

Application Note Please read the Important Notice and Warnings at the end of this document V1.0

www.infineon.com page 1 of 24 2018-02-07

AP32401

An introduction to MTV

Multi-Core Debug Solution (MCDS) Trace Viewer

About this document

Scope and purpose

This Application Note describes the basic usage of the MCDS (Multi-Core Debug Solution) Trace Viewer (MTV)

tool.

Non-intrusive, parallel trace with MCDS is a very powerful tool to analyze and debug a hard real-time system in

full operation.

Note: MTV can only be used with Emulation Devices (ED) and production devices with miniMCDS.

Intended audience

This Application Note is intended to introduce MTV to first-time users.

Disclaimer

Note: MTV is a free tool without support, and does not cover the complete MCDS functionality. For a tool

with full MCDS support please contact Infineon tool partners.

Table of contents

About this document ... 1

Table of contents .. 1

1 Getting started ... 3

1.1 Installation ... 3

1.2 First start-up .. 3

1.3 The trace table ... 4

2 First trace .. 5

2.1 Connect the Device ... 5

2.2 Load the Executable and Linking Format file ... 6

2.3 ‘Reset Device First’ option .. 6

2.4 Starting the trace ... 7

3 Example: Data Tracing inside an Interrupt.. 8

3.1 Trace setup .. 8

3.1.1 Trace buffer settings .. 8

3.1.2 Observation point setting .. 11

3.1.2.1 Program trace ... 12

3.1.2.2 Program Trigger .. 13

3.1.2.3 Data Trace ... 14

3.2 Tracing the ISR... 15

4 Common errors and further hints ...18

4.1 No data traced or wrong data traced ... 18

Application Note 2 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Table of contents

4.1.1 Halted CPU ... 18

4.1.2 Volatile programming .. 18

4.1.3 Wrong trigger .. 18

4.2 Zero ticks ... 18

4.3 Negative stack level ... 19

4.4 Unable to connect the device ... 19

4.5 Tooltips .. 20

4.6 File handling .. 20

4.7 Address qualification – Function not found ... 21

5 Acronyms ...22

Revision history ...23

Application Note 3 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Getting started

1 Getting started

1.1 Installation

MTV is part of the DAS installation. DAS can be downloaded at http://www.infineon.com/DAS.

Once DAS is installed, MTV can be found in the start menu or inside the DAS installation directory. For example

‘C:/Program Files/DAS/clients/mcds_trace_viewer.exe’.

1.2 First start-up

At MTV start-up the main GUI appears, providing some controls and the trace table. The trace table is of course

empty at first start-up, and no content is displayed (Figure 1 item (5)).

If a device is connected to the PC (such as a USB cable to a TriBoard or with a DAP miniWiggler), a standard

trace can be immediately generated by just pressing the record button (4).

Figure 1 Main MTV GUI

The important controls to first take note of are the following:

1. File

− The file menu is used to select the appropriate Executable-and-Linking-Format (ELF) file for the target

HW/SW-System. It is also possible to save the current MCDS configuration or load a previously saved

configuration. The trace data can also be saved (see Chapter 4.6).

2. Device

− Under the device menu, MTV can be connected to a specific device. Please make sure that the device is

powered, running and connected with the PC.

3. MCDS

− The MCDS menu is used to set up the complete MCDS on the target system. For example, observation

points, triggers, a trace buffer, and so on.

4. Record

− The record button is used to start and stop the tracing of the target system.

5. Trace table

− The trace table displays the trace data. The information is converted to a human readable format and

arranged in different columns which will be explained in the following section.

Application Note 4 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Getting started

1.3 The trace table

Note: Other controls not listed in this table are described in the next chapter where a first data trace is

set up and performed.

Table 1 Description of the trace table columns

Column header Description

TimeA The timestamp of the trace in nano seconds.

Be aware that the column default width may be too small and hides the first digits

(seconds).

TimeR TimeR displays the accumulation of the Ticks at a given time step.

Ticks The MCDS clock Ticks between trace messages.

Please note that one Tick is equal to two CPU cycles.

Opoint Displays the Observation Point of the trace data. The observation point is the physical

data acquisition point inside the SoC. For example the CPU0, CPU1, SRI bus, and so on.

Origin The origin of the activity. In most cases this is the same as Opoint.

For data trace at busses the Origin column displays the original master.

Data The Data column displays the data written or read.

Operation The operation being executed but not on the level of assembler mnemonics for program

trace. It displays a more abstract type of the operation.

For example; IP CALL, IP RET for program trace or R32, W32, R16, and so on, for data

trace.

Address The address column displays the pointer of the instruction (IP) which is being executed.

If the Operation column displays an R/W Operation, the address column displays the

address where data is read or written to.

Symbol / Label The Symbol and Label column refers to the symbols and labels provided by the ELF file.

Here you can see for instance which function an instruction belongs to.

Note that the function here refers directly to the C-Function. In case that there is no

symbol defined for a certain address range in the ELF file, the name of the HW resource is

displayed (such as memory or peripheral name).

SO Symbol Offset (SO) refers to the executed instruction or a data address.

Code or data symbols in an ELF file have a start address and a range. SO is the difference

to the start address. If there is no symbol defined in the ELF file the offset is displayed for

the associated HW resource.

Comment The Comment column mainly displays the mnemonic of the assembler instruction which

is being executed in this time step.

SL Stack Level (SL) indicates the current position on the stack.

The stack is used to save and restore the context when a function is called or returned.

Please note that the stack level is assumed as 0 at the beginning of the tracing.

Trace This column provides some additional information concerning the tracing. For example,

CFT for (Compact) Function Trace.

CFT JLF / TMF This column contains special information for compact function trace. This is out of the

scope for this basic application note.

Application Note 5 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

First trace

2 First trace

In order to perform the first trace, some settings are required. These basic settings will be described in this

section.

2.1 Connect the Device

As the first step, make sure your device is connected properly via a USB-Cable for a TriBoard, or otherwise via a

DAP miniWiggler.

After connecting the Device to the PC, open the ‘Device’ menu at the top and select ‘Connect Device…’ or press

[ALT]+[D]. A window with all the devices which are connected to the PC is shown (Figure 2).

Figure 2 Device selection window

Identify the correct Device and click the ‘Select’ button to connect to the device. If only one device is connected

to the computer it can be automatically connected by just clicking the record button.

Application Note 6 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

First trace

2.2 Load the Executable and Linking Format file

To get the full information of the trace data, an ELF file is needed. To load this, simply open the ‘File’ menu and

select ‘Open .elf File…’ or press [ALT]+[E]. A file browsing dialog is opened. In this dialog search for the ELF file

which runs on the device and open it (Figure 3).

Figure 3 ELF file browsing dialog

2.3 ‘Reset Device First’ option

This step is not mandatory but offers a reproducible trace behavior while observing the first trace. With this

option, any time a device is being traced, in any state, a reset of the device is performed first and then the

tracing is started. This allows us to see the initialization sequence of the device, which is normally being

executed before the main function after the device start.

To select this option, simply open the ‘Device’ menu and click the radio button control named ‘Reset Device

First’ (Figure 4).

Figure 4 ‘Reset Device First’ option turned on with the appropriate radio button

Application Note 7 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

First trace

2.4 Starting the trace

After all the settings are made, we can start our first trace by simply clicking the button at the top:

This button can have one of three different colors, all indicating the current status of the trace:

 Black

− No tracing is currently running.

− If the button is now pressed, the tracing will be started on the target device.

 Red

− The MTV / device is currently recording.

− If the button is now pressed again, the recording is stopped and the collected trace data will be

displayed.

 Yellow

− If a trigger condition is set for tracing, yellow indicates that the trigger condition was already met, but the

trace is still running until the circular trace buffer is ‘full’. Chapter 3 will cover triggers and go more into

detail on this.

After the trace has finished the trace data is displayed (Figure 5).

Figure 5 The result of the first trace

Here we can observe the start-up function of the target device.

At the Symbol/Label ‘_Core0_start’ (red dotted area) the first call inside the program creates the first CFT

message. This standard configuration trace is on Function level and without data.

The MTV has much more to offer than this basic trace. Therefore the next chapter will cover a more detailed

trace setting for a specific purpose.

Application Note 8 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

3 Example: Data Tracing inside an Interrupt

To demonstrate a more detailed trace setup, the following code snippet is used.

Code Listing 1

// timer initialization missing here

IFX_INTERRUPT(Stm1_Isr, 0, 9) {

 uint32 stmTicks = (uint32)(2 * IfxStm_getFrequency(&MODULE_STM1));

 IfxStm_increaseCompare(&MODULE_STM1, IfxStm_Comparator_0, stmTicks);

while (__cmpAndSwap(&lock, 1, 0)); // Acquire Lock

for (int pp = 10; pp <= 13; pp++) {

 IfxPort_togglePin(&MODULE_P33, pp);

 }

 lock = 0; // .. Release Lock

}

The code snippet implements an Interrupt Service Routine (ISR) for the STM1 of the device.

Inside the interrupt, firstly the compare value is increased by a calculated value. With this compare value the

timer fires an interrupt every 100 milliseconds.

At each interrupt, 4 LEDs on the TriBoard are toggled inside the for-loop. Due to another interrupt manipulating

the same LEDs, a simple spinlock is implemented in line 4 and 8.

The chosen example goal is to trace the Spinlock-Mechanism inside the interrupt, to see if everything works as

expected. This will be used for introducing MTV in more detail.

3.1 Trace setup

3.1.1 Trace buffer settings

First we have to precisely set-up MTV in order to get the desired trace data. The first steps for the set-up can be

adapted from the previous chapter covering the device connection, ELF file loading, and device reset options.

Next, we want to increase the trace buffer size and set it to a circular buffer, which is stopped by a trigger. The

settings are opened by clicking the ‘MCDS’ menu and clicking ‘General’ or pressing [ALT]+[G]. The window that

appears is shown in Figure 6.

At the top of this window we can set up the trace memory. We want to use one MB of memory, instead of the

default size of 16 kB, which is displayed as ‘16 at 0 XTM’. The ‘at 0 XTM’ refers to the memory which is used to

store the trace data and at which position (0 means start) the trace data section starts. The definition of the

start address is important for TCM (Trace/Common Memory) which can be shared between tracing and

application.

To get 1 MB of trace memory just replace the complete line with ‘1024’ and press [Enter]. MTV now asks if we

want to switch to the ‘TCM’ memory, because the ‘XTM’ memory has only a size of 16 kB. Click ‘Yes’.

Application Note 9 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

Figure 6 Trace buffer settings (Default)

Now we need to set-up the ‘On-Chip Trace Buffer Mode’. As default, the trace buffer is filled with trace data until

it is full and the tracing is stopped automatically (Record until full). We don’t know at which time the interrupt

will occur, and therefore we can’t be sure to get the desired trace data. It could happen that the timer interrupt

of our example is fired after the buffer is full. To address this case we select ‘Circular stopped by trigger’ (see

Figure 7).

Figure 7 Trace buffer settings (Trigger)

Now the buffer is filled as a circular buffer (if it is full, the oldest trace data will be overwritten).

It is important now to set a trigger in order to stop the tracing. The trigger is set in another menu and will be

covered later.

There are now two settings in this window, the ‘Trigger Trace Position’ and the ‘Ticks/Timestamps’.

The Trigger Position indicates how much data will be traced after the trigger condition has been met. For

example, if ‘40 Bytes before End’ is selected here, the MCDS will trace 40 additional bytes of trace data after the

trigger condition has been met and the tracing stops. This default setting maximizes the trace data before the

trigger condition. In many cases the trigger is on the symptom and the interesting cause is before the trigger.

The small overhang of 40 bytes ensures that relevant data around the trigger point is in the trace buffer before

the trace is stopped.

A more balanced pre and post-trigger setting is the ‘60%’ option. With this setting 40% of the buffer will be filled

with trace data following after the first trigger hit.

Application Note 10 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

The last setting is the setting for the ticks and timestamps of the MCDS. This document will only cover the first

three options:

 Ticks Disabled

− If this setting is used, the MCDS does not give any time or tick information. On the one hand, the trace

data needs less memory but on the other there is no information on timing behavior. There is no

indicator for the elapsed time. The first three columns of the trace data will remain empty.

This option is useful to trace a longer time if no timing information is needed.

 Ticks On

− With this default setting the MCDS shares information about the time behavior of the tracing. If some

timing behaviors have to be observed, this is the right setting.

 Ticks and Timestamps

− This setting is the same as the ‘Ticks On’ setting but with the difference that the MCDS gives an exact

timestamp of the device up-time every 4 kB of trace data. The user can now see that the device is already

running for some time and the trace data is aligned to this time.

Because we don’t want to trace a huge time window, we can leave the setting at the default value ‘Ticks On’. If

everything is set up correct, the general settings for the trace buffer should be the same as those in Figure 7.

Application Note 11 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

3.1.2 Observation point setting

After the trace buffer has been set up correctly, we have to set up the observation point. Here we can set the

trigger condition, the data to be traced, and the memory sections to be observed.

The window can be opened at the ‘MCDS’ menu by clicking on ‘Opoint CPUa’ or pressing [CTRL]+[P].

Right after the window has appeared, click the ‘Trigger Menu’ button at the upper right corner to open the

trigger settings for this observation point. The window presented should appear as follows:

Figure 8 Opoint CPU0 (Default)

In this window are 4 sections:

1. Program Trace / Status Trace

2. Program Trigger

3. Data Trace

4. Data Trigger

To achieve our goal, we need to set up (1), (2) and (3) properly. The ‘Data Trigger’ section will not be covered in

this application note.

Beside these 4 sections, the correct CPU should be selected with the ‘Opoint’ drop down selection. In our case

this will be CPU0.

Application Note 12 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

3.1.2.1 Program trace

The first section defines how detailed and at which memory sections the tracing should be performed.

Level of trace detail

For the level of detail there are three settings:

 Function

− This is the default setting and traces only the calls and returns of functions so that a basic program flow

behavior can be observed. This setting generates the minimum trace data.

 Flow

− This setting keeps track of all instructions being executed. A trace message is generated at points where

the program execution is not sequential. With this setting we can see what is going on inside the traced

functions.

 Instruction

− The Instruction setting will generate as much as possible trace messages for the program execution. This

adds more details for the execution time of instructions. Note that this option needs much more trace

memory than the Flow setting.

We will use the Instruction setting to achieve our goal.

Address qualification

The next important setting is the address qualification. With the address qualification you can specify in which

regions of the program memory the device should be traced. There are three options available:

 No Address Qualification

− With this option the complete program execution is traced.

 In Range Qualification:

− If the In Range Qualification is used, the device is only traced if the Instruction Pointer (IP) points to an

address inside of the configured ranges.

 Out Of Range Qualification

− This is the same option as the In Range Qualification but in reverse. Here the device will only be traced if

the IP is pointing to an address outside of the configured ranges.

To set the range of the address qualification the two text areas below the address qualification setting can be

used.

In these text areas only the first line is used to define the address range. The range can be defined by using two

hexadecimal addresses.

For instance, if one writes ‘0x8000F000 0x8000F010’ in the first line of one of the text areas, the address range

for the qualification is set to ‘0x8000F000’ to ‘0x8000F010’. In the case that an ELF file is loaded, there is an

easier way to set the address qualification. Just type the function name to be traced, and de-focus the text

area. MTV will then automatically replace the function name with the correct address range. The function name

will also be moved to the second line of the text area, showing which function is traced with the address range.

For our goal, we simply write ‘Stm1_Isr’ in the first text area and click on another control (defocus the text

area). The MTV will then automatically set the right address range for us, as seen in Figure 9.

Application Note 13 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

Figure 9 Opoint CPU0 (Timer interrupt trace)

3.1.2.2 Program Trigger

We will use the Program trigger to stop the tracing at a certain point. To set up the trigger, select ‘Trigger Trace

Record’ on the top of the Program Trigger section, where ‘Disabled’ is the default. MTV will display a message

regarding the trace buffer mode, if it is still set to ‘Record until full’ (section 3.1.1). In this case MTV

automatically changes the buffer settings for the use of a trigger. Simply close this message.

The second drop down menu can be ignored, because STDSW (STandarD SoftWare) Tasks will not be covered in

this application note.

The third drop down menu is again the range qualification. This time the qualification is used to trigger the

device to stop tracing. If the IP points to this range, the trigger will be fired. For our goal we use the range of the

timer ISR again here. Simply write ‘Stm1_Isr’ and defocus the text area, as done for the Program Trace section.

The result should look like Figure 10.

Application Note 14 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

Figure 10 Opoint CPU0 (Program Trigger)

3.1.2.3 Data Trace

The last section we have to modify is the Data Trace section, because we want to see which data is read and

written. For this purpose select ‘All’ on the drop down menu at the top of the Data Trace section. The other

options are self-explanatory. Use these to see only reads or writes. ‘A’ refers to ‘address’ and ‘D’ to ‘data’. For

instance, ‘A+D Write’ will display address and data of all write operations.

There is also a range qualification possible, to see only reads or writes in specific sections. We will not use this

for now, because we already set the program trace to the ISR so that we only see reads and writes in this ISR.

But we will later use this address qualification to hide some read and write operations inside the traced ISR

function that we do not want to observe.

Note: In AURIX TC2xx only the read address and not the data is available for trace and triggering. In

AURIX TC3xx (after TC39x A-step) also the read data is available.

Application Note 15 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

3.2 Tracing the ISR

Now that we have set everything up, we are able to start the tracing of the timer interrupt by clicking the record

button:

After the tracing has finished, the trace data view will be displayed. For example:

Figure 11 First ISR tracing

The trigger that stopped the tracing is highlighted in grey by MTV.

We can now observe that there are many read and write operations that don’t belong to our goal and that are

making the whole trace data less readable. In this case these read and write operations are from the Context-

Save-Array ‘__CSA0’ and from the stack ‘__USTACK0’. To exclude these two we now use the ‘Out Of Range

Qualification’ of the Data Trace section.

Put ‘__CSA0’ in the first text area and ‘__USTACK0’ in the second and change the qualification to ‘Out Of Range

Qualification’. The trace settings should now look like Figure 12.

Application Note 16 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

Figure 12 Opoint CPU0 (Final)

Now after rerunning the tracing we should be able to get the trace data without the read and write operations

of the context saving and stack operations, and get a clearer view of the instructions belonging to our code

(Figure 13).

Application Note 17 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

Figure 13 ISR-Trace without Context Save and Stack operations

The trigger that stopped the tracing is again marked in grey (at the top) by MTV. The area marked with the red

dotted border in the figure above displays the instructions representing the spinlock mechanism. We can

observe that firstly a Compare-And-Swap instruction is executed, which in this case at first attempt acquires

the lock variable.

Right after the Compare-And-Swap instruction a Jump-Not-Equal instruction follows, which would jump back

before the Compare-And-Swap instruction to repeat it, as long as the lock variable is acquired by somebody

else.

While acquiring the lock variable it is set to 1, which can be seen at the W32 command right after the JNE

instruction in line 27. After the critical code section has been executed, the lock variable is set to 0 to release the

spinlock mechanism for the other timer interrupt. The release of the lock variable can be seen at the W32

instruction in line 37.

Note: There can be a certain delay between the data trace messages (here W32) and the associated

instructions (here CMPSWAP and ST.W). This is due to the different stages at the CPU pipeline

where this information is retrieved.

Application Note 18 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4 Common errors and further hints

This section discusses common errors and gives further hints for the correct usage of the MTV.

4.1 No data traced or wrong data traced

4.1.1 Halted CPU

A common error while using MTV is, that the CPU is halted for instance by another debugging tool. In this case

the record button stays red and no trace data is generated since even the tick message generation only starts

after the first regular trace message.

4.1.2 Volatile programming

While writing and testing software on the SoC, volatile RAM is often used to save limited write cycles of the flash

memory. If MTV is used to collect trace data with the option ‘Reset Device First’, make sure that the software

was written to the permanent flash instead of RAM. Otherwise a reset will result in tracing the execution of the

old software which is stored in the permanent flash.

4.1.3 Wrong trigger

If a circular buffer is used for tracing, meaning that the trace is in an infinite loop until the first trigger condition

is met, MTV can be stuck in an infinite tracing loop. This happens if the trigger is wrong and doesn’t hit. In that

case the tracing will never stop. Another problem might be that there was no trigger set at all.

4.2 Zero ticks

For certain traces the column displaying the ‘Ticks’ of the CPU reads zero. At first this might be confusing and

looks like an error inside the CPU or the MTV but this is not the case.

There are two main reasons why this can happen.

 There may be two different trace units (Program Trace Unit PTU and Data Trace Unit DTU) or even at

different observation points (Core1 and Core2 for example) which are operating independently. Therefore it

will happen that two trace messages are generated at the same time. The second trace message is then

displayed with zero Ticks.

 A second reason belongs to the reduced clock frequency of the MCDS. As mentioned, one Tick is equal to

two CPU cycles, therefore the clock of the MCDS runs with half the frequency of the CPU. Due to this clock

difference, it might happen that there are more trace messages observed at a time. If this happens there are

for instance two trace messages which in reality have different time stamps, but the same timestamp while

being observed by the MCDS. The second trace message then has zero Ticks.

Application Note 19 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4.3 Negative stack level

The Stack Level indicates the current position on the stack for the function context.

Normally the main function is on Stack Level 0. If now a function is called, the context is stored on the stack and

the Stack Level is incremented to 1. After executing the function, a return operation is called which restores the

context of the main function from the stack. This results in a decreasing Stack Level.

Take for instance the following source code:

void func_2() {

 calc_something();

}

void func_1() {

 func_2();

}

int main(void) {

 func_1();

 return 0;

}

This generates the Stack Level history in the following table:

Table 2 Stack level history

main func_1 called func_2 called func_2 return func_1 return

SL = 0 SL = 1 SL = 2 SL = 1 SL = 0

If the data tracing is now started without a reset of the device, the Stack Level may be on some higher value

because a function f2 is in execution. In fact the Stack Level observed by the MCDS always starts with 0. If then f2

returns and the context of the function f1, which has called f2, is restored, the Stack Level decreases to -1.

4.4 Unable to connect the device

There may be several reasons why MTV cannot connect to the device:

 The device is not plugged in on the PC or the USB cable is damaged.

 The device is not powered or the power supply is damaged.

 Another debugging tools hardware is connected to the device.

 The required DAS USB drivers are not installed correctly.

Note: Please read the DAS Release notes that are included in the DAS installation.

Application Note 20 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4.5 Tooltips

Most, but not all of the controls in MTV (buttons, text areas, drop down menus, and so on) provide usage-hints

as tooltips. These tooltips are displayed, after a brief pause, when you hover the cursor over a control. An

example is shown in Figure 14.

Figure 14 Tooltips inside the MTV

4.6 File handling

Besides loading an ELF file, it is possible to save the current MCDS configuration and load it again later. The

trace data can also be saved, which can then be processed by other tools, such as Excel or Matlab for example.

If you intend to post-process the data with Microsoft Excel, MTV already provides an appropriate handler for the

copy and paste of trace data. To copy the data open the ‘Edit’ menu and click ‘Select All’, after everything is

selected (the trace data will be highlighted in grey), again open the ‘Edit’ menu and click ‘Copy’. The same

result can be achieved by pressing [Ctrl]+[A] followed by [Ctrl]+[C]. It is also possible to select specific trace

lines or ranges with the mouse by using the normal Windows conventions.

After the trace data has been copied to the clipboard, you can paste it directly into an Excel table. The trace

data is then automatically parsed into several rows and columns within the Excel sheet.

Application Note 21 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4.7 Address qualification – Function not found

It is possible to type the function name into the text area for the address qualification. Under some

circumstances this will fail. The entered name will then disappear and no address range is inserted by MTV. This

happens if the function is existent in the C-Code of the application, but has been removed due to optimizations

performed by the compiler.

Take the following code for instance:

void func() {

 calc_something();

}

int main(void) {

 func();

}

can be optimized to:

int main(void) {

 calc_something();

}

In this case it is not possible to enter ‘func’ as a range qualifier, only ‘main’ or ‘calc_something’ (except

‘calc_something’ has been removed to further optimizations).

To prevent the compiler of removing some specific function, the ‘volatile’ keyword can be used:

volatile void func() {

 calc_something();

}

int main(void) {

 func();

 return 0;

}

With this keyword the return type ‘void’ of the function is marked as ‘volatile’ and the compiler is not allowed to

remove the function ‘func’, because of the volatile return type.

With this trick the function can be used as a range qualifier, even if the compiler wants to remove it due to

optimization reasons.

Obviously an alternative is to turn off the optimization instead of using this solution, but most of the time the

compiler optimization is desired.

Application Note 22 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Acronyms

5 Acronyms

The following table shows the most common acronyms used in the MTV GUI and this document:

Table 3 Acronyms

Acronym Explanation

A Address

A+D Address + Data

CPU Central Processing Unit

DAP Device Access Port

DAS Device Access Server

DMA Direct Memory Access

ELF Executable and Linking Format

EMEM Emulation Memory

GUI Graphical User Interface

INT Interrupt

IP Instruction Pointer

IS See ‘INT TS8_IS’ in the manual

LMU Local bus Memory Unit

MCDS Multi-Core Debug Solution

OCDS On-Chip Debug Support

OLDA Online Data Acquisition

OTGB OCDS Trigger Bus

PMU Program Memory Unit

R/W Read/Write

SMU Safety Management Unit

SP Service Provider

SPA See ‘INT TS8_SPA’ in the manual

SRN Service Request Node

SSI Single Signal Interface

STDSW Task Standard Software Task

TCM Trace and Common Memory (part of EMEM)

TS Trigger Set

XCM Extended Common Memory (part of EMEM)

XTM Extra Trace Memory (part of EMEM)

Application Note 23 of 24 V1.0

 2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

Revision history

Revision history

Document

version

Date of release Description of changes

V1.0 February 2018 First release

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-02-07

AP32401

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2018 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Getting started
	1.1 Installation
	1.2 First start-up
	1.3 The trace table

	2 First trace
	2.1 Connect the Device
	2.2 Load the Executable and Linking Format file
	2.3 ‘Reset Device First’ option
	2.4 Starting the trace

	3 Example: Data Tracing inside an Interrupt
	3.1 Trace setup
	3.1.1 Trace buffer settings
	3.1.2 Observation point setting
	3.1.2.1 Program trace
	3.1.2.2 Program Trigger
	3.1.2.3 Data Trace

	3.2 Tracing the ISR

	4 Common errors and further hints
	4.1 No data traced or wrong data traced
	4.1.1 Halted CPU
	4.1.2 Volatile programming
	4.1.3 Wrong trigger

	4.2 Zero ticks
	4.3 Negative stack level
	4.4 Unable to connect the device
	4.5 Tooltips
	4.6 File handling
	4.7 Address qualification – Function not found

	5 Acronyms
	Revision history

