XMC™ in motor control applications
XMC™ microcontrollers
October 2016
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
Why XMC™ for motor control?

› Wide microcontroller portfolio

<table>
<thead>
<tr>
<th>XMC1000</th>
<th>XMC4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM® Cortex®-M0</td>
<td>ARM® Cortex®-M4</td>
</tr>
<tr>
<td>32 MHz</td>
<td>80 MHz</td>
</tr>
<tr>
<td>48 MHz</td>
<td>120 MHz</td>
</tr>
<tr>
<td>MATH Coprocessor</td>
<td>FPU and DSP instructions</td>
</tr>
</tbody>
</table>
Flash (kB): 16 32 64 128 200 64 128 256 512 1024 2048
Pins: 16 24 28 38 40 64 48 64 100 144 196

› Peripherals tailored for motor control
 - Fast 12-bit ADC
 - Position interfaces for Hall sensors, incremental encoders and resolvers
 - PWM units tailored for sinusoidal and trapezoidal commutation pattern

› Ideal for Field-Oriented Control (FOC)
XMC™ product portfolio - XMC1000 family overview

ARM® Cortex®-M0
- Core up to 48 MHz / peripherals up to 96 MHz
- Capture Compare Units (CCU4)
- Up to 4x serial channels
- 12-bit ADC
- Tₐ = -40°C to 105°C

DC motor control
- XMC1100
 - Up to 64 kB Flash
 - 16 – 40 pins
 - + 9ch LED control (BCCU)
 - + 3x analog comparators

XMC1200
- Up to 200 kB Flash
- 16 – 40 pins

XMC1300
- Up to 200 kB Flash
- 16 – 40 pins
- + Math Coprocessor
- + CCU8 PWM timer
- + Hall & encoder I/F

XMC1400
- Up to 200 kB Flash
- 40 – 64 pins
- + 2x CAN
- + 2x CCU8
- + Up to 4 serial channels

>70% performance increase

Low-end motor control

Wide supply voltage range 1.8 V – 5.5 V

Secure boot loader – ensure IP protection

Application specific peripherals
- MATH Co-processor
- Event Request Unit (ERU)
- High-performance analog comparators
- PWM Timer (CCU8) for motor control
- LED Brightness Color Control Unit (BCCU)

16/28/38 TSSOP – VQFN24/40/64 – TQFP64

Copyright © Infineon Technologies AG 2016. All rights reserved.
XMC™ product portfolio - XMC4000 family overview

ARM® Cortex®-M4 (with FPU)
- CPU frequency up to 144 MHz
- High performance Flash technology
- Timers CCU4, CCU8, POSIF
- USB / up to 6x CAN / up to 6x serial channels
- Up to 4x 12-bit ADC / 2x DAC
- $T_A = -40^\circ C$ to $125^\circ C$

XMC4400
- Up to 512 kB Flash / 80 kB RAM
- 64-100 pins
- + 120 MHz core
- + Ethernet
- + ΔΣ demodulator

XMC4500
- Up to 1 MB Flash / 160 kB RAM
- 100 – 144 pins
- + EBU
- + SD card

XMC4700
- Up to 2 MB Flash / 352 kB RAM
- 100 – 196 pins
- + 144 MHz core
- + 6ch CAN

XMC4800
- 256 kB Flash / 128 kB RAM
- 100 pins

XMC4100/4200
- Up to 256 kB Flash / 40 kB RAM
- 48-64 pins
- + 120 MHz core
- + Ethernet
- + ΔΣ demodulator

Mid-range motor control

48 QFN – 64-144 LQFP – 196 BGA

Long product life cycle (min. 2031)

Extended temperature range - up to $T_A 125 $°C + continues up time of 20 years @$T_J 110^\circ C$

Application specific peripherals
- High Resolution PWM (HRPWM)
- Event Request Unit (ERU)
- High-speed analog comparators + slope generation
- PWM Timer (CCU8) for inverter control
- Delta Sigma Demodulator (DSD)

Copyright © Infineon Technologies AG 2016. All rights reserved.
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
Key microcontroller features

Peripherals for motor control applications

- ADC
- CCU8
- CCU4
- ARM® Cortex®-M
- MATH
- POSIF
- DSD

Highlights

XMC™ microcontrollers are well suited for various motor control applications and their specific control schemes.

Well tailored and interconnected analog, PWM and sensor interface peripherals are scalable over the entire XMC™ family.

Key feature

- Dedicated motor control peripherals for various control schemes and sensors
- Interconnected analog, PWM and sensor interface peripherals
- ARM® Cortex®-M CPU portfolio range from M0 with MATH to M4 with FPU

Customer benefits

- Select and configure the peripherals with respect to the specific requirements
- Autonomous peripherals ensure precise control for high energy efficiency
- Easy cost and performance balancing within the entire XMC™ portfolio

Copyright © Infineon Technologies AG 2016. All rights reserved.
Dedicated motor control peripherals for various control schemes and sensors

Feature rich peripherals
with dedicated motor control features allow optimization of the system behaviour with respect to the specific application’s requirements

- BLDC control with Hall sensors
- FOC control with encoder
- FOC control with resolver
Interconnected analog, PWM and sensor interface peripherals

Sensor interface peripherals

PWM peripherals

Interconnect matrix

Analog peripherals

Copyright © Infineon Technologies AG 2016. All rights reserved.
XMC™ ARM® Cortex®-M0 - with MATH coprocessor

› XMC1300 series with 16 to 40 pins
 - 32-bit ARM® Cortex®-M0 core running at 32 MHz
 - MATH coprocessor running at 64 MHz
 - 7x faster division compared to other Cortex®-M0 devices
 - 38x faster sine, cosine and arctangent calculations
 - High resolution Park/Inverse Park Transforms at 24-bit in less than 1 μs
 - PWM units clocked at 64 MHz for precise modulation

› XMC1400 series with 40 to 64 pins
 - 32-bit ARM® Cortex®-M0 core running at 48 MHz
 - MATH coprocessor running at 96 MHz
 - PWM units clocked at 96 MHz for precise modulation
 - CAN bus connectivity
XMC™ ARM® Cortex®-M4
- with FPU and EtherCAT®

› XMC4000 Series with 48 to 196 pins
 - 32-bit ARM® Cortex®-M4 core with FPU running at 80 MHz to 144 MHz
 - DSP instruction set with saturation and MAC instructions
 - Wide temperature range from -40°C to 125°C

› As a highlight, XMC4300 and XMC4800 are the first-ever highly integrated ARM® Cortex®-M based microcontrollers with EtherCAT® integrated
 - Bringing real-time Ethernet communication into an unrivaled level
 - Ease of implementation
 - Cost effectiveness
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
XMC™ motor control application kits - for DC motors

<table>
<thead>
<tr>
<th>Development boards</th>
<th>Order number</th>
<th>Kit/ref design</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC motor control shield with BTN8982TA for Arduino</td>
<td>DC-MOTORCONT R_BTN8982</td>
<td>Kit</td>
</tr>
<tr>
<td>24 V protected switch shield with BTT6030-2EKA and BTT6020-1EKA for Arduino</td>
<td>24V_SHIELD_BTT 6030</td>
<td>Kit</td>
</tr>
<tr>
<td>H-bridge kit 2GO</td>
<td>HBRIDGEKIT2GO TOBO1</td>
<td>Kit</td>
</tr>
</tbody>
</table>

Copyright © Infineon Technologies AG 2016. All rights reserved.
Development boards

<table>
<thead>
<tr>
<th>Development boards</th>
<th>Order number</th>
<th>Kit/ref design</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMC1000 motor control application kit</td>
<td>KIT_XMC1X_AK_MOTOR_001</td>
<td>Kit</td>
</tr>
<tr>
<td>XMC1300 boot kit</td>
<td>KIT_XMC13_BOOT_001</td>
<td>Kit</td>
</tr>
<tr>
<td>XMC1400 boot kit</td>
<td>KIT_XMC14_BOOT_001</td>
<td>Kit</td>
</tr>
<tr>
<td>XMC4400 motor control application kit</td>
<td>KIT_XMC44_AE3_001</td>
<td>Kit</td>
</tr>
</tbody>
</table>
Development boards

<table>
<thead>
<tr>
<th>Description</th>
<th>Order number</th>
<th>Kit/ref design</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V, 250 W motor drive power card for XMC1000 and XMC4000</td>
<td>(coming soon)</td>
<td>Kit</td>
</tr>
</tbody>
</table>
XMC™ motor control application kits - for high voltage AC motors (1/2)

<table>
<thead>
<tr>
<th>Development boards</th>
<th>Order number</th>
<th>Kit/ref design</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMC™ 750 Watt motor control application kit</td>
<td>KIT_XMC750WATT_MC_AK_V1</td>
<td>Kit</td>
</tr>
<tr>
<td>XMC1300 drive card</td>
<td>KIT_XMC1300_D_C_V1</td>
<td>Kit</td>
</tr>
<tr>
<td>XMC4400 drive card</td>
<td>KIT_XMC4400_D_C_V1</td>
<td>Kit</td>
</tr>
<tr>
<td>Development boards</td>
<td>Order number</td>
<td>Kit/ref design</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>iMOTION™ modular application design kit (MADK)</td>
<td>EVALM11302056 5DTOBO1 EVALM11302058 4DTOBO1 EVALM11302364 5ATOBO1 EVALM11302368 4ATOBO1</td>
<td>Kit</td>
</tr>
</tbody>
</table>
XMC™ motor control reference designs and system demonstrators

<table>
<thead>
<tr>
<th>System solution</th>
<th>Order number</th>
<th>Kit/ ref design</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLDC power tool reference design
1 kW / 20 V\text{DC}</td>
<td>On request OPN: EVALSSO81 KWBLDCTOBO1</td>
<td>Kit / Ref design</td>
</tr>
<tr>
<td>40mm server fan reference design
with XMC1302 in VQFN24 package</td>
<td>-</td>
<td>Ref design</td>
</tr>
<tr>
<td>Modular 3-phase motor drive
100 W / 230 V\text{AC}</td>
<td>-</td>
<td>Ref design</td>
</tr>
<tr>
<td>Multi-axis drive and motion control with XMC4400</td>
<td>-</td>
<td>demo</td>
</tr>
</tbody>
</table>
DC motor control shield with BTN8982TA for Arduino

Key features:
› Compatible with Arduino Uno R3 and XMC1100 boot kit from Infineon
› Capable of high frequency PWM, e.g. 30 kHz
› Diagnosis with current sense
› Protection e.g. against over-temperature and overcurrent

Customer benefits:
› Rapid prototyping of DC motor control in half and full bridge configuration
› Precise control and small current ripples
› Easy overload detection and current limitation by software control
› Robust design platform without hesitation
24 V protected switch shield with BTT6030-2EKA and BTT6020-1EKA for Arduino

Key features:
› Compatible with Arduino microcontroller boards and XMC™ microcontroller kits using the Arduino form factor (e.g.: XMC1100 boot kit)
› 8 V - 36 V input voltage (max. 5V - 48 V), current up to 5 A per channel
› Capable of PWM up to 400 Hz
› Driver circuit with logic level inputs

Customer benefits:
› Fast and inexpensive prototyping of 24 V load driving, e.g.: motors
› Load diagnosis with current sense capability
› Over temperature shut down with latch behaviour
H-bridge kit 2GO

Key features:
› Control of DC motors or other inductive loads up to 6 A or up to 36 V of supply
› General purpose H-bridge IFX9201 combined with XMC1100
› Outputs can be pulse width modulated at frequencies up to 20 kHz
› SPI enables for easy diagnosis

Customer benefits:
› Rapid prototyping of DC motor control in half and full bridge configuration
› Simple design with few external components
› Easy protection of over current and over temperature
XMC1000 motor control application kit

Key features:

› Robust 12 V - 24 V 3-phase inverter for maximum 3 A
› Multiple position sensing interfaces
 - Quadrature encoder interface
 - Hall sensor interface
› Seamless connection to the XMC1300 or XMC1400 boot kits

Customer benefits:

› Rapid prototyping of PMSM and BLDC motor control schemes with various position and current feedback sensors
› This modular system allows users to evaluate the XMC1302 or XMC1404 microcontrollers with respect to motor control feature set and performance

Include motor 24 V PMSM with hall sensors
XMC4400 motor control application kit

Key features:

› Robust 3-phase 24 V inverter for nominal dc-link current 5 A (max. 7.5 A)
› Multiple position sensing interfaces
 - Inductive resolver interface
 - Quadrature encoder interface
 - Hall sensor interface
› Seamless connection to XMC4000 CPU boards (e.g. CPU_44A-V2, CPU_45A-V2)

Customer benefits:

› Rapid prototyping of PMSM and BLDC motor control schemes with various position and current feedback sensors
› This modular system allows to evaluate any XMC4000 microcontroller with respect to motor control feature set and performance

Include motor
24 V PMSM with Hall sensors and encoder

Copyright © Infineon Technologies AG 2016. All rights reserved.
24 V, 250 W motor drive power card for XMC1000 and XMC4000

Key features:
› Robust 16 V - 42 V (60 V max) 3-phase motor drive bridge, equipped with 6x BSC014N06N OptiMOS™ 80 V, 1.4 mΩ
› Half-bridge gate driver 2EDL05N06PF EiceDRIVER™ in SO8 package with SOI technology
› Seamless connection to XMC1000 and XMC4000 drive cards

Customer benefits:
› Rapid prototyping of PMSM and BLDC motor control from low to middle-range power
› Allows evaluation of XMC1000 and XMC4000 in the same ecosystem
› Flexible to adopt many different control algorithms
XMC™ 750 watt motor control application kit

Key features:
- Include two XMC™ drive cards with galvanic isolation to target device
- 3-phase inverter and analog or digital PFC
- Support with various sense & control techniques (including shunt, resolver, Hall sensors for FOC)

Customer benefits:
- Gives jumpstart into evaluation of XMC™ microcontroller and motor control performance
- Allows evaluation of XMC1000 as well as XMC4000 in the same ecosystem
- Robust and non-hazardous control via standard tools for debugging, data analysis and control

Key features:
- Ready to use 750 W power inverter with PFC with wide supply range (115 V\textsubscript{AC} to 230 V\textsubscript{AC}) and nominal 3 A motor current
- XMC1300 and XMC4400 drive cards included
- Isolated debug interface providing Cortex®-SWD channel and COM-port (UART) channel
XMC™ drive cards with galvanic isolation

- On-board J-Link Lite debugger with galvanic isolation to target device
- Flexible and modular with clearly defined interfaces
- Isolated debug interfaces
 - SWD
 - UART
 - CAN (if applicable)
- Other interfaces
 - Hall Sensors
 - Encoder
 - UART/SPI/I2C
 - Others
iMOTION™ modular application design kit - introduction

- Compact and modular 3-phase motor drive system solution platform with scalable controller and IPM inverter board options
- Designed for sensorless or sensored motor control
- Spin your motor in less than 1 hour thanks to provided motor control software and easy-to-use GUI for parametrization and tuning
iMOTION™ modular application design kit - available kits and boards overview (1/2)

Controller boards

- **EVAL-M1-099M**
 - IRMCK099 control card
 - SP001591856

- **EVAL-M1-1302**
 - XMC1302 control card
 - SP001591894

Individual board

- **EVAL-M1-1302_36-84A**
 - XMC1302 control card + Powerstage based on IRSM836-084MA, µIPM™, 250 V
 - SP001592044

- **EVAL-M1-1302_36-45A**
 - XMC1302 control card + Powerstage based on IRSM836-045MA, µIPM™, 500 V
 - SP001592034

- **EVAL-M1-1302_05-84D**
 - XMC1302 control card + Powerstage based on IRSM505-084DA2, µIPM™-DIP, 250 V
 - SP001591814

- **EVAL-M1-1302_05-65D**
 - XMC1302 control card + Powerstage based on IRSM505-065DA2, µIPM™-DIP, 500 V
 - SP001591902

Inverter boards

- **EVAL-M1-36-84A**
 - µIPM™ power board IRSM836-084MA 250 V
 - SP001592062

- **EVAL-M1-36-45A**
 - µIPM™ power board IRSM836-045MA 500 V
 - SP001592052

- **EVAL-M1-05-84D**
 - µIPM™-DIP power board IRSM505-084DA2 250 V
 - SP001591850

- **EVAL-M1-05-65D**
 - µIPM™-DIP power board IRSM505-065DA2 500 V
 - SP001591474

Kits

More iMOTION™ MADK controller and inverter boards coming soon...
For more details about individual board (control cards and µIPM™-based inverters), please check the additional documentation on www.infineon.com/MADK
Reference design / demo
- BLDC power tool 1 kW / 20 V$_{DC}$

Key Infineon components:
- Microcontroller:
 - XMC1302 in TSSOP38
- Power stage:
 - OptiMOS™ 1.05 mΩ / 40 V
 - BSC010N04LSI
 - EiceDRIVER™ 2EDL05N06PF

Key features:
- 3-phase BLDC motor driver (6 V-24 V, 50 A continuous, 200 A peak) with Hall sensor based block commutation on XMC1302
- Synchronous PMW transitions
- Motor model based speed control
- MOSFET driver voltage boost control
- Over current, over load, over temperature protection

Customer benefits:
- Precise and efficient control of power tool motor with best in class OptiMOS™ power MOSFETs
- Minimized power losses
- Best tool performance
- Extended supply voltage range
- Maximum robustness by dedicated hardware and software features
Reference design / demo
- 40 mm server fan with XMC1302 VQFN24

Key features:
› 3-phase motor driver (12 V, 1 A) with sensorless FOC based on XMC1302 in VQFN24
› Smooth start-up control of sinusoidal output voltage and closed loop speed control up to 25000 rpm
› Lock detection, over current protection, reverse polarity protection
› Control interface: PWM speed input / FG speed output

Key Infineon components:
- Microcontroller:
 - XMC1302 in VQFN24
- Power:
 - OptiMOS™ P + N channel BSL308C
 - 5 V LDO IFX20001MBV50

Customer benefits:
› Maximum energy efficiency at lowest bill of material cost and smallest form factor
› Minimum audible noise at low speed and maximum performance at high speed
› Reliable operation under all circumstances
› Compatible to many fan control ASICs
Reference design / demo - modular 3-phase motor drive

Highlights:
› Modular concept:
 - Power supply for 325 V, 15 V and 5 V
 - Inverter card: 100 W with fast reverse conducting IGBT (DPAK)
 - XMC1300 drive card
› Applications:
 - Fridge compressor
 - Pump
 - Fan

Key features and benefits:
› Easy performance comparison of different IGBTs, MOSFETs and IPMs
› Fast adaptation to continuously growing IGBT, MOSFET and IPM portfolio
› Easy performance comparison of different XMC™ microcontrollers
› Software evaluation and development platform
System demonstrator with XMC4400 multi-axis drive and motion control

- Demonstrator for system integration of HMI, PLC, CAN and XMC4000
- Multi-axis motion control
 - Manual movement
 - Homing
 - Positioning
 - Hand-wheel ("electrical shaft")
- XMC4400 dual motor control
 - Torque, speed & position loop
 - FOC with encoder

XMC4400 tasks
- Dual FOC with torque, speed and position loop at 20 kHz cycle
- Dual shunt current measurement with hardware synchronized ADC channels
- CAN communication for speed and position control with PLC as well as parameter handling

Software is based on DAVE™ 3 motor control APPs with only a few lines of user code
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
Development tools and software
DAVE™ - software development made easy

From evaluation to production

Third parties
Hand-in-hand with third party tools

XMC™ Lib
Low-level driver library/ APIs for peripherals

DAVE™ Apps
Graphical-configurable application-oriented software components

Examples
XMC™ Lib and DAVE™ Apps composed to create more complex applications

DAVE™ SDK
Modify, enhance, and develop DAVE™ Apps

DAVE™
Professional free-of-charge IDE

XMC™ 32-bit industrial microcontroller portfolio

Copyright © Infineon Technologies AG 2016. All rights reserved.
µC/Probe™ XMC™

› µC/Probe™ XMC™ - Windows based application that allows you to read and write the memory of XMC™ microcontrollers during run-time in a non-intrusive way and with a graphical dashboard to fine-tune your application

› Examples - motor control GUI
XMC™ Flasher

XMC™ Flasher - programming tool for on-chip flash programming of XMC™ microcontrollers
Motor control example projects

- Users can download DAVE™ 4 motor control example projects from [Infineon website](http://www.infineon.com), e.g.:

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Target MCU</th>
<th>Version</th>
<th>Last Update</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLDC_SCALAR_HALL_XMC13</td>
<td>This example project controls 3-phase BLDC motor with 3 hall sensor feedback using block commutation control algorithm. This is configured for Infineon low voltage motor control kit KIT_XMC1X_AK_MOTOR_001 with Maxon motor part number 267121</td>
<td>XMC1300</td>
<td>1.0.0</td>
<td>2016-05-25</td>
<td>DAVE™</td>
</tr>
<tr>
<td>PMSM_FOCAMPLE_XMC13</td>
<td>This example demonstrates permanent magnet synchronous motor control using sensorless FOC algorithm. Speed of the motor is changed by potentiometer value</td>
<td>XMC1300</td>
<td>4.2.6</td>
<td>2016-04-28</td>
<td>DAVE™</td>
</tr>
<tr>
<td>PMSM_FOCAMPLE_XMC44</td>
<td>This example demonstrates speed control of motor using V/f with smooth transition to FOC closed loop start up technique. Speed of the motor is changed by potentiometer input value</td>
<td>XMC4400</td>
<td>4.2.6</td>
<td>2016-04-28</td>
<td>DAVE™</td>
</tr>
</tbody>
</table>
Agenda

1. Why XMC™ for motor control?
2. Key microcontroller features
3. Kits and reference design
4. Development tool and software
5. General information
Support material:

<table>
<thead>
<tr>
<th>Collaterals and Brochures</th>
<th>Technical Material</th>
<th>Videos</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>‣ Product Briefs</td>
<td>‣ Application Notes</td>
<td>‣ Technical Videos</td>
<td>‣ Forums</td>
</tr>
<tr>
<td>‣ Selection Guides</td>
<td>‣ Technical Articles</td>
<td>‣ Product Information Videos</td>
<td>‣ Product Support</td>
</tr>
<tr>
<td>‣ Application Brochures</td>
<td>‣ Simulation Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‣ Presentations</td>
<td>‣ Datasheets, MCDS Files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‣ Press Releases, Ads</td>
<td>‣ PCB Design Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[www.infineon.com/XMC]</td>
<td>[www.infineon.com/XMC]</td>
<td>[Infineon Media Center, XMC Mediathek]</td>
<td>[Infineon Forums, Technical Assistance Center (TAC)]</td>
</tr>
</tbody>
</table>
Glossary abbreviations (1/2)

› AC Alternating Current
› ADC Analog-to-Digital Converter
› BEMF Back Electromotive Force
› BLDC Brushless DC Motor
› CAN Controller Area Network
› CPU Central Processing Unit
› DAC Digital-to-Analog Converter
› DAVE™ Digital Application Virtual Engineer
› DC Direct Current
› DSD Delta Sigma (ΔΣ) Demodulator
› DSP Digital Signal Processor
› FOC Field-Oriented Control
Glossary abbreviations (2/2)

› FPU Floating Point Unit
› GUI Graphical User Interface
› HMI Human-Machine Interface
› IPM Intelligent Power Modules
› MADK Modular Application Design Kit
› MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
› PLC Programmable Logic Controller
› PMSM Permanent Magnet Synchronous Motor
› POSIF Position Interface
› PWM Pulse Width Modulation
› RAM Random-Access Memory
› XMC™ Cross-Market Microcontrollers
Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.
Part of your life. Part of tomorrow.