FCE_CRC_1
for KIT_AURIX_TC275_LK
FCE CRC calculation
Scope of work

The FCE module is used to calculate the CRC of a message with a CRC32 algorithm.

This training shows how to configure the FCE to calculate CRC of a known message with all supported algorithms (CRC32, CRC16 and CRC8). The FCE interrupt is enabled to report execution errors. Any CRC kernel calculation error is indicated by switching ON a different combinations of LEDs.
Introduction

- The Flexible CRC Engine (FCE) provides a parallel implementation of Cyclic Redundancy Code (CRC) algorithms

- FCE module supported algorithms:
 - IEEE 802.3 Ethernet CRC32 polynomial
 - CCITT CRC16 polynomial
 - SAE J1850 CRC8 polynomial

- CRC algorithms are used to calculate message signatures that can be used to check message integrity during transport over communication
Hardware setup

This code example has been developed for the board KIT_AURIX_TC275_LITE.
Implementation

Initialization
The initialization of the module is done via `init_FCE_CRC()`, which contains:
› the FCE module initialization, using the function `IfxFce_Crc_initModule()`
› the CRC algorithms initialization, using the function `IfxFce_Crc_initCrc()`

Execution
The execution is started with the function `run_FCE_CRC()`, which calculates:
› CRC32 algorithm, using `IfxFce_Crc_calculateCrc32()`
› CRC16 algorithm, using `IfxFce_Crc_calculateCrc16()`
› CRC8 algorithm, using `IfxFce_Crc_calculateCrc8()`

All functions, needed for using the FCE CRC calculation, are provided by the iLLD header `IfxFce_Crc.h`.

FCE Error Interrupt Service Routine
The ISR will be executed in case of a CRC calculation error. It scans all kernels status registers and checks if error flags are set.
Implementation

Configure and control the LEDs

Two LEDs are configured to be switched on/off by the controlling port pins to which they are connected using methods from the iLLD header `IfxPort.h`.

In the setup phase, the port pins of the LEDs have to be configured as push-pull output using the function `IfxPort_setPinMode()`.

If CRC calculation errors occur, different combinations of LEDs are switched on using the function `IfxPort_setPinLow()`.
Run and Test

After code compilation and flashing the device, observe the LEDs behavior.

- The LED1 and LED 2 should be switched **Off** if all the CRC algorithm calculations are correct (Result = Expected)
Run and Test

LEDs behavior in case of Error:

› CRC32 Kernel 0 calculation error: LED1 and LED2 are turned on
 - Could be tested by setting the macro
 `CRC32_KERNEL0_WRONG_CHECK_VAL` to 1

› CRC32 Kernel 1 calculation error: LED1 and LED2 are turned on
 - Could be tested by setting the macro
 `CRC32_KERNEL1_WRONG_CHECK_VAL` to 1

› CRC16 calculation error: LED1 is turned off and LED2 is turned on
 - Could be tested by setting the macro `CRC16_WRONG_CHECK_VAL` to 1

› CRC8 calculation error: LED1 is turned on and LED2 is turned off
 - Could be tested by setting the macro `CRC8_WRONG_CHECK_VAL` to 1

All macros mentioned above are provided only for test purposes. They allow to pass a wrong expected value to the FCE CRC kernel which leads to a mismatch with the calculated one, therefore the error flag will be set and the error interrupt will be triggered.
References

› AURIX™ Development Studio is available online:
 › https://www.infineon.com/aurixdevelopmentstudio
 › Use the „Import...“ function to get access to more code examples.

› More code examples can be found on the GIT repository:
 › https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:
 › https://www.infineon.com/aurix-expert-training

› For questions and support, use the AURIX™ Forum:
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.