PMU
Program Memory Unit

Highlights
PMU enables reading out of several Program Flash (PFlash), Data Flash (DFlash) banks or BootROM.

PMU enables writing to the flashes through command sequencer and controls the flash accesses for safety and security through protections.

Key Features
HS3P cell functionality
Command sequence interface
Very high ECC correction capabilities

Customer Benefits
Fast Programming. For 1 MB burst, it needs ~1 s
All operations except memory mapped reads are performed with command sequences
ASIL-D optimized ECC for detection of >99% of faults in the white-noise model for PFlash
PMU

HS3P cell functionality

› HS3P (Hot Source 3 Poly) Cell Features
 › Program = Source Side Injection
 – Fast (10 µs) with low current (10 µA)
 › Erase = FN (Foulur Northeim)
 – Well Erase (same as UCP cell)
 › 2T (two transistor) cell
 – No Over-Erase-Algorithm (OEA) needed

› Motivation
 – Improve Erase and Programming times
 – Reduce complexity (no OEA, EEPROM handling)
 – Improve competitiveness in particular for small module densities

› Customer benefits
 – Fast Erase times (1 MB: HS3P (65 nm): <2 s, UCP (90 nm) ~ 20 s)
 – Fast Programming (1 MB: HS3P (65 nm): ~1 s*, UCP (90 nm) ~ 20 s) *burst mode
All Flash operations except memory mapped reads are performed with command sequences. Every write access to the data flash memory range is interpreted as command cycle belonging to a command sequence.

Write accesses to the PFlash memory range are refused with bus error.

Command sequences consist of 1 to 9 command cycles. The command interpreter checks that a command cycle is correct in the current state of command interpretation, else a sequence error is reported.

When the command sequence is accepted, the last command cycle finishes read mode and the Flash bank transitions into command mode.

List of commands for Flash control

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset to Read</td>
<td>Erase Logical Sector Range</td>
</tr>
<tr>
<td>Enter Page Mode</td>
<td>Verify Erased Logical Sector Range</td>
</tr>
<tr>
<td>Load Page</td>
<td>Resume Prog/Erase</td>
</tr>
<tr>
<td>Write Page</td>
<td>Disable Protection</td>
</tr>
<tr>
<td>Write Page Once</td>
<td>Resume Protection</td>
</tr>
<tr>
<td>Write Burst</td>
<td>Clear Status</td>
</tr>
</tbody>
</table>
PMU
Very high ECC correction capabilities

The data in Flash is stored with ECC codes. These are automatically generated when the data is programmed. When data is read, these codes are evaluated.

Program Flash
- DEC-TED (Double Error Correction, Triple Error Detection) capabilities. Each block of 256 data bits is accompanied with a set of ECC bits
- PFlash Safety ECC Details
 - Correction of 1-bit and 2-bit errors
 - Detection of 3-bit errors
 - Detection of >99% of all error vectors in the white noise error model
 - Detection of >99% of all-0 and all-1 cases
 - Detection of addressing errors

Data Flash
- TEC-QED (Triple Error Correction, Quad Error Detection) capabilities. Each block of 64 data bits is accompanied with a set of ECC bits
- DFlash Safety ECC Details
 - Correction of 1-bit, 2-bit and 3-bit errors
 - Detection of 4-bit errors
 - All-0 (data and ECC) is a correct code vector
 - All-1 (data and ECC) is a valid code vector
 - Address errors are not detected
PMU
System integration

- All PFlash banks and DFlash/BROM can be read in parallel via dedicated SRI interface(s)
- Access control for safety and security for all assigned memories
- All PFlash banks have Prefetch Buffers implemented for improved read throughput to achieve higher system performance
Application Example
Simplified sequence for programming

Overview

› “Clear Status” to clear flags
› “Enter Page Mode”
› Check for Page Mode status bit or error
› Repeat “Load Page” until the page is filled
› “Write Page”
› Check for Program status bit or error
› Wait for Busy bit
› Check for Program Verification bit
› Fail if Operational error is set

Advantages

› Easy sequence of commands to perform all the programming steps
› Each command has a notification bit to check when the operation is completed
› Several kind of error bits to check during the sequence

Copyright © Infineon Technologies AG 2019. All rights reserved.
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.