# XMC<sup>™</sup> in Power Conversion Applications

XMC<sup>™</sup> Microcontrollers July 2016





#### Agenda

- 1 Why XMC™ for digital power control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software



## Agenda

- 1 Why XMC™ for digital power control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software

## infineon

## Why XMC<sup>™</sup> for digital power control?

Key factors in power supply design

**Counter measure** 

**XMC**<sup>TM</sup>

Efficiency at all conditions

Sophisticated/ flexible control schemes Cortex® M0/M4 + dedicated peripherals (analog performance+ digital programmability)

Power density

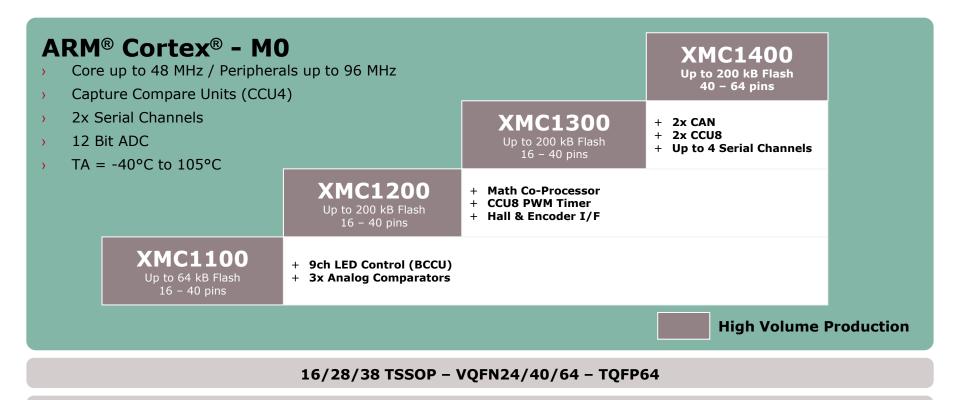
Increase switching frequency

High resolution PWM (150 ps) and analog peripherals

Time to market

Ecosystem and examples

DAVE<sup>TM</sup> APPs and ARM® ecosystem (Keil/IAR/open source)


Reliability and security

Great technology + security solution

125°C technology Security technology

## Product portfolio XMC™ XMC1000 family overview





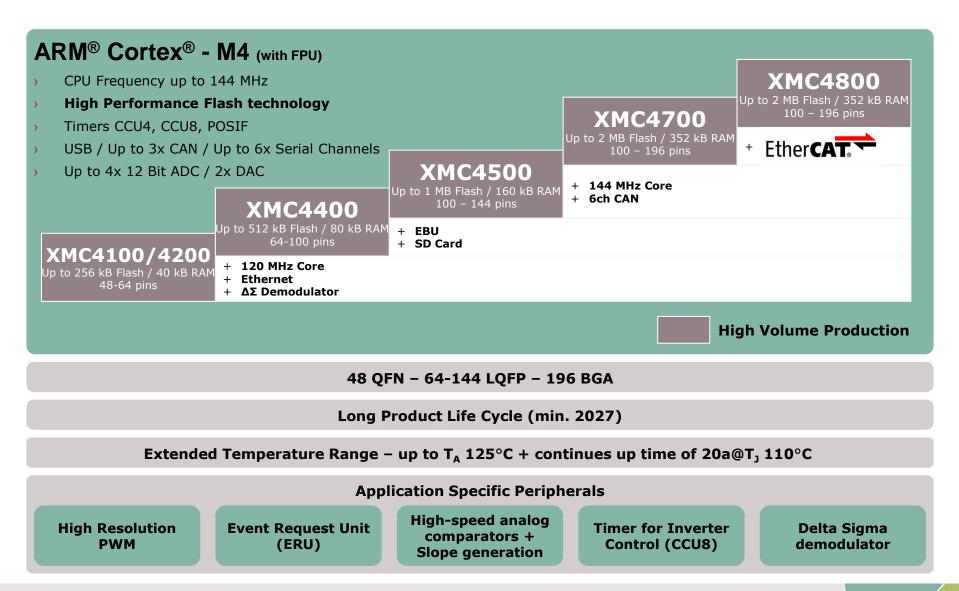
**Secure Boot Loader – ensure IP protection** 

Wide Supply Voltage Range 1.8 V - 5.5 V

**Application Specific Peripherals** 

**MATH** co-processor

Event Request Unit (ERU)


High-performance analog comparators

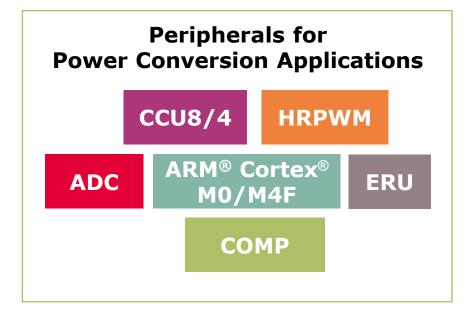
PWM Timer for Motor Control (CCU8)

LED Brightness Color Control Unit

## Product portfolio XMC™ XMC4000 family overview








#### Agenda

- 1 Why XMC™ for digital power control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software



### Key features



#### **Highlights**

Analog front end together with full configurability allows most advanced power supply control
With the support of ARM® Cortex® cores and high resolution PWM (150 ps), accurate and fast control loops execution are possible for improved figure of merits in power supply design

#### **Key Feature**

- High Resolution PWM (150 ps)
- Smart analog comparators
- Fast and flexible ADC and Timers

- Regulate voltages/current with higher accuracy
- Analog comparators with smart features such as slope compensation
- Permit complex PWM patterns and sophisticated measure sequences



 $T \pm N ps$ 

**PWM** 

high res

**HRPWM** 

(HRCy)

**PWM** 

low res

## High resolution PWM (150 ps) (1/3)

High Resolution PWM receives a signal from other peripherals like CCU8 module

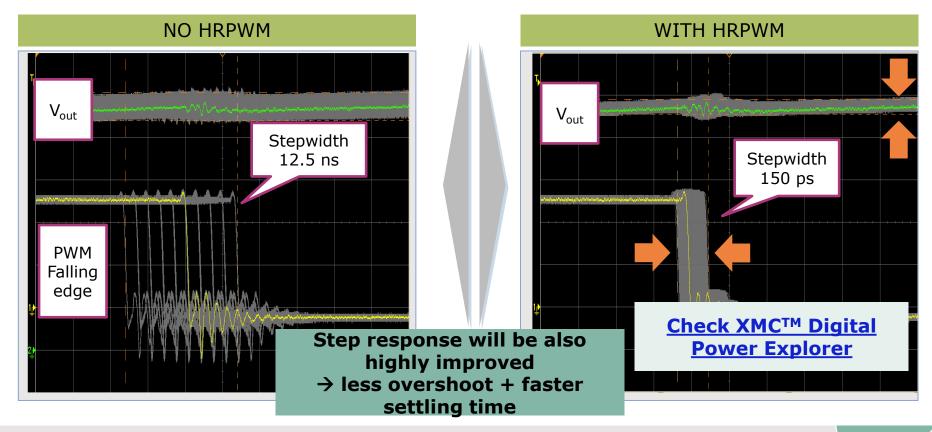
HRPWM (HRC) takes this signal and shifts it in steps of 150 ps)
Timer

**Timer Slice** (CCU4, CCU8) **Timer Compare** CCU4/CCU8 High res adjustment **HRPWM** N Picophase High res **HRPWM** adjustment **CCU Clock** 

Timer (CCU8)



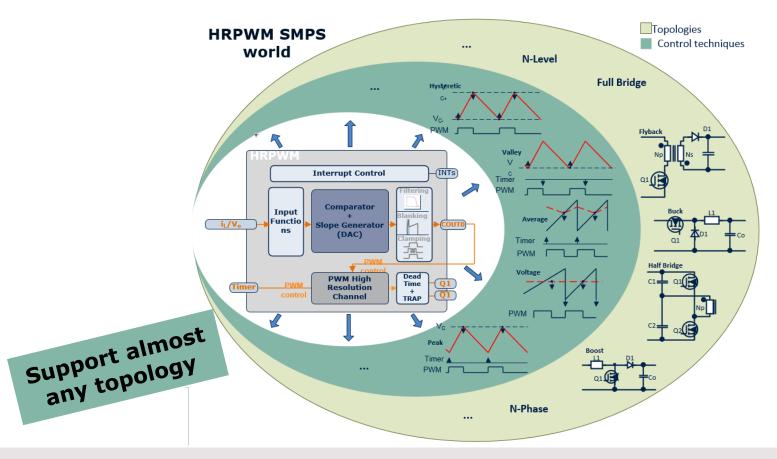
## High resolution PWM (150 ps) (2/3)


 Resolutions in bits achieved with and without HRPWM by different conditions: switching frequency of PWM and Duty cycle of PWM

| Switching frequency | Duty cycle | Resolution<br>w/o HRPWM @<br>80 MHz | Resolution<br>w/o HRPWM @<br>120 MHz | Resolution<br>w/ HRPWM |
|---------------------|------------|-------------------------------------|--------------------------------------|------------------------|
| 200 KHz             | 50%        | 7,6 bit                             | 8,2 bit                              | 14 bit                 |
|                     | 20%        | 6,3 bit                             | 6,9 bit                              | 12,7 bit               |
|                     | 10%        | 5,3 bit                             | 5,9 bit                              | 11,7 bit               |
| 500 KHz             | 50%        | 6,3 bit                             | 6,9 bit                              | 12,7 bit               |
|                     | 20%        | 5 bit                               | 5,5 bit                              | 11,3 bit               |
|                     | 10%        | 4 bit                               | 4,5 bit                              | 10,3 bit               |
| 1,5 MHz             | 50%        | 4,7 bit                             | 5,3 bit                              | 11,1 bit               |
|                     | 20%        | 3,4 bit                             | 4 bit                                | 9,8 bit                |
|                     | 10%        | 2,4 bit                             | 3 bit                                | 8,8 bit                |



## High resolution PWM (150 ps) (3/3)

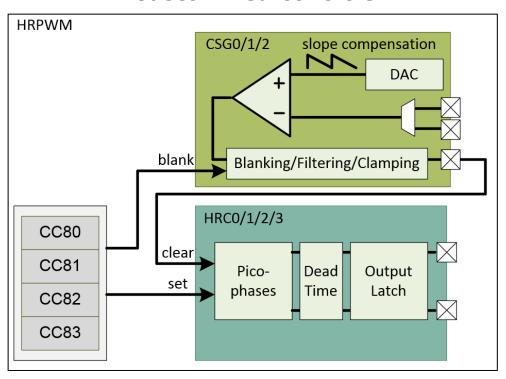

Example: thanks to a finer adjustment of the duty cycle, the output voltage (in this example in a buck converter), is regulated much more accurately. This reduces the output voltage ripple significantly





## Smart analog comparators (1/3)

- XMC4000 comparators include filtering, blanking and clamping capabilities as well as a DAC for automatic reference or slope generation
- XMC1000 comparators can configure hysteresis and output filtering






## Smart analog comparators (2/3)

- Analog frontend digitally controlled. Best of both worlds:
  - Analog performance
  - Programmability/flexibility
- Supports almost any topology and combinations:
  - LLC/LCC
  - PSFB
  - PFC stages
  - Flybacks/forwards
  - Buck-boost, sepic
  - Inverters
  - Etc...

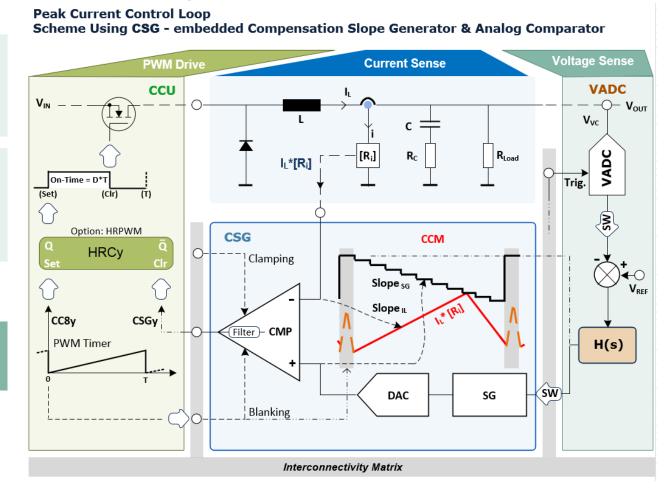
- Can easily and efficiently perform:
  - Voltage control
  - Current control
  - Customized controls





## Smart analog comparators (3/3)

 Advanced peak current mode control is possible by making use of HRPWM peripheral, resulting in low CPU load


#### **Internal DAC**

10 bits resolution 30 Msamples/sec Auto-waveform

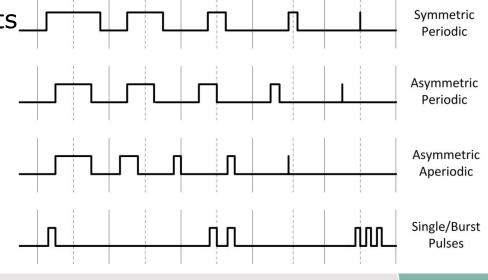
#### **Analog Comp**

20 ns bandwidth Filtering/blanking/cl amping

Check XMC<sup>TM</sup> Digital
Power Explorer






## Fast and flexible ADC and timers (1/4)

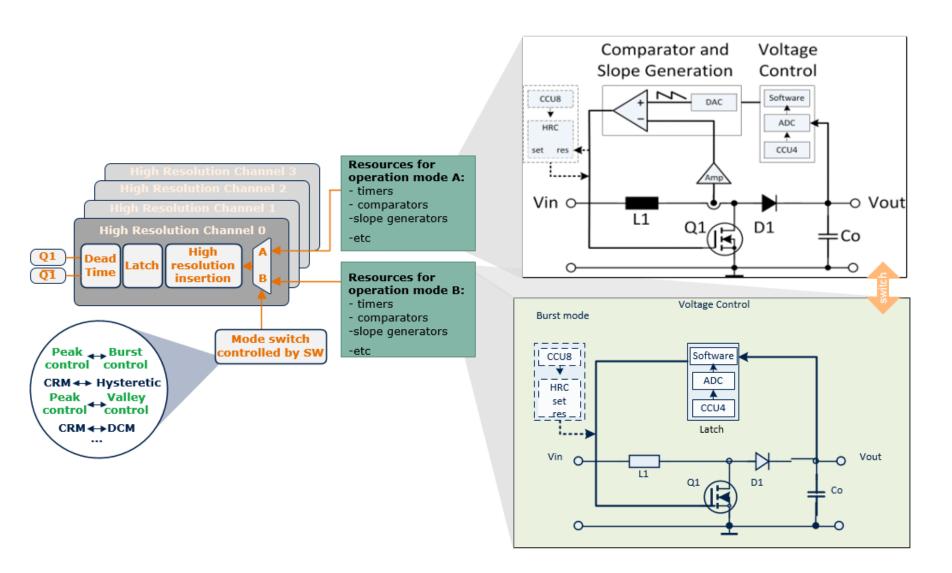
- In order to cover the exigent requirements of power supplies, it is needed to provide:
  - Flexible and safe PWM patterns
  - Fast ADC sampling
  - Flexible ADC sequencing and synchronization to PWM
  - Post processing of conversions including
    - Filtering (FIR/IIR), FIFO, subtraction (for offset compensation), etc
  - Resolution in sampling signal and in PWM for accurate control:
    - 12 bits ADC
    - 150 ps resolution PWM in XMC4 and 15,6 ns in XMC1000



## Fast and flexible ADC and timers (2/4)

- For power conversion continues and discontinues PWM signals have to be generated – switching between the two modes is needed to get efficiency over a wide load range
- CCU4/CCU8 supports any kind of pulse generation like
  - Asymmetric PWM
  - Aperiodic PWM
  - Single events and pulses
- CCU4/CCU8 can be controlled from external or internal events.
  - External start / stop
  - Emergency trap
  - Override/modulation
  - Count gating
  - Capturing






## Fast and flexible ADC and timers (3/4)

- Multimode power supplies are very common in order to help with stringent requirements on THD, PF and efficiency at many different conditions of the load, input voltage and temperature
  - → the way the power supply is controlled varies depending on the load or the input voltage
- For example:
  - PFCs than change between CCM and CrCM when reducing the load and even to DCM when load is lower.
  - Normal mode to burst mode in both ACDC and DCDC power supplies.
- Main issue in this idea, is how to switch the control scheme.
  - Usually controllers are specific for one or the other, making impossible this.
  - Others can switch the mode but during switching, the PWM is unpredictable and can create overcurrent and overvoltage situations damaging permanently the system
- In order to support a seamless switch between modes, HRPWM peripheral introduces a new switch event based.
  - This switch is connected to 2 different sets of timers and/or comparators that defines the 2 control schemes and links those to the output stage that is connected finally to the necessary pins
  - Should the event occur, then HRPWM peripheral will swap the set of timers and/or comparators connected to the output.
  - In this way, the HRPWM will immediately and safely → synchronized to the PWM pattern, move to the alternate control scheme.



## Fast and flexible ADC and timers (4/4)





#### Additional features

- ERU module allows very flexible connections in the XMC. This is helpful in cases such as:
  - Detect a peak current with a comparator and send the signal to a timer → usually signal is directly connected
  - But if the comparator signal needs to be OR-ed with another one, this can be done with the available logic functions in ERU module
- Serial communications, like I2C for PMBus™, and CAN supported



## Agenda

- 1 Why XMC™ for digital power control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software



## Kits and reference design

| Development b                              | oards | Order number/ISAR order (SP)                           | Kit/<br>demo |
|--------------------------------------------|-------|--------------------------------------------------------|--------------|
| XMC4200 Digital<br>Power Control Card      |       | KIT XMC4200 DP CC 01<br>SP001343128                    | KIT          |
| XMC1300 Digital<br>Power Control Card      |       | KIT XMC1300 DP CC 01<br>SP001343134                    | KIT          |
| XMC <sup>™</sup> Digital Power<br>Explorer |       | KIT XMC DP EXP 01<br>SP001343072                       | KIT          |
| 800 W PFC Boost<br>CCM XMC1300             |       | EVAL 800W 130PFC C7<br>SP001360062                     | DEMO         |
| 600 W LLC Eval Kit                         |       | EVAL-600W-12V-LLC-D<br>SP001293818                     | DEMO         |
| 3 kW LLC dual<br>phase XMC4400<br>Eval Kit |       | EVAL_3KW_2LLC_C7_47 (_20)<br>SP001360064(/SP001360066) | DEMO         |



#### XMC4200 Digital Power Control Card



| Infineon components |                              |  |
|---------------------|------------------------------|--|
| MCU                 | XMC4200 (LQFP64)             |  |
| Supply              | IFX54441LDV<br>IFX90121ELV50 |  |
| ESD protections     | ESD8V0L2B-03L                |  |
| Debugger MCU        | XMC4200 (QFN48)              |  |

#### **Key features:**

- Detachable isolated Jlink debugger integrated and isolated UART to USB channel
- 8 PWMs outputs, 8 ADCs and 3 CMP inputs. 2 communication channels and up to 4 general purpose pins
- Only 28 mm height vertically fits 1U rack standards (without debugger part)

- Fast evaluation of XMC<sup>™</sup> power conversion applications
  - No need to design debuggers, isolations, XMC<sup>™</sup> supply concepts
- Same interface as other XMC<sup>™</sup> control cards permit 1 to1 comparison of different XMC<sup>™</sup> devices in customer's application



### XMC1300 Digital Power Control Card



#### **Key features:**

- Detachable isolated Jlink debugger integrated and isolated UART to USB channel
- 8 PWMs outputs, 8 ADCs and 3 CMP inputs. 2 communication channels and up to 4 general purpose pins
- Only 25 mm height vertically fits 1U rack standards (without debugger part)

| Infineon o      | components           |
|-----------------|----------------------|
| MCU             | XMC1302<br>(TSSOP38) |
| Supply          | IFX54441LDV          |
| ESD protections | ESD8V0L2B-03L        |
| Debugger MCU    | XMC4200<br>(QFN48)   |

- Fast evaluation of XMC<sup>™</sup> power conversion applications
  - No need to design debuggers, isolations, XMC<sup>™</sup> supply concepts
- Same interface as other XMC<sup>™</sup> control cards permit 1 to1 comparison of different XMC<sup>™</sup> devices in customer's application



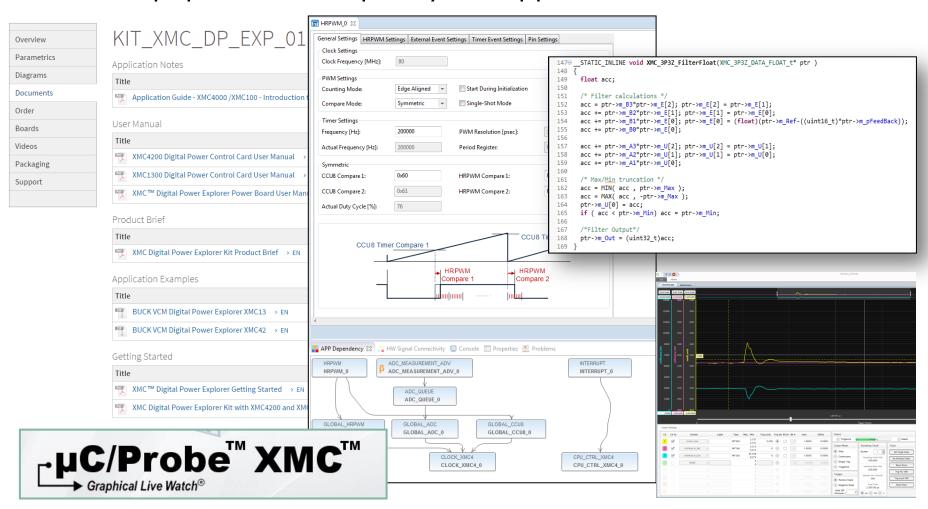
## XMC<sup>™</sup> Digital Power Explorer Kit (1/2)



| Specification    |                   |  |
|------------------|-------------------|--|
| V <sub>in</sub>  | 12V <sub>DC</sub> |  |
| $V_{out\_nom}$   | $3,3V_{DC}$       |  |
| $I_{out}$        | 2A                |  |
| P <sub>out</sub> | 6W                |  |

| Infineon            | components            |
|---------------------|-----------------------|
| MCU                 | XMC4200 or<br>XMC1300 |
| MOSFETs             | OptiMOS<br>BSC0924NDI |
| MOSFET HB<br>Driver | IRS2011S<br>(IRF)     |

#### **Key features:**


- Synchronous buck converter with XMC4200 and XMC1300 in collaboration with Biricha and Würth Elektronik
  - To be used in Biricha trainings
- Different control schemes possible
  - Voltage mode control
  - Peak current mode control

- Learn digital control with XMC<sup>™</sup> by the hand of Biricha
- Understand the advantages of voltage/peak current control and how to extract the maximum of XMC<sup>™</sup> devices
- Compatible with XMC4200 and XMC1300
   Dig. Power Control Cards



## XMC<sup>™</sup> Digital Power Explorer Kit (2/2)

Website populated with plenty of support material



## Digital Power 800 W PFC Boost CCM with XMC1302





| Specification      |                        |  |
|--------------------|------------------------|--|
| V <sub>in</sub>    | 90-265 V <sub>AC</sub> |  |
| $V_{out\_nom}$     | 380 V <sub>DC</sub>    |  |
| $\mathbf{I}_{out}$ | 2.1 A                  |  |
| PWM freq           | 130 kHz                |  |
| THD                | <10%                   |  |
| Power<br>Factor    | >0.9 from 20% load     |  |
| Efficiency         | >96% from 20% load     |  |

| Infineon components |                        |  |
|---------------------|------------------------|--|
| MCU                 | XMC1302<br>(TSSOP38)   |  |
| MOSFET              | CoolMOS™ C7<br>600 V   |  |
| MOSFET<br>Driver    | 2EDN7524F non isolated |  |
| Diode               | SiC Gen 5 650 V        |  |
| Auxiliary<br>PSU    | ICE2QR4780Z            |  |

#### **Key features:**

- Classic PFC Boost stage digitally controlled with XMC1302 including voltage and current loops
- Protections, including cycle by cycle current protection
- Run time debug with isolated UART to PC > interface and PC Software

- High efficient PFC stage with a complete system solution from Infineon
  - HW and SW available
- Use MATH co-processor to accelerate calculations like divisions
  - Higher switching frequency permits higher power density



#### 600 W LLC Digital Control with XMC4200



| Specification    |                    |  |
|------------------|--------------------|--|
| V <sub>in</sub>  | 350-410 VDC        |  |
| $V_{out\_nom}$   | 12 VDC             |  |
| $I_{out}$        | 50 A               |  |
| P <sub>out</sub> | 600 W              |  |
| Peak eff.        | 97.8% @50%<br>load |  |
| Eff.             | >95% @ 10%<br>load |  |

| Infineon o       | components              |
|------------------|-------------------------|
| MCU              | XMC4200<br>(VQFN48)     |
| MOSFET SR        | BSC010N04LS             |
| HB Driver        | 2EDL05N06PF             |
| LLC<br>HB MOSFET | CoolMOS™<br>IPP60R190P6 |
| Auxiliary PSU    | ICE2QR2280Z             |

#### **Key features:**

- 600 W LLC half bridge stage with Sync rectification (SR)
- All controlled with XMC4200 including:
  - Adaptive dead time and capacitive mode detection
  - No hard commutation at any condition

- Learn LLC topology with a complete system solution from Infineon
- Close to customer solution
  - high efficiency → 97,8%
  - Reliability and power density

## 3 kW Dual Phase LLC converter using XMC4400





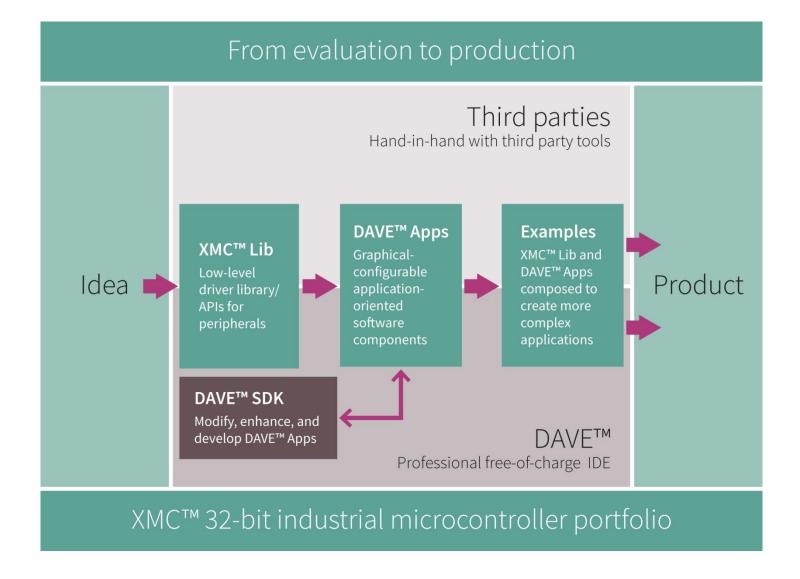
| Specification        |                          |  |
|----------------------|--------------------------|--|
| V <sub>in</sub>      | 350-410 V <sub>DC</sub>  |  |
| $V_{out\_nom}$       | 54,3 V <sub>DC</sub>     |  |
| I <sub>out max</sub> | 55 A                     |  |
| $P_o^-$              | 3 kW                     |  |
| Peak<br>efficiency   | >98,5%                   |  |
| Efficiency           | >97.2% in all load range |  |

| Infineon components |                  |  |
|---------------------|------------------|--|
| MCU                 | XMC4400 (LQFP64) |  |
| MOSFETs             | OptiMOS 5        |  |
| SR                  | BSC093N15NS5     |  |
| Gate                | 2EDN7524R        |  |
| Drivers             | 1EDI60N12AF      |  |
| LLC                 | CoolMOS™ P6/C7-  |  |
| MOSFET              | IPP(W)60R040C7   |  |
| Auxiliary<br>PSU    | ICE2QR2280Z      |  |

#### **Key features:**

- 3 kW Dual Phase LLC with Sync rectification
  - Full digital control by XMC4400 on secondary side
  - Digital current sharing with phase shedding
  - Accurate algorithm able to prevent hard commutation and capacitive load mode in LLC operation

- Highly sophisticated HW and SW design available → very flat efficiency curve
  - Efficiency peak 98.5% and >97.2% in the entire load range thanks to current balancing algorithm (Cortex® M4 core at 120 MHz)
  - Improved performance thanks to adaptive dead time implemented with HRWPM




## Agenda

- 1 Why XMC™ for digital power control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software

# Development Tools and Software DAVE™- Software development made easy







#### Support material:

## Collaterals and Brochures





- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

www.infineon.com/XMC

#### **Technical Material**





- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVETM
- Software and Tool Ecosystem

#### **Videos**



- Technical Videos
- Product Information Videos

- Infineon Media Center
- XMC Mediathek

#### Contact



- Forums
- Product Support

- Infineon Forums
- <u>Technical Assistance Center (TAC)</u>



## Glossary abbreviations

VADC
Versatile Analog Digital Converter

CCM Continuous Conduction Mode

CMP Comparator

DAC Digital to Analog Converter

→ DAVE™ Free development IDE for XMC

> HRPWM High Resolution PWM

LLC Power stage topology built with 2 inductors

(L) and 1 capacitor (C)

> PFC Power Factor Correction

PWM Pulse Width Modulation



#### Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.



Part of your life. Part of tomorrow.

