
AURIX™ TC2xx Microcontroller Training

V1.0.0

OneEye_UART_Shell_1

for KIT_AURIX_TC297_TFT
Shell over UART using OneEye

Please read the Important Notice and Warnings at the end of this document

Scope of work

Demonstrate how to implement the OneEye shell over the UART (USB)

interface. A Shell is used to parse a command line and call the

corresponding command execution.

After configuring the OneEye UART interface, a OneEye shell is used to

interpret and manage commands like "info" or "help".

Introduction

› OneEye is a GUI that enables the creation of interactive Graphical User Interface. Graphical

elements can be drag from a toolbox and drop onto the GUI. The behavior of the created

GUI can be customized. Different communication interfaces like UART, Ethernet, CAN, DAS

can be used to interact with the embedded system

› SyncProtocol / ProtocolBB is a synchronous protocol that enables data streaming between

the target microcontroller and OneEye. It enables to open multiple communication channels,

provide packet acknowledge and packet checksum. Data are transported within a message

with a message ID and a message payload. See the OneEye help for more information.

› Note: It is recommended to go through some of the basic tutorials listed in the help

embedded in OneEye (Menu: Help -> OneEye help). This enables a quicker ramp-up in the

OneEye concept and ensures a nice journey with OneEye

Hardware setup

This code example has been

developed for the board

KIT_AURIX_TC297_TFT_BC-Step.

The board should be connected to the

PC through the USB port 1

1

Configuration overview

In this configuration a shell running on the microcontroller is connected to the COM port.

In OneEye, two signals bb.in and bb.out are used to connect the COM port data stream to the BB protocol.

The BB protocol is configured to open a channel reserved for the shell. This channel connects to the lineEdit

and textEdit with the console.in and console.out signals.

OneEye Micro-controller

C
O

M
 p

o
rt

C
O

M
 p

o
rt

[bb.in]

[bb.out]

BB
Protocol

Shell
channel

textEdit
Widget

[console.out]

[console.in]

BB
Protocol

Shell
channel

Shell

BB protocol

lineEdit
Widget

Implementation - AURIX

Enabling the OneEye library

The OneEye library must be enabled by adding the following line to Ifx_Cfg.h:
#define IFX_OE_AL_USE_AURIX_ILLD

Configuring the UART communication
The UART communication is initialized with the function initUart(), which also initializes the BB protocol.

In the infinite while loop, the function processUart() executes the SyncProtocol.

Configuring the OneEye shell

A OneEye shell (Ifx_Oe_Shell) is an object that enables command line parsing and command execution.

The OneEye shell communication interface (Ifx_Oe_ShellBb) enables streaming of data using the BB
protocol (Ifx_Oe_SyncProtocol).
The OneEye shell is initialized with initShell() / Ifx_Oe_Shell_init().

The ifx_oe_shell.h file can be found in the Libraries\OneEye directory.

Running the shell

The shell is executed in the background loop by calling processShell() / Ifx_Oe_Shell_process().

› After code compilation, flash the device using the Flash button to ensure that the

program is running on the device

› For this training, the OneEye application is required for visualizing the values. OneEye can

be opened inside the AURIX™ Development Studio using the following icon:

Run and Test

› Clicking the OneEye

icon automatically

opens the OneEye

configuration for the

active project. If no

configuration exists, it

is created by AURIX™

Development Studio

1

1

Implementation - OneEye

In this training, the OneEye configuration is provided inside the Libraries folder. The following steps are

needed to configure the oscilloscope from a brand-new configuration.

Setup OneEye for editing

Select the OneEye menu “Options -> Edit mode” (if not already checked) to enable the edit mode.

Select the OneEye menu “View -> Browser box”, “View -> Property box”, “View -> Tool box” (if not already

checked) to display the browser, property box, and tool box. Note that the box can be moved around.

Implementation - OneEye

Removing the default DAS interface

When the OneEye configuration is created by ADS, it is already setup with a DAS interface.

Select the interface in the Browser box and delete it with “right click and remove” as it is not required in

this example.

1

1

Implementation - OneEye

Configuring the UART interface: Signal creation

The first step is to create two signals to connect the received and transmit data over the UART.

Create a signal group and set its name property to bb.

Implementation - OneEye

Add two signals of type char into the bb group, name them in and out, and set their title property to

respectively BB in and BB out.

Implementation - OneEye

Configuring the UART interface: COM port

Right click in an empty area of the Browser box, and select Add child -> Interface. Then right click on the

created interface and select Add child -> com. Select the com item and set its device property to the COM

port connected to the AURIX board. Set the baudrate property to 115200 and click connect.

The COM port is now opened and ready for communication.

Implementation - OneEye

Configuring the UART interface: Transmit stream

Right click on the interface in the Browser box, and select Add child -> dataMessageHandler. Then right

click on the created dataMessageHandler and select Add child -> message to create a message item.

Configure the message with the id=0xFE, interval=0.001, send-on-new-data checked, dir=tx, stream

checked.

Implementation - OneEye

Right click on the message, and select Add child -> field.

Configure the field with name=bb.out, bit-pos=0, buffer=512.

Now, data will be transmitted over the UART each time the bb.out signal is written with some data.

Implementation - OneEye

Configuring the UART interface: Receive stream

Right click on the dataMessageHandler and select Add child -> message to create a second message item.

Configure the message with the id=0xFF, interval=-1, dir=rx, stream checked.

Implementation - OneEye

Right click on the message, and select Add child -> field.

Configure the field with name=bb.in, bit-pos=0.

Now each time data are received over the UART, the bb.in signal will be updated.

Implementation - OneEye

Configuring the UART interface: Push button

Drag and drop a pushButton widget from the toolbox onto the layout, configure it with title=Setup Serial

Interface, on-click={show.connection.ui}.

Clicking the button now shows the COM port configuration window.

Implementation - OneEye

Configuring the BB protocol

Right click in an empty area of the Browser box, and select Add child -> protocolEngine. Then right click on

the created protocolEngine and select Add child -> protocol-core-bb. Connect the BB protocol stream to

the bb.in and bb.out signals by setting respectively the data-in and data-out properties. Set the name

property to BB-core. And set the timeout to 2000 ms so that frames are dropped after 2 seconds in case the

microcontroller is not answering.

Implementation - OneEye

Configuring the Shell: signals creation

Create a signal group and set its name property to console.

Implementation - OneEye

Add two signals of type char into the console group, name them in and out, and set their title property to

respectively Console Rx and Console Tx. Set the access property of the in signal to read-only and the

access property of the out signal to write-only.

Implementation - OneEye

Create the Shell widgets

Drag and drop a textEdit widget from the toolbox onto the layout, set the textEdit properties auto-connect to

console.in. Set the update-method to all-on-new-data.

Implementation - OneEye

Drag and drop a lineEdit widget from the toolbox onto the layout, set the lineEdit properties auto-connect to

console.out. Check the capture-key property to enable each key stroke to be send.

Implementation - OneEye

Connect the lineEdit and textEdit widget to the BB protocol

Right click on the protocol-core-bb and select Add child -> target. Select the target item and set local-port

and remote-port to 2 to match the AURIX settings, set signal-in=console.out, signal-out=console.in.

Implementation - OneEye

Test the shell interface

Restart the AURIX software. The shell textbox should display the “Hello World !” text .

Enter “info” in the Console Tx lineEdit field and press ENTER, the microcontroller executes the

printShellInfo() function and should answer as below to acknowledge the command.

2

2

1

1

Save your configuration with CTRL+S.

Exit the edit mode with the OneEye

menu “Options -> Edit mode” to only

see the GUI .3

3

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2022-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
OneEye_UART_Shell_1
_KIT_TC297_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

