

SPI Master Slave Communication with minimum CPU intervention.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Hardware setup

This code example has been

developed for the board

KIT_A2G_TC397_5V_TFT.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Hardware Setup

KIT_AURIX_TC297_TFT_BC-

Step

X103 : QSPI3 (Slave) WIRE X102 : QSPI2 (Master)

P02.7 : 20 : SCLKI P15.3 : 32 : SCLKO

P02.4 : 17 : SLSI_A P15.2 : 31 : SLSO_0

P02.5 : 18 : MRST P15.4 : 33 : MRST_A

P02.6 : 19 : MTSR_A P15.5 : 34 : MTSR

KIT_A2G_TC397_5V_TFT

› Use the stencils as

illustrated.

› Connect following pins

as described and

illustrated using wires.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

Configuring the SPI communication

The configuration of the SPI communication is done through the function initQSPI() in two

different steps:

› QSPI Slave initialization

› QSPI Master initialization

QSPI Slave initialization

› The initialization of the QSPI slave module is done by defining an instance of the

IfxQspi_SpiSlave_Config structure

› The structure is filled with default values by the function

IfxQspi_SpiSlave_initModuleConfig()

› Afterwards, the following parameters are modified to enable the DMA usage, set its

channels, interrupt priorities and IO port pins:

– DMA configuration: dma.useDma, dma.txDmaChannelId, dma.rxDmaChannelId

– Interrupts configuration: base.txPriority, base.rxPriority, base.erPriority,

base.isrProvider

– Pins configuration: pins

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

QSPI Slave initialization (Cont.)

› The function IfxQspi_SpiSlave_initModule() is used to initialize the QSPI slave module

› Finally, the buffers used by the QSPI slave are initialized

The functions needed to initialize the QSPI Slave can be found in the iLLD header

IfxQspi_SpiSlave.h.

QSPI Master initialization

› The initialization of the QSPI master module is done by defining an instance of the

IfxQspi_SpiMaster_Config structure

› The structure is filled with default values by the function

IfxQspi_SpiMaster_initModuleConfig()

› Afterwards, the following parameters are modified to enable the DMA usage, set its

channels, interrupt priorities and IO port pins:

– DMA configuration: dma.useDma, dma.txDmaChannelId, dma.rxDmaChannelId

– Interrupts configuration: base.txPriority, base.rxPriority, base.erPriority,

base.isrProvider

– Pins configuration: pins

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

QSPI Master initialization (Cont.)

› The function IfxQspi_SpiMaster_initModule() is used to initialize the QSPI

master module

› A QSPI module controls 16 communication channels, which are individually

programmable. In this example, the function initQSPI2MasterChannel() initializes

the channel zero using an instance of the structure

IfxQspi_SpiMaster_ChannelConfig. Afterwards, the slave select channel

number is set through the parameter sls.output and the baud rate is modified via

the parameter base.baudrate

› The function IfxQspi_SpiMaster_initChannel() is used to initialize the QSPI

master channel

› Finally, the buffers used by the QSPI master are initialized

The functions needed to initialize the QSPI Master can be found in the iLLD header

IfxQspi_SpiMaster.h.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

Interrupt Service Routines (ISR):

› The following ISRs are implemented to ensure a proper SPI communication in
DMA mode:
– SPI Master error interrupt QSPI2ErrorISR() ISR calls the function:
– IfxQspi_SpiMaster_isrError()

– SPI Slave error interrupt QSPI3ErrorISR() ISR calls the function:
– IfxQspi_SpiSlave_isrError()

– SPI Master transmit interrupt DMAChn1ISR() ISR calls the function:
– IfxQspi_SpiMaster_isrDmaTransmit()

– SPI Master receive interrupt DMAChn2ISR() ISR calls the function:
– IfxQspi_SpiMaster_isrDmaReceive()

– SPI Slave transmit interrupt DMAChn3ISR() ISR calls the function:
– IfxQspi_SpiSlave_isrDmaTransmit()

– SPI Slave receive interrupt DMAChn4ISR() ISR calls the function:
– IfxQspi_SpiSlave_isrDmaReceive()

› The functions listed above can be found in the iLLD headers IfxQspi_SpiMaster.h
and IfxQspi_SpiSlave.h

Copyright © Infineon Technologies AG 2020. All rights reserved.

Implementation

SPI Master - Slave Communication:

The SPI Master Slave communication is established through the following steps:

› Enable SPI Slave for data communication using the function:

IfxQspi_SpiSlave_exchange()

› Enable and Start SPI Master data communication using the function:

IfxQspi_SpiMaster_exchange()

› Poll for SPI slave data reception using the function:

IfxQspi_SpiSlave_getStatus()

› The received and transmitted data are compared byte by byte and the number of

errors are counted

Copyright © Infineon Technologies AG 2020. All rights reserved.

Run and Test

After code compilation and flashing the device, perform the following steps:

› Run the project and check if the LED

D110 is on.
– Data transmitted without errors

› Additionally, using the debugger, the

behavior can be checked:
– Add g_qspiDma to Watch window

– Check if

g_qspiDma.qspiBuffer.spiSlaveRxBuffer and

g_qspiDma.qspiBuffer.spiMasterRxBuffer

are the same as

g_qspiDma.qspiBuffer.spiMasterTxBuffer and,

respectively,

g_qspiDma.qspiBuffer.spiSlaveTxBuffer

LED

D110

Copyright © Infineon Technologies AG 2020. All rights reserved.

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2020. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

Revision history

Revision Description of change

V1.0.1 Update of version to be in line with the code example’s version

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2020. All rights reserved.

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2020-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2020 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
SPI_DMA_1_KIT_TC397_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

