XMC[™] microcontrollers October 2016

Agenda

- 1 Why XMC™ for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

Agenda

- 1 Why XMC™ for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

Why XMC[™] for motor control?

Wide microcontroller portfolio

XMC1000 ARM® Cortex®-M0

32 MHz 48 MHz

Flash (kB): 16 32 64 128 200 64 128 256 512 1024 2048 Pins: 16 24 28 38 40 64

XMC4000 ARM® Cortex®-M4

80 MHz 120 MHz 144 MHz MATH Coprocessor FPU and DSP instructions

48 64 100 144 196

- Fast 12-bit ADC
- Position interfaces for Hall sensors, incremental encoders and resolvers
- PWM units tailored for sinusoidal and trapezoidal commutation pattern
- Ideal for Field-Oriented Control (FOC)

XMC[™] product portfolio

- XMC1000 family overview

XMC[™] product portfolio

- XMC4000 family overview

Agenda

- 1 Why XMC[™] for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

Key microcontroller features

Highlights

XMC[™] microcontrollers are well suited for various motor control applications and their specific control schemes

Well tailored and interconnected analog, PWM and sensor interface peripherals are scalable over the entire XMC[™] family

Key feature

- Dedicated motor control peripherals for various control schemes and sensors
- Interconnected analog, PWM and sensor interface peripherals
- ARM® Cortex®-M CPU portfolio range from M0 with MATH to M4 with FPU

- Select and configure the peripherals with respect to the specific requirements
- Autonomous peripherals ensure precise control for high energy efficiency
- Easy cost and performance balancing within the entire XMC[™] portfolio

Dedicated motor control peripherals for various control schemes and sensors

Feature rich peripherals

with dedicated motor control features allow optimization of the system behaviour with respect to the specific application's requirements BLDC control with Hall sensors

FOC control with encoder

> FOC control with resolver

Interconnected analog, PWM and sensor interface peripherals

XMC[™] ARM[®] Cortex[®]-M0

- with MATH coprocessor

- XMC1300 series with 16 to 40 pins
 - 32-bit ARM® Cortex®-M0 core running at 32 MHz
 - MATH coprocessor running at 64 MHz
 - 7x faster division compared to other Cortex®-M0 devices
 - 38x faster sine, cosine and arctangent calculations
 - High resolution Park/Inverse Park Transforms at 24-bit in less than 1 μ s
 - PWM units clocked at 64 MHz for precise modulation
- XMC1400 series with 40 to 64 pins
 - 32-bit ARM® Cortex®-M0 core running at 48 MHz
 - MATH coprocessor running at 96 MHz
 - PWM units clocked at 96 MHz for precise modulation
 - CAN bus connectivity

XMC[™] ARM[®] Cortex[®]-M4

with FPU and EtherCAT®

- XMC4000 Series with 48 to 196 pins
 - 32-bit ARM® Cortex®-M4 core with FPU running at 80 MHz to 144 MHz
 - DSP instruction set with saturation and MAC instructions
 - Wide temperature range from -40°C to 125°C
- As a highlight, XMC4300 and XMC4800 are the first-ever highly integrated ARM® Cortex®-M based microcontrollers with EtherCAT® integrated
 - Bringing real-time Ethernet communication into an unrivaled level
 - Ease of implementation
 - Cost effectiveness

Agenda

- 1 Why XMC[™] for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

XMC[™] motor control application kits - for DC motors

Development boar	ds	Order number	Kit/ref design
DC motor control shield with BTN8982TA for Arduino	UBAT OUT TO CHARLES O	DC-MOTORCONT R BTN8982	Kit
24 V protected switch shield with BTT6030-2EKA and BTT6020-1EKA for Arduino	To receive during the second of the second o	24V SHIELD BTT 6030	Kit
H-bridge kit 2GO	G Infrared Control of Infr	HBRIDGEKIT2GO TOBO1	Kit

- for low voltage AC motors (1/2)

Development boards		Order number	Kit/ref design
XMC1000 motor control application kit		KIT XMC1X AK MOTOR 001	Kit
XMC1300 boot kit		<u>KIT XMC13 BOO</u> <u>T 001</u>	Kit
XMC1400 boot kit		KIT XMC14 BOO T 001	Kit
XMC4400 motor control application kit		KIT XMC44 AE3 001	Kit

- for low voltage AC motors (2/2)

Development boar	ds	Order number	Kit/ref design
24 V, 250 W motor drive power card for XMC1000 and XMC4000		(coming soon)	Kit

- for high voltage AC motors (1/2)

Development boards		Order number	Kit/ref design
XMC [™] 750 Watt motor control application kit	IAC.758 WAR Maint Comm. Agris of on ED	KIT XMC750WAT T MC AK V1	Kit
XMC1300 drive card		KIT XMC1300 D C V1	Kit
XMC4400 drive card		KIT XMC4400 D C V1	Kit

- for high voltage AC motors (2/2)

Development boar	ds	Order number	Kit/ref design
iMOTION™ modular application design kit (MADK)		EVALM11302056 5DTOBO1 EVALM11302058 4DTOBO1 EVALM11302364 5ATOBO1 EVALM11302368 4ATOBO1	Kit

XMC[™] motor control reference designs and system demonstrators

System solution		Order number	Kit/ref design
BLDC power tool reference design 1 kW / 20 V _{DC}		On request OPN:EVALSSO81 KWBLDCTOBO1	Kit / Ref design
40mm server fan reference design with XMC1302 in VQFN24 package	Fan Hotor Control	-	Ref design
Modular 3-phase motor drive 100 W / 230 V _{AC}		_	Ref design
Multi-axis drive and motion control with XMC4400		_	demo

DC motor control shield with BTN8982TA for Arduino

- Compatible with Arduino Uno R3 and XMC1100 boot kit from Infineon
- Capable of high frequency PWM, e.g. 30 kHz
- Diagnosis with current sense
- Protection e.g. against over-temperature and overcurrent

- Rapid prototyping of DC motor control in half and full bridge configuration
- Precise control and small current ripples
- Easy overload detection and current limitation by software control
- Robust design platform without hesitation

24 V protected switch shield with BTT6030-2EKA and BTT6020-1EKA for Arduino

Key features:

- Compatible with Arduino microcontroller boards and XMC[™] microcontroller kits using the Arduino form factor (e.g.: XMC1100 boot kit)
- 8 V 36 V input voltage (max. 5V 48V), current up to 5 A per channel
- > Capable of PWM up to 400 Hz
- Driver circuit with logic level inputs

- Fast and inexpensive prototyping of 24 V load driving, e.g.: motors
- Load diagnosis with current sense capability
- Over temperature shut down with latch behaviour

H-bridge kit 2GO

Key features:

- Control of DC motors or other inductive loads up to 6 A or up to 36 V of supply
- General purpose H-bridge IFX9201 combined with XMC1100
- Outputs can be pulse width modulated at frequencies up to 20 kHz
- SPI enables for easy diagnosis

- Rapid prototyping of DC motor control in half and full bridge configuration
- Simple design with few external components
- Easy protection of over current and over temperature

XMC1000 motor control application kit

Key features:

- Robust 12 V 24 V 3-phase inverter for maximum 3 A
- Multiple position sensing interfaces
 - Quadrature encoder interface
 - Hall sensor interface
- Seamless connection to the XMC1300 or XMC1400 boot kits

- Rapid prototyping of PMSM and BLDC motor control schemes with various position and current feedback sensors
- This modular system allows users to evaluate the XMC1302 or XMC1404 microcontrollers with respect to motor control feature set and performance

XMC4400 motor control application kit

Key features:

- Robust 3-phase 24 V inverter for nominal dc-link current 5 A (max. 7.5 A)
- Multiple position sensing interfaces
 - Inductive resolver interface
 - Quadrature encoder interface
 - Hall sensor interface
- Seamless connection to XMC4000 CPU boards (e.g. CPU_44A-V2, CPU_45A-V2)

- Rapid prototyping of PMSM and BLDC motor control schemes with various position and current feedback sensors
- This modular system allows to evaluate any XMC4000 microcontroller with respect to motor control feature set and performance

24 V, 250 W motor drive power card for XMC1000 and XMC4000

Key features:

- Robust 16 V 42 V (60 V max) 3-phase motor drive bridge, equipped with 6x BSC014N06N OptiMOS™ 80 V, 1.4 mΩ
- Half-bridge gate driver 2EDL05N06PF EiceDRIVER™ in SO8 package with SOI technology
- Seamless connection to XMC1000 and XMC4000 drive cards

- Rapid prototyping of PMSM and BLDC motor control from low to middle-range power
- Allows evaluation of XMC1000 and XMC4000 in the same ecosystem
- Flexible to adopt many different control algorithms

XMC[™] 750 watt motor control application kit

- Include two XMC[™] drive cards with galvanic isolation to target device
- 3-phase inverter and analog or digital PFC
- Support with various sense & control techniques (including shunt, resolver, Hall sensors for FOC)

Key features:

- Ready to use 750 W power inverter with PFC with wide supply range (115 V_{AC} to 230 V_{AC}) and nominal 3 A motor current
- XMC1300 and XMC4400 drive cards included
- Isolated debug interface providing Cortex®-SWD channel and COM-port (UART) channel

- Gives jumpstart into evaluation of XMC™ microcontroller and motor control performance
- Allows evaluation of XMC1000 as well as XMC4000 in the same ecosystem
- Robust and non-hazardous control via standard tools for debugging, data analysis and control

XMC[™] drive cards with galvanic isolation

- On-board J-Link Lite debugger with galvanic isolation to target device
- Flexible and modular with clearly defined interfaces
- Isolated debug interfaces
 - SWD
 - UART
 - CAN (if applicable)
- Other interfaces
 - Hall Sensors
 - Encoder
 - UART/SPI/I2C
 - Others

iMOTION™ modular application design kit

- introduction

- Compact and modular 3-phase motor drive system solution platform with scalable controller and IPM inverter board options
- Designed for sensorless or sensored motor control
- Spin your motor in less than 1 hour thanks to provided motor control software and easy-to-use GUI for parametrization and tuning

Individual board

iMOTION™ modular application design kit - available kits and boards overview (1/2)

Controller boards

EVAL-M1-099M IRMCK099 control card SP001591856

EVAL-M1-1302 XMC1302 control card SP001591894

Inverter boards

EVAL-M1-36-84A µIPM™ power board IRSM836-084MA 250 V SP001592062

EVAL-M1-36-45A µIPM™ power board IRSM836-045MA 500 V SP001592052

EVAL-M1-05-84D µIPM™-DIP power board IRSM505-084DA2 250 V SP001591850

EVAL-M1-05-65D µIPM™-DIP power board IRSM505-065DA2 500 V SP001591474

EVAL-M1-1302 36-84A

XMC1302 control card + Powerstage based on IRSM836-084MA, µIPM™, 250 V SP001592044

EVAL-M1-1302_36-45A

XMC1302 control card + Powerstage based on IRSM836-045MA, µIPM™, 500 V SP001592034

EVAL-M1-1302 05-84D

XMC1302 control card + Powerstage based on IRSM505-084DA2, µIPM™-DIP, 250 V SP001591814

EVAL M1-1302 05-65D

XMC1302 control card + Powerstage based on IRSM505-065DA2, µIPM™-DIP, 500 V SP001591902

More iMOTION™ MADK controller and inverter boards coming soon...

iMOTION™ modular application design kit - available kits and boards overview (2/2)

No.	Kit name	Kit description	Order number	Input voltage /output power
1	Eval-M1- 1302_05-65D	Eval-M1-1302, Eval-M1-05-65D, USB cable	EVALM113020565D TOBO1	100 V _{AC} - 230 V _{AC} up to 250 W
2	Eval-M1- 1302_05-84D	Eval-M1-1302, Eval-M1-05-84D, USB cable	EVALM113020584D TOBO1	100 V _{AC} – 120 V _{AC} up to 250 W
3	Eval-M1- 1302_36-45A	Eval-M1-1302, Eval-M1-36-45A, USB cable	EVALM113023645A TOBO1	100 V _{AC} - 230 V _{AC} up to 80 W
4	Eval-M1- 1302_36-84A	Eval-M1-1302, Eval-M1-36-84A, USB cable	EVALM113023684A TOBO1	100 V _{AC} – 120 V _{AC} up to 80 W

For more details about individual board (control cards and μIPM™-based inverters), please check the additional documentation on www.infineon.com/MADK

Reference design / demo

- BLDC power tool 1 kW / 20 V_{DC}

- Key Infineon components:
 - Microcontroller:
 - XMC1302 in TSSOP38
 - Power stage:
 - OptiMOS™ 1.05 mΩ / 40 V BSC010N04LSI
 - EiceDRIVER™ 2EDL05N06PF

Key features:

- 3-phase BLDC motor driver (6 V-24 V,) 50 A continuous, 200 A peak) with Hall sensor based block commutation on XMC1302
- Synchronous PMW transitions
- Motor model based speed control
- MOSFET driver voltage boost control
- Over current, over load, over temperature protection

- Precise and efficient control of power tool motor with best in class OptiMOS™ power MOSFETs
- Minimized power losses
- Best tool performance
- Extended supply voltage range
- Maximum robustness by dedicated hardware and software features

Reference design / demo

- Key Infineon components:
 - Microcontroller:
 - XMC1302 in VQFN24
 - Power:
 - OptiMOS™ P + N channel BSL308C
 - 5 V LDO IFX20001MBV50

Key features:

- 3-phase motor driver (12 V, 1 A) with sensorless FOC based on XMC1302 in VQFN24
- Smooth start-up control of sinusoidal output voltage and closed loop speed control up to 25000 rpm
- Lock detection, over current protection, reverse polarity protection
- Control interface: PWM speed input / FG speed output

- Maximum energy efficiency at lowest bill of material cost and smallest form factor
- Minimum audible noise at low speed and maximum performance at high speed
- Reliable operation under all circumstances
- Compatible to many fan control ASICs

Reference design / demo

- modular 3-phase motor drive

Highlights:

- Modular concept:
 - Power supply for 325 V, 15 V and 5 V
 - Inverter card: 100 W with fast reverse conducting IGBT (DPAK)
 - XMC1300 drive card
- Applications:
 - Fridge compressor
 - Pump
 - Fan

Key features and benefits:

- Easy performance comparison of different IGBTs, MOSFETs and IPMs
- Fast adaptation to continuously growing IGBT, MOSFET and IPM portfolio
- Easy performance comparison of different XMC[™] microcontrollers
- Software evaluation and development platform

System demonstrator with XMC4400 multi-axis drive and motion control

- Demonstrator for system integration of HMI, PLC, CAN and XMC4000
- Multi-axis motion control
 - Manual movement
 - Homing
 - Positioning
 - Hand-wheel ("electrical shaft")
- XMC4400 dual motor control
 - Torque, speed & position loop
 - FOC with encoder

XMC4400 tasks

- Dual FOC with torque, speed and position loop at 20 kHz cycle
- Dual shunt current measurement with hardware synchronized ADC channels
- CAN communication for speed and position control with PLC as well as parameter handling
- Software is based on DAVE™ 3 motor control APPs with only a few lines of user code

Agenda

- 1 Why XMC[™] for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

Development tools and software DAVE™ - software development made easy

µC/Probe™ XMC™

μC/Probe™ XMC™ - Windows based application that allows you to read and write the memory of XMC™ microcontrollers during run-time in a non-intrusive way and with a graphical dashboard to fine-tune your

application

Examples - motor control GUI

XMC[™] Flasher

XMC[™] Flasher - programming tool for on-chip flash programming of XMC[™] microcontrollers

Motor control example projects

Users can download DAVE™ 4 motor control example projects from <u>Infineon website</u>, e.g.:

Project	Description	Target MCU	Version	Last Update	Tool
BLDC_SCALAR _HALL_XMC13	This example project controls 3-phase BLDC motor with 3 hall sensor feedback using block commutation control algorithm. This is configured for Infineon low voltage motor control kit KIT_XMC1X_AK_MOTOR_001 with Maxon motor part number 267121	XMC1300	1.0.0	2016-05- 25	DAVE™
PMSM_FOC_EX AMPLE_XMC13	This example demonstrates permanent magnet synchronous motor control using sensorless FOC algorithm. Speed of the motor is changed by potentiometer value	XMC1300	4.2.6	2016-04- 28	DAVE™
PMSM_FOC_EX AMPLE_XMC44	This example demonstrates speed control of motor using V/f with smooth transition to FOC closed loop start up technique. Speed of the motor is changed by potentiometer input value	XMC4400	4.2.6	2016-04- 28	DAVE™

Agenda

- 1 Why XMC[™] for motor control?
- 2 Key microcontroller features
- 3 Kits and reference design
- 4 Development tool and software
- 5 General information

Support material:

Collaterals and Brochures

- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

www.infineon.com/XMC

Technical Material

- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVETM
- Software and Tool Ecosystem

Videos

- Technical Videos
- Product InformationVideos

- Infineon Media Center
- XMC Mediathek

Contact

- Forums
- Product Support

- > Infineon Forums
- Technical Assistance Center (TAC)

Glossary abbreviations (1/2)

AC Alternating Current

ADC Analog-to-Digital Converter

BEMF Back Electromotive Force

BLDC Brushless DC Motor

CAN Controller Area Network

CPU Central Processing Unit

DAC Digital-to-Analog Converter

› DAVE™ Digital Application Virtual Engineer

DC Direct Current

 \rightarrow DSD Delta Sigma ($\Delta\Sigma$) Demodulator

DSP Digital Signal Processor

FOC Field-Oriented Control

Glossary abbreviations (2/2)

FPU Floating Point Unit

GUI Graphical User Interface

HMI Human-Machine Interface

IPM Intelligent Power Modules

MADK Modular Application Design Kit

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

> PLC Programmable Logic Controller

> PMSM Permanent Magnet Synchronous Motor

> POSIF Position Interface

> PWM Pulse Width Modulation

RAM Random-Access Memory

> XMC[™] Cross-Market Microcontrollers

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

