
AURIX™ TC3xx Microcontroller Training

V1.0.0

Memory_Access_Performance_1

for KIT_AURIX_TC334_LK
Memory access performance

Please read the Important Notice and Warnings at the end of this document

Scope of work

Data is stored and read back from different RAM locations while the

access times are monitored using the CPU performance counters.

A routine is implemented to execute performance measurements using the

CPU performance counters. The amount of required CPU clocks is

evaluated for ten alternating write and read operations to different memories

(DSPR0, LMU).

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› The microcontrollers of the AURIX™ TC3xx family have several CPU

related volatile memories. Some are dedicated for a certain CPU e.g. the

Program Scratch Pad RAM (PSPR), the Data Scratch Pad RAM (DSPR),

PCACHE and DCACHE and some are used for general purpose such as

the Local Memory Unit (LMU), where the access latency is typically higher

› A higher access latency is also expected if a certain CPU accesses the

memory adjacent to another CPU via the SRI bus

› The latency in CPU clock cycles can be easily measured using the CPU

performance counters

Copyright © Infineon Technologies AG 2021. All rights reserved.

Hardware setup

This code example has been developed

for the board KIT_A2G_TC334_LITE.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Defining global data fields within the different volatile memories

› The global macro BUFFERSIZE defines the size of 10 elements for the data fields

› Alternate writes and reads are repeated ten times to determine the number of CPU clocks.

The global array g_DataLMU[BUFFERSIZE] defines the data field in the LMU. Furthermore,

the global array g_DataDSPR0[BUFFERSIZE] define the data fields in the DSPR0. The

compiler directive #pragma is used to force the compiler to put the global variables in the

corresponding volatile memory

Sequence of memory performance measurements

› A series of measurements is conducted by repeatedly invoking the function accessData()

with different parameters inside the function measurePerformance(). The first argument is

the data field where the write/read access goes to/comes from and the second argument is a

container to store the results of the performance counter

Note: For using the performance counters, the On-Chip Debug System has to be enabled. This

is ensured by the debugger itself, therefore the example has to be tested within an active debug

session.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Executing write and read accesses

› The function IfxCpu_resetAndStartCounters() starts the CPU performance counters. A

parameter is specifying the counter mode:

– Normal mode: The counters start counting as soon as they are enabled and will keep

counting until they are disabled

– Task mode: The counters will only count if the processor detected a debug event with the

action to start the performance counters

› A for loop is used to write the index value into the data field and read it back. The first

parameter of the function accessData() is specified as volatile. This prevents the compiler

from optimizing the assembler code in order to ensure that the index of the for loop is read

back from the memory

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Executing write and read accesses

› To ensure that the Store Buffer is flushed before starting the read operation, a DSYNC

TriCore™ instruction is performed using the __dsync() intrinsic function

› The function IfxCpu_stopCounters() stops and returns the counters’ values

Both the functions IfxCpu_resetAndStartCounters() and IfxCpu_stopCounters() are part of

the Infineon low level drivers and are implemented in IfxCpu.h.

Note: In TriCore™ TC1.6.2P CPUs, store buffering is implemented to decouple memory write

operations from CPU instruction execution, thus increasing their performance. All stores from

the CPU are placed in the store buffer prior to being written to local memory or transferred via

the bus system. Therefore, if there is a requirement that data is written to local memory prior to

execution of a subsequent instruction, then a DSYNC instruction may be used to flush the store

buffers. In this simple example, the DSYNC instruction is needed, otherwise the write-read

operations can be “optimized” by the store buffer and the memory access timings will have the

same value across different types of memories.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Disabling the DCACHE

The CPU uses the DCACHE for data storage into the LMU. This is prevented by switching off

the DCACHE usage. The macro IFX_CFG_SSW_ENABLE_TRICORE0_DCACHE is required

to be set to zero.

The macro is configured inside the header file Ifx_Cfg.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run & Test

After code compilation and flashing the device, check the amount of clocks

representing the access latency in the debugger perspective:

› Add the expressions

g_perfCounts[0].instruction.counter,

g_perfCounts[0].clock.counter,

g_perfCounts[1].instruction.counter,

g_perfCounts[1].clock.counter to the

Watch window and check the values

› g_perfCounts[0]: CPU0 writes and

reads to/from DSPR0

› g_perfCounts[1]: CPU0 writes and

reads to/from LMU

Copyright © Infineon Technologies AG 2021. All rights reserved.

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
Memory_Access_Performance_1
_KIT_TC334_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

