
AURIX™ TC3xx Microcontroller Training

V1.0.1

BUS_Register_Protection_1

for KIT_AURIX_TC375_LK
Register access protection

Please read the Important Notice and Warnings at the end of this document



Scope of work

This example shows how to protect registers from unintended write 

access by using AURIX™ register access protection mechanisms.

The CPU0 tries to make a write access to an ASCLIN0 module register two 

times: when the access is enabled for CPU0 and when the access is 

disabled for CPU0. During the second register write access, a Trap is 

expected to be raised, to inform about the illegal write access.



Introduction

› Write accesses of any master to any slave’s registers can be 

enabled/disabled for safety reasons using the register access protection 

mechanism (ACCEN).

› Each master is identified via a unique TAG ID when accessing the system 

bus. 

› Based on the masters’ TAG IDs, the application can select which master 

is allowed to perform register write operation to a slave. 

› If a master attempts to write to a protected register, then a bus error trap 

event is generated and the write operation is blocked.



Hardware setup

This code example has been developed 

for the board KIT_A2G_TC375_LITE.



Implementation

Initialize the used peripherals:

› As first step, the port pins are configured to General Output Push-Pull Mode. To 

enable LEDs‘ usage, the following function is used:

IfxPort_setPinModeOutput()

› Then the module ASCLIN0 is enabled in order to demonstrate the access 

protection mechanism through the function:

IfxAsclin_enableModule()



Implementation

Register access protection implementation:

› Clear Safety EndInit protection

– Get Safety Watchdog password:

IfxScuWdt_getSafetyWatchdogPassword()

– Clear Safety EndInit using the safety watchdog password

IfxScuWdt_clearSafetyEndinit()

› Disable all accesses of CPU0 master to slave module ASCLIN0 by resetting the 

corresponding access enable bit (ENx) of the ACCEN0 register as following:

– set MODULE_ASCLIN0.ACCEN0.B.EN1 = 0x0; (0 to disable access and 1 to 

enable access, by default access is enabled)

Note: ACCEN0.B.ENx bits are correlated to TAG IDs (EN0 corresponds to TAG 

ID 000000B, ..., EN31 corresponds to TAG ID 011111B )

– TAG ID 000001B corresponds to CPU0, therefore EN1 is the bitfield that has to 

be modified

› Restore Safety EndInit protection using the safety watchdog password

IfxScuWdt_setSafetyEndinit()



Implementation

Trap Service Routine implementation:

Writing to protected registers leads to a Bus Error Trap generation. For this reason, a 

Trap Service Routine (TSR) is needed.

› All TSRs are already implemented within the iLLD drivers and they contain a hook 

which enables specific user code to be added inside each TSR function, using the 

following steps:

– In Ifx_Cfg.h file, the IFX_CFG_EXTEND_TRAP_HOOKS macro needs to be 

un-commented to enable the possibility to overwrite the default hooks.

– Add a new file called Ifx_Cfg_Trap.h which contains the redirection of the 

default hook function to the implemented one:

– Default Bus Error TSR hook IFX_CFG_CPU_TRAP_BE_HOOK() is

replaced by the implemented hook busErrorTSRHook() 

– The hook source code is implemented in order to verify if the register value was 

modified or the write access was denied. An LED indicates the execution result.



Implementation

Trap Service Routine implementation (Cont.):

Please note that in Debug mode, the iLLD TSR stops the program execution by 

calling the DEBUG instruction, this can be avoided by defining the 

IFX_CFG_CPU_TRAP_DEBUG macro inside the Ifx_Cfg_Trap.h file.



Run and Test

After code compilation and flashing the device, observe the behavior of the 
LEDs.

Check that LED1 (1) and 

LED2 (2) are switched on:

› LED1 switches on to indicate 

that the register write access 

was successful when the 

access protection is disabled

› LED2 switches on to indicate 

that a Trap is generated and 

the register write access was 

denied when the access 

protection is enabled
1

2



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


Revision history

Revision Description of change

V1.0.1 Fixed typo in the example’s name

V1.0.0 Initial version



IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2022-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
BUS_Register_Protection_1
_KIT_TC375_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

