OneEye_UART_Mux_1
for KIT_AURIX_TC297_TFT
Data multiplexer over UART using OneEye
Scope of work

Demonstrate how to implement the data multiplexer over the UART (USB) interface

After configuring the OneEye UART interface, a data multiplexer is created. OneEye is used to visualize the signal values.
Introduction

- **OneEye** is a GUI that enables the creation of interactive Graphical User Interface. Graphical elements can be dragged from a toolbox and dropped onto the GUI. The behavior of the created GUI can be customized. Different communication interfaces like UART, Ethernet, CAN, DAS can be used to interact with the embedded system.

- **SyncProtocol / ProtocolBB** is a synchronous protocol that enables data streaming between the target microcontroller and OneEye. It enables to open multiple communication channels, provide packet acknowledge and packet checksum. Data are transported within a message with a message ID and a message payload. See the OneEye help for more information.

<table>
<thead>
<tr>
<th>Offset</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start Byte</td>
<td>Sender</td>
<td>Receiver</td>
<td>Payload length</td>
</tr>
<tr>
<td>4</td>
<td>Flags (frameType=data)</td>
<td>Checksum payload</td>
<td>Checksum header</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Message ID</td>
<td>(Reserved)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Message length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Message payload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>... (Message payload)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Note:** It is recommended to go through some of the **basic tutorials** listed in the help embedded in OneEye (Menu: Help -> OneEye help). This enables a quicker ramp-up in the OneEye concept and ensures a nice journey with OneEye.
Hardware setup

This code example has been developed for the board KIT_AURIX_TC297_TFT_BC-Step.

The board should be connected to the PC through the USB port.
Configuration overview

In this configuration two C struct are used to exchange data over the COM port between the microcontroller and OneEye.

In OneEye, two signals `bb.in` and `bb.out` are used to connect the COM port data stream to the BB protocol. The BB protocol is configured to open a channel reserved for the data multiplexer. This channel connects to the Mux-Demux widget using the `mux.in` and `mux.out` signals. The Mux-Demux widget connects to a slider with the `command.max` signal and a Graph with the `status.signalA` and `status.signalB` signals.
Implementation - AURIX

Enabling the OneEye library

The OneEye library must be enabled by adding the following line to Ifx_Cfg.h:
#define IFX_OE_AL_USE_AURIX_ILLD

Configuring the data multiplexer

A OneEye BB protocol client (<Ifx_Oe.SyncProtocol_Client>) is an object that enables raw massage data transmission using the BB protocol (<Ifx_Oe.SyncProtocol>).

The OneEye BB protocol client is initialized with initDataMultiplexer() / Ifx_Oe.SyncProtocol_addClient(). The ifx_oe_syncprotocol.h file can be found in the Libraries\OneEye directory.

Configuring the UART communication

The UART communication is initialized with the function initUart(), which also initializes the BB protocol.

In the infinite while loop, the function processUart() executes the SyncProtocol.
Receiving data from OneEye

Receiving data from OneEye is done within `processDataMultiplexer()`. The client is periodically checked for incoming messages using the `Ifx_Oe_SyncProtocol_isMessageAvailable()` passing a pointer to the BB client as parameter.

To decode the received data, a message buffer must be acquired first with the function `Ifx_Oe_SyncProtocol_getReadMessageBuffer()`. The function takes a pointer to the BB client as input parameter, and pointers to a message ID, a message payload buffer and a message length as output parameters. Then the message payload pointer is cast to the C struct type that defines the data. Finally the data are readout from the C struct and the message is released using `Ifx_Oe_SyncProtocol_releaseReadMessageBuffer()`.

Sending data to OneEye

Sending data to OneEye is done within `processDataMultiplexer()`. Data are send periodically (100ms). The timing is ensured using the `Ifx_Oe_Time_isDeadline()` and `Ifx_Oe_Time_add()` functions.

To send data, a message buffer must be acquired first with `Ifx_Oe_SyncProtocol_setSendMessageBuffer()`. The function takes a pointer to the BB client, the message ID and the message size parameters. Then the message payload is cast to the C struct type containing the data and the C struct is filled with data. Finally, the message is send using `Ifx_Oe_SyncProtocol_sendMessage()` passing the message pointer as parameter.

Note: it is important to ensure the struct member offset and size to enable proper encoding / decoding by OneEye. This memory mapping is specific to the CPU data alignment and compiler. For Hightec compiler, the `__attribute__((__packed__))` is added to the `DataStreaming_Data_0` and `DataStreaming_Data_1` struct definition.
Configuring the signal generator

A signal generator is used to provide the user with some value to read / write. The signal generator does nothing more than incrementing two signals, `signalA` and `signalB`, stored in the structure `g_signalGenerator` up to a maximum value before resetting them. The initialization of the signal generator is done with `initSignalGenerator()`.

Running the signal generator

The signal generator is executed in the background loop every 1ms with `processSignalGenerator()`. To ensure the timing, a `deadline` variable is periodically updated with `Ifx_Oe_Time_add()` to obtain the 1ms period.
After code compilation, flash the device using the Flash button 1 to ensure that the program is running on the device.

For this training, the OneEye application is required for visualizing the values. OneEye can be opened inside the AURIX™ Development Studio using the following icon:

Clicking the OneEye icon automatically opens the OneEye configuration for the active project. If no configuration exists, it is created by AURIX™ Development Studio.
Implementation - OneEye

In this training, the OneEye configuration is provided inside the Libraries folder. The following steps are needed to configure the oscilloscope from a brand-new configuration.

Setup OneEye for editing

Select the OneEye menu “**Options -> Edit mode**” (if not already checked) to enable the edit mode. Select the OneEye menu “**View -> Browser box**, “**View -> Property box**”, “**View -> Tool box**” (if not already checked) to display the browser, property box, and tool box. Note that the box can be moved around.
Removing the default DAS interface

When the OneEye configuration is created by ADS, it is already setup with a DAS interface. Select the interface in the Browser box and delete it with “right click and remove” as it is not required in this example.
Implementation - OneEye

Configuring the UART interface: Signal creation

The first step is to create 2 signals to connect the received and transmit data over the UART.

Create a signal group and set its **name** property to **bb**.
Add two signals of type `char` into the `bb` group, name them `in` and `out`, and set their `title` property to respectively `BB in` and `BB out`.
Configuring the UART interface: COM port

Right click in an empty area of the Browser box, and select **Add child -> Interface**. Then right click on the created interface and select **Add child -> com**. Select the **com** item and set its **device** property to the COM port connected to the AURIX board. Set the **baudrate** property to **115200** and click **connect**.

The COM port is now opened and ready for communication.
Configuring the UART interface: Transmit stream

Right click on the interface in the Browser box, and select **Add child -> dataMessageHandler**. Then right click on the created **dataMessageHandler** and select **Add child -> message** to create a message item. Configure the **message** with the **id=0xFE**, **interval=0.001**, **send-on-new-data** checked, **dir=tx**, stream checked.
Implementation - OneEye

Right click on the **message**, and select **Add child -> field**. Configure the field with **name=bb.out, bit-pos=0, buffer=512**.

Now, data will be transmitted over the UART each time the **bb.out** signal is written with some data.
Implementation - OneEye

Configuring the UART interface: Receive stream

Right click on the dataMessageHandler and select Add child -> message to create a second message item. Configure the message with the id=0xFF, interval=-1, dir=rx, stream checked.
Right click on the message, and select Add child -> field. Configure the field with name=bb.in, bit-pos=0.

Now each time data are received over the UART, the bb.in signal will be updated.
Implementation - OneEye

Configuring the UART interface: Push button

Drag and drop a `pushButton` widget from the toolbox onto the layout, configure it with `title=Setup Serial Interface`, `on-click={show.connection.ui}`.

Clicking the button now shows the COM port configuration window.
Configuring the BB protocol

Right click in an empty area of the Browser box, and select Add child -> protocolEngine. Then right click on the created protocolEngine and select Add child -> protocol-core-bb. Connect the BB protocol stream to the bb.in and bb.out signals by setting respectively the data-in and data-out properties. Set the name property to BB-core. And set the timeout to 2000 ms so that frames are dropped after 2 seconds in case the microcontroller is not answering.
Configuring the Data multiplexer: signals creation

Create a signal group under the signals root and set its name property to mux.
Add two signals of type `char` into the `mux` group, name them `in` and `out`, and set their `title` property to respectively `Mux in` and `Mux out`.
Creating signals to send commands to the AURIX

Create a signal group under the `signals` root and set its `name` property to `command`. Add two signals of type `float` into the `command` group, name them `max` and `increment`, and set their `title` property to respectively `Max` and `Increment`.

![Diagram](image-url)

1. **Signal Group Creation**: Name the group as `command`.
2. **Signal Addition**: Add two signals of type `float`.
3. **Name Assignment**: Name them `max` and `increment`.
4. **Title Setting**: Set their `title` property to `Max` and `Increment` respectively.
Creating signals for the received data

Create a signal group under the `signals` root and set its `name` property to `status`. Add two signals of type `float` and `sint32` into the `status` group, name them `signalA` and `signalB`, and set their `title` property to respectively Signal A and Signal B. Note that the data type must match the one defined in the AURIX C struct `DataStreaming_Data_0`.
Create the slider widgets to send command to the AURIX

Drag and drop a **slider** widget from the toolbox onto the layout, set the **slider** properties **auto-connect** to **command.max**, and **max** to **1200**.
Implementation - OneEye

Create the graph widgets to display the signals value

Drag and drop a **graph** widget from the toolbox onto the layout.
Create the graph widgets to display the signals value

Drag and drop a **Graph Channel (channel)** widget from the toolbox onto the layout, set the **channel** properties **auto-connect** to **status.signalA**, **unit-per-division-y** to **200**, and **color** to **green**. Repeat the operation for a second channel and set the **channel** properties **auto-connect** to **status.signalB**, and **color** to **black**.
Create the muxDemux widgets to connect the BB protocol to the graph and slider widgets.

Drag and drop a Mux-Demux (muxDemux) widget from the toolbox onto the layout, set the muxDemux properties `data-in` and `data-out` to respectively `mux.in` and `mux.out`.
Right click on the **muxDemux** widget in the browser box, and select **Add child -> muxDemuxMessage**, set the **muxDemuxMessage** properties **id** to 0x4000 and **dir** to **demux** to decode received messages.
Right click on the `muxDemuxMessage` in the browser box, and select **Add child -> muxDemuxField**, set the `muxDemuxField` properties **name** to `status.signalA`, **bit-pos** to 0.

Repeat the operation for a second signal and set its properties **name** to `status.signalB`, **bit-pos** to 32.

Note: the `status.signalA` and `status.signalB` signal size (32 bits), type (float / sint32) and offset (0 / 32) must match the data member `signalA` and `signalB` of the C struct `DataStreaming_Data_0`.
Right click on the **muxDemux** widget in the browser box, and select Add child -> **muxDemuxMessage**, set the **muxDemuxMessage** properties **id** to 0x4001 and **dir** to **mux** to encode and send messages. Set the **length** property to 4 bytes, which corresponds of the size of the C struct **DataStreaming_Data_1**.
Right click on the `muxDemuxMessage` in the browser box, and select **Add child -> muxDemuxField**, set the `muxDemuxField` properties **name** to **command.max**, **bit-pos** to **0**, and **check send-on-new-data**.

Note: the **command.max** signal size (32 bits), type (float) and offset (0) must match the data member **max** or the C struct `DataStream­ing_Data_1`.
Connect the Mux-Demux widget to the BB protocol

Right click on the `protocol-core-bb` and select **Add child -> target**. Select the **target** item and set **local-port** and **remote-port** to 1 to match the AURIX settings, set **signal-in=mux.out**, **signal-out=mux.in**, and **forward checked**.
Implementation - OneEye

Test the data multiplexer interface

Save your configuration with CTRL+S and, exit the edit mode with the OneEye menu “Options -> Edit mode” to only see the GUI.

Restart the AURIX software.

Move the slider cursor to change the max value and affect the generated signals value.
References

› AURIX™ Development Studio is available online:
 › https://www.infineon.com/aurixdevelopmentstudio
 › Use the „Import...“ function to get access to more code examples.

› More code examples can be found on the GIT repository:
 › https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:
 › https://www.infineon.com/aurix-expert-training

› For questions and support, use the AURIX™ Forum:
 › https://www.infineonforums.com/forums/13-Aurix-Forum
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.