

Application Note Please read the Important Notice and Warnings at the end of this document V1.6

www.infineon.com 2023-06-15

AP32370

PMSM FOC motor control software using XMC™

XMC1300/XMC1400 and XMC4400

About this document

Scope and purpose

This document describes the implementation of Permanent Magnet Synchronous Motors (PMSM) Field
Oriented Control (FOC), motor control software for a 3-phase motor using the Infineon XMC1302, XMC1402,
XMC1404 or XMC4400 microcontroller.

Intended audience

This document is intended for customers who would like a configurable system for FOC control with sensorless

feedback using the XMC™ series microcontroller.

Referenced documents

[1] XMC1300 AB-Step Reference Manual, XMC1000 family

[2] XMC1400 AA-Step Reference Manual, XMC1000 family

[3] XMC4400 Reference Manual

http://www.infineon.com/dgdl/Infineon-xmc1300-AB_rm-UM-v01_02-EN.pdf?fileId=5546d46249cd1014014a0a8436965e28
https://www.infineon.com/dgdl/Infineon-XMC1400-AA_ReferenceManual-UM-v01_01-EN.pdf?fileId=5546d46250cc1fdf0150f6ebc29a7109
https://www.infineon.com/dgdl/Infineon-xmc4400_rm_v1.6_2016-UM-v01_06-EN.pdf?fileId=db3a30433afc7e3e013b3c46756b5c41

Application Note 2 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC1400 and XMC4400

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 4
1.1 Key features ... 5

1.2 Abbreviations and acronyms .. 6

1.3 XMC™ resource allocation ... 7
1.4 XMC™ hardware modules inter-connectivity ... 8
1.5 Execution time and memory usage .. 10

1.6 Software overview ... 11

1.7 Limitations of use for PMSM FOC software .. 13

2 PMSM FOC sensorless software components .. 14
2.1 Motor start / speed change / motor stop operations control .. 15

2.2 Ramp generator ... 16
2.3 Control schemes .. 17
2.3.1 Open loop voltage control ... 17

2.3.2 Speed control ... 17
2.3.3 Torque control direct startup .. 19

2.3.4 Vq control direct startup .. 20
2.3.5 D-axis and Q-axis decoupling .. 20
2.4 Cartesian to Polar transform .. 21

2.5 Space Vector Modulation (SVM) .. 22

2.5.1 7-segment SVM ... 23

2.5.2 5-segment SVM ... 24

2.5.3 Pseudo Zero Vector (PZV) .. 25
2.5.4 4-segment SVM ... 26
2.5.5 Over-modulation SVM .. 28

2.6 DC link voltage ... 29
2.7 Clarke transform.. 29

2.8 Park transform ... 30
2.9 Protection .. 31

2.10 Scaling ... 31

2.11 Determination of flux and torque current PI gains .. 35

3 Current sensing and calculation .. 37
3.1 Single shunt current sensing (only in XMC1300/XMC1400) .. 39
3.2 Three shunt current sensing ... 42

3.2.1 Asynchronous theory (only in XMC1300/XMC1400) .. 44
3.2.2 Synchronous theory ... 44
3.2.3 Synchronous Implementation ... 47

4 Motor speed and position feedback in sensorless FOC control .. 49

5 Interrupts ... 51
5.1 PWM period match interrupt .. 51
5.2 Ctrap interrupt ... 53
5.3 ADC source interrupt (only in XMC1300/XMC1400) .. 53
5.4 Secondary loop interrupt .. 53

5.5 Over/Under voltage protection .. 53

6 Motor state machine .. 54

Application Note 3 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC1400 and XMC4400

Table of contents

7 Configuration ... 57
7.1 User Configuration .. 57
7.1.1 General ... 57
7.1.2 Custom Kit configuration ... 60
7.1.3 Advanced user configuration ... 62

7.1.4 Torque control specific .. 63
7.1.5 VQ control specific (V/f) .. 64
7.1.6 MET specific .. 64
7.2 Hardware configuration .. 65

7.2.1 Controller Card ... 65
7.2.2 Inverter board configuration for current and voltage sensing ... 72
7.2.3 Motor specific configuration .. 75

7.2.3.1 Motor parameter ... 75
7.2.3.2 PI settings .. 76

8 PMSM FOC software data structure ... 80
8.1 FOC control module input data structure .. 80

8.2 FOC control module output data structure.. 81
8.3 FOC control module data type .. 81

8.4 SVM module data structure .. 82
8.5 Get current software module data structure ... 82

9 PMSM FOC software API functions ... 84
9.1 User Functions ... 85

9.2 Controlloop ISR ... 88

9.2.1 Startup .. 88

9.2.2 InOut handling ... 91
9.2.3 General ... 94

9.2.4 Controller ... 95

9.3 Secondaryloop ISR .. 98

9.4 FPU library ... 99
9.4.1 Theory ... 99
9.4.2 Library API .. 100

10 Resources ... 102

11 Revision history .. 103

Application Note 4 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1 Introduction

The intention of this software is to offer functionality to drive Permanent Magnet Synchronous Motors (PMSM)
in sensorless or sensor modes. It contains all the common modules necessary for the modes as generic drives,

and provides a high level of configurability and modularity to address different segments.

Field Oriented Control (FOC) is a method of motor control to generate three phase sinusoidal signals which can
easily be controlled in frequency and amplitude in order to minimize the current, which in turn means to

maximize the efficiency. The basic idea is to transform three phase signals into two rotor-fix signals and vice-
versa.

Feedback on rotor position and rotor speed is required in FOC motor control. The feedback can come from

sensorless FOC or from FOC with sensors.

• Sensorless FOC derives the rotor position and rotor speed based on motor modeling, the voltage applied to
the motor phases, and the current in the three motor phases.

• FOC with sensors determines the rotor position and rotor speed from rotor sensor(s), such as Hall sensors or
an encoder.

Feedback on the phase currents can be measured in the motor phase, in the leg shunt or DC-Link shunt at the
low-side MOSFET. In this software, phase current sensing is expected from the leg shunt or DC-Link shunt.

In the next figure we see the typical block diagram for the PMSM FOC motor control, where single shunt and

three shunt low-side current sensing are supported.

Figure 1 Block diagram of PMSM FOC motor control

Iu

Iv

θ

|Vref |

ω

Motor

Iw

u

v

w

1x Rshunt

or 3x Rshunt

φ

Current
Calculation

VDC

PLL
Estimator

3-Phase
2-Level
Voltage
Source

Inverter (VSI)

CCU8
PWM Unit

ADC

SVM
Modulator

Rotor
Sensor

MATH

Ref_Speed
Field Oriented

Control

CCU4

Angle & Speed
Calculation

Angle and Speed feedbacks from Hall Sensors / Encoder / Resolver
 Sensorless Feedbacks

MATH

MATH

ωREF

On-chip hardware

Off-chip hardware

Software

Legend:

POSIF

Trigger

Iα Iβ

Application Note 5 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1.1 Key features

Multiple Infineon innovations and unique features are included in the sensorless PMSM FOC software, such as:

• Optimized FOC

− No Inverse Park Transform

− Lowest cost by eliminating external Op-Amp

• SVM with Pseudo Zero Vectors (PZV), for single shunt current sensing

• MET (Maximum Efficiency Tracking) for smooth transition from V/f open-loop to FOC closed-loop

• PLL Estimator, the sensorless feedback mechanism which requires only one motor parameter, stator
inductance L, for rotor speed and position feedback

The key features supported are listed in the following table:

Table 1 Key Software features supported

Feature

Math Control Blocks Clarke Transformation

Park Transformation

Id and Iq current flux/torque PI controller

Speed PI controller

Cartesian to Polar Transformation

Ramp Function

Control Scheme Speed control

Torque control

Vq control

Space Vector Modulation 5-segment SVM

7-segment SVM

Pseudo Zero Vector SVM; 4-segment SVM

Low Side Current Sensing Leg shunt: 3/2 support, over-modulation and 7-segment SVM

DC link single shunt: Support PZV and 4-segment SVM, no over-

modulation

Start-up Algorithm Direct FOC start-up

Protection Phase over-current protection

DC link under voltage & over-voltage Protection

Device Feature ADC on-chip gain for current sensing

ADC synchronous conversion: motor phase current sensing

Control Feature Motor control state machine

DC-bus voltage clamping during fast braking

Motor stop - brake

Rotor Speed and Angle Calculation Sensorless PLL Estimator using HW CORDIC

Others S-curve Ramp generator / Linear Ramp generator

PI anti-windup for Speed control

Application Note 6 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

Feature

dq-axis decoupling

1.2 Abbreviations and acronyms

Table 2 Abbreviations and acronyms used in this document

Term Definition

API Application Programming Interface

BOM Bill of Material

CCU8 Capture Compare Unit 8

CPU Central Processing Unit

FOC Field Oriented Control

GPIO General Purpose Input / Output

IP Intellectual Property

ISR Interrupt Service Routine

LLD Low Level Driver

MCU Microcontroller Unit

MET Maximum Efficiency Tracking

PI Proportional Integral Controller

PLL Phase Locked Loop

PMSM Permanent Magnet Synchronous Motors

PWM Pulse Width Modulation

PZV Pseudo Zero Vector

SRAM Static Random Access Memory

SVM Space Vector Modulation

UART Universal Asynchronous Receiver Transmitter

VADC Versatile Analog-to-Digital Converter

XMC XMC™ MCU family based on ARM®

XMC1000 XMC™ MCU family based on ARM® Cortex®-M0 core

XMC1300 XMC™ MCU series with 32MHz Core and 64MHz Peripheral frequency

XMC1302 XMC™ MCU product with specific feature set. E.g. Cordic

XMC1400 XMC™ MCU series with 48MHz Core and 96MHz Peripheral frequency

XMC1402 XMC™ MCU product with specific feature set. E.g. Cordic

XMC1404 XMC™ MCU product with specific feature set. E.g. Cordic and CAN

XMC4400 XMC™ MCU product with specific feature set. E.g. FPU

Application Note 7 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1.3 XMC™ resource allocation

The XMC1302, XMC1402, XMC1404 and XMC4400 microcontroller are all ideal for PMSM FOC motor control
systems. They have dedicated motor control peripherals, POSIF, CCU8, ADC, and CCU4. In XMC1300/XMC1400,
the CORDIC coprocessor is used for mathematical calculations, whereas a floating point unit (FPU) is used in
XMC4400. In this PMSM FOC motor control software, the hardware peripherals used are listed in the table that

follows.

Note: The default resource allocations are for the Infineon XMC1000/XMC4400 Motor Control Application
Kit (order numbers KIT_XMC1X_AK_MOTOR_001 and KIT_XMC4400_DC_V1 respectively).

Table 3 XMC™ Peripherals used for sensorless PMSM FOC with three shunt current sensing

XMC™

peripherals

Usage Default resource allocation

in XMC1300/XMC1400

Default resource allocation

In XMC4400

CCU80 PWM Generation for Phase U CCU80 slice 0 CCU80 slice 0

PWM Generation for Phase V CCU80 slice 1 CCU80 slice 1

PWM Generation for Phase W CCU80 slice 2 CCU80 slice 3

Timer for ADC Trigger CCU80 slice 3 CCU80 slice 2

VADC Phase U Current sensing G0 channel 41

G1 channel 31

G0 channel 1

Phase V Current sensing G0 channel 31

G1 channel 21

G1 channel 7

Phase W Current sensing G0 channel 21

G1 channel 41

G2 channel 1

Alias Channels for three shunt

synchronous conversion

G0 channel 0

G0 channel 1

G1 channel 0

G1 channel 1

G0 channel 0

G1 channel 0

G2 channel 0

DC link Voltage sensing G1 channel 5 G1 channel 1

DC link average Current

sensing
G1 channel 6 G1 channel 0 (not

implemented)

Potentiometer for speed

change

G1 channel 7 G1 channel 5

MATH CORDIC FPU

Nested

Vectored
Interrupt

Controller

(NVIC)

PWM Period Match Interrupt CCU80.SR0 CCU80.SR0

CTrap Interrupt CCU80.SR1 CCU80.SR3

ADC Interrupt for single shunt

sensing

VADC0.G1SR12 Not available

1 The same input pin must connect to both the ADC group channels to perform synchronous sampling. Refer to chapter 3.2.1 for details.
2 If DC link current sensing uses the VADC Group0 channels, then the VDC0.G0SR1 interrupt node is used.

Application Note 8 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1.4 XMC™ hardware modules inter-connectivity

The XMC1000 and XMC4400 families have comprehensive hardware inter-connectivity.

The figure below shows the interconnections between XMC1302 hardware peripheral modules. This is valid for
XMC1402 and XMC1404 also.

CCU8_MODULE_PHASE_U

(CCU80_CC80)

period match

Clear & start

CCU8_MODULE_PHASE_V

(CCU80_CC81)

CCU8_MODULE_PHASE_W

(CCU80_CC82)

CCU8_MODULE_ADC_TR

(CCU80_CC83)

pmsm_foc_controller_isr()

(CCU80_0_IRQn)

SCU

Clear & start

Clear & start

Clear & start

GPIO

Trap

Trap

Trap

Trap

Trap event

Pmsm_foc_trap_protection_irq()

(CCU80_1_IRQn)

ADC
(Group 1)

ST3

GxREQTRP

GxREQGTF

SynStart

Source event

pmsm_foc_vadc_source_irqhandler
(VADC0_G1_1_IRQn)

*For Single Shunt sensing Technique

XMC Hardware

Software

Legend:

ADC
(Group 0)

GxREQTRP

GxREQGTF

Figure 2 XMC1302 hardware interconnection

Note:

1. The CCU8 slice timers are started synchronously with the sync start signal from the SCU (System Control Unit).

2. The VADC conversion is triggered by the CCU8 Slice 3 compare match status signal.

Application Note 9 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

Figure 3 shows the interconnections between the XMC4400 hardware peripheral modules.

Figure 3 XMC4400 hardware interconnection

Note:

3. The CCU8 slice timers are started synchronously with the sync start signal from the SCU (System Control Unit).

4. The VADC conversion is triggered by the CCU8 Slice 2 compare match status signal.

Application Note 10 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1.5 Execution time and memory usage

In the XMC1000 and the XMC4000 families, access to the Static Random Access Memory (SRAM) requires no wait
state. The major parts of the software are executed from the SRAM. The Interrupt Service Routines (ISRs), all the
mathematical blocks of the FOC algorithm, the SVM, and the motor phase current sensing and calculation are
executed in the SRAM. This improves the performance as the execution time to run the FOC algorithm is

reduced by approximately 30%.

Note: Please refer to chapter 9 for the list of APIs running in SRAM.

Breakdown of the memory usage and CPU time-utilization are provided in the following table based on the
default settings for the Infineon XMC1000 Motor Control Application Kit (XMC1302), the XMC1400 Boot Kit

(XMC1404), and the XMC4400 Motor Control Application Kit.

• Control Scheme

− Open-Loop to FOC Closed Loop Speed Control

• Current Sensing Technique

− Three shunt synchronous ADC conversion

Table 4 CPU utilization and memory usage for three shunt current sensing with XMC1300 and
XMC1400

PWM frequency 20 kHz – Interrupt Service Routine runs every 50 μs

DAVE™ 4 GCC compiler

optimization level

Optimized most (-O3)

MCU XMC1300 XMC1400 XMC4400

CPU utilization 31 μs (62%) 21 μs (42%) 9.7 μs (19.4%)

Flash code size (bytes) 10416 10822 24790

SRAM code size (bytes) 2376 2376 3060

SRAM data size (bytes) 348 352 176

Application Note 11 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

1.6 Software overview

The PMSM FOC motor control software is developed based on a well-defined layered approach.

The layered architecture is designed in such a way as to separate the modules into groups. This allows different
modules in a given layer to be easily replaced without affecting the performance in other modules and the

structure of the complete system.

 MCU low level driver: Libraries/XMCLib

 MCU HW Peripherals: Libraries/CMSIS

 MCU initialization: MCUInit

 Application Control: ControlModules

PLL estimatior: FOC Lib

 Statemachine and ISR handling: Interrupts

 Middle Layer: MIDSys

 User

Hardware

 Configuration:

Configuration

 Description

 Project folder name

Legend:

Figure 4 PMSM FOC software overview; layered structure

Figure 5 Project folder structure

State machine and ISR handling: Interrupts

This layer consists of a CCU8 trap interrupt handling function, a CCU8 period match ISR function, and a VADC
ISR function for shunt current sensing. All files are stored in the ‘Interrupts’ folder.

Application Note 12 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

Application Control: Control Modules

This layer consists of FOC SW control modules. This includes the Clarke Transform, Park Transform, Cartesian
to Polar, current reconstruction, PI controller, Open Loop, and Ramping for example.

All the routines mentioned are called from the CCU80 period match Interrupt Service Routines.

All files for this layer can be found in the folder ‘ControlModules’.

Configuration: Configuration

The configuration is divided. The user configuration effects the general behavior of the software. The file
pmsm_foc_user_config.h can be modified. Pre-defined hardware kits are available.

The hardware configuration allows for more detailed adaptation to the customer hardware.

This layer is divided into:

• Controller Card

• Inverter Card

• Motors

The specific associated *.h files can be found in the associated folders.

The static configuration and required scaling are accessible with the following files:

• pmsm_foc_const.h

• pmsm_foc_macro.h

• pmsm_foc_variable_scaling.h

Note: You should not change these configuration and definition files.

All configurations can be found in the folder ‘Configuration’.

PLL estimator: FOCLib

Infineon patented IP, and PLL Estimator, is provided as a compiled .a library file.

The file can be found in the folder ‘FOCLib’.

Middle Layer: MIDSys

This layer provides routines for PWM generation, ADC measurements, and angle and speed information to the
FOC control module layer. The main purpose of this layer is to give flexibility to add or remove a sensor
feedback module into the FOC software. For example, when using Hall sensors, you can add in files in this layer
to provide position and feedback from the Hall sensors without making huge changes to the layers on top. This

layer also provides a mathematical library for XMC4400.

All files for this layer can be found in the folder ‘MIDSys’.

MCU Initialization: MCUInit

This layer controls the initialization of all MCU peripherals. It contains XMCLib data structure initialization and
peripheral initialization functions. This layer closely interacts with XMCLib and the MIDSys layer to configure

each peripheral.

Application Note 13 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Introduction

All files for this layer can be found in the folder ‘MCUInit’.

MCU low level driver: Libraries/XMCLib

MCU hardware Peripherals: Libraries/CMSIS

This layer is the hardware abstraction layer to the MCU peripherals.

All files for this layer can be found in the folder ‘Libraries’.

1.7 Limitations of use for PMSM FOC software

For this application note the current software version used is PMSM FOC software v1.5.x.

At the time of release of this example software, the following limitations in usage apply:

• Only a single motor drive is supported.

− Dual motor control support is not available

• Position and speed feedback from Hall sensors/encoders is not supported

• This software is developed in DAVE™ version 4. It is not tested on other IDE (Integrated Development

Environment) platforms

• The following are not currently documented:

− Scaling for pmsm_foc_set_motor_target_torque().

− Scaling for pmsm_foc_set_motor_target_voltage().

• No Tmin available for current measurement.

• No support for driver delay. This value is used to shift the ADC trigger to compensate the driver IC delay. For

example, with this shift it is ensured to start the 3 shunt measurement in the middle center of the PWM

pattern.

• Over-Current Protection is through a DC link shunt. This protects the inverter but current between phases of
the motor is not measured.

• PT1 filter is not documented.

• No catch-free running implementation

• UART DEBUG is available only in XMC1300/XMC1400, and it is not tested.

• SETTING_TARGET_SPEED options BY_POT_ONLY, and BY_UART_ONLY are not tested.

• In XMC4400, single shunt sensing is not implemented.

Application Note 14 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2 PMSM FOC sensorless software components

The intention of this PMSM FOC motor control software is to offer functionality to drive the PMSM motors with
sensors or sensorless modules. The current version supports sensorless modules.

The PMSM FOC software provides a high level of configurability and modularity to address different motor
control applications.

Five types of control scheme are supported:

• Speed Control Transition FOC Startup

• Speed Control Direct FOC Startup

• Torque Control Direct FOC Startup

• Vq Control Direct FOC Startup

• Open-Loop Voltage Control

The major components of the PMSM FOC software are shown in the following diagram. Each of the modules is

described and referenced.

Figure 6 PMSM FOC block diagram

Park

Transform

-

-

-

+

Iq

PI-Controller

Id

PI-Controller
Speed

PI-Controller
+

+

CCU80

PWM Generator

with integrated

deadtime control

Cartesian

to Polar

Transform

Clarke

Transform

SVM

Modulator

Current

Calculation
ADC

PLL

Estimator

A
D

C
 T

ri
g

g
e

r

ADC_Iu

ADC_Iw

ADC_Iv

DCLink

I_U

I_V

I_W

I_Alpha_1Q31

I_Beta_1Q31

MATH

MATH

Vref32

Vref_AngleQ31

Torque_Vq

Flux_Vd

Ref_Id

Ref_Iq

Ref_Speed
Ramp

Ramp
MATH

Id

Iq

RotorSpeed_In

RotorAngleQ31

Get_ADC

Phase

Current

Iu

Iw

CCU8_MODULE_PHASE_U

Iv

C
u

rr
e

n
tS

e
c
to

rN
o

CCU8_MODULE_PHASE_V

CCU8_MODULE_PHASE_W

Application Note 15 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.1 Motor start / speed change / motor stop operations control

The motor is started with the start command.

The target speed can be changed between:

• USER_SPEED_LOW_LIMIT_RPM

• USER_SPEED_HIGH_LIMIT_RPM

One option for controlling is a potentiometer.

The relationship between the ADC data and the motor target speed for speed control scheme is shown in the
figure below.

Figure 7 Potentiometer ADC value versus speed in speed control scheme

From the state FOC CLOSED LOOP, three options are available to prevent the motor from running:

• Set target speed below EXIT_FOC_SPEED

• Call the break function pmsm_foc_motor_break()

• Call the stop function pmsm_foc_motor_stop()

Set target speed below EXIT_FOC_SPEED

If the motor speed is below 10% of the maximum speed the state is changed to MOTOR_HOLD.

A 50% PWM ON/OFF is applied to all phases. The motor is held.

Call the break function pmsm_foc_motor_break()

The software does not accept any target speed and ramps down the motor to the limit FOC_EXIT_SPEED. After
crossing this limit the state is changed to MOTOR_STOP. The inverter is disabled and the output set to tristate.

The result is an uncontrolled freewheeling. Because of the ramp-down the motor speed should be very low.

Call the stop function pmsm_foc_motor_stop()

The state is immediately changed to MOTOR STOP. The inverter is disabled and the output set to tristate. The

result is an uncontrolled freewheeling. Depending on the current motor speed and the friction, the motor
should run in a freewheeling state.

USER_SPEED_HIGH_LIMIT_RPM

USER_SPEED_LOW_LIMIT_RPM

4096
ADC 12bit data

TH_POT_ADC

Target Speed (RPM)

Application Note 16 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.2 Ramp generator

PMSM FOC motor control software provides two types of ramp functions:

• Linear curve

• S-curve

An input parameter is ramped from an initial value to an end value. The ramp generator input is connected to a
user set value or to an analog input, depending on your configuration.

The ramp-up rate in the linear region is defined as USER_SPEED_RAMPUP_RPM_PER_S in the user
configuration file, pmsm_foc_motor_XXXX.h (refer to chapter 7.2.3.2). The ramp generator function is called
every PWM frequency cycle.

In the S-curve ramp generator function, the initial ramp-up rate is half of the defined ramp-up rate. The ramp

rate is slowly increased to the defined value. This generates the first s-curve.

The second S-curve starts when the speed is SPEED_TH_2ND_S from the Ref_Speed.

The constant SPEED_TH_2ND_S is defined in the pmsm_foc_interface.c file.

The S-curve ramp generator is only used in the speed control.

Figure 8 S-curve ramp generator

In both ramp generator functions, the DC link voltage is monitored during ramp-down operation. It stops the

speed/torque ramp-down if the DC link voltage is over the user configured voltage limit. This is to avoid an
over-voltage condition during the fast braking. This voltage limit, VDC_MAX_LIMIT, is defined in the header file

pmsm_foc_variables_scaling.h.

The ramp output is the reference signal to the control scheme. For the linear ramp generator, depending on the
control scheme selected, the ramp output can be speed, torque current, or torque Vq.

Ramp
Ref_Speed
via user set value

Ref_Speed
via analog input

Ramp Speed
OutputRef_Speed – SPEED_TH_2ND_S

Ref_Speed

Linear
Region

2ND S-curve

1ST S-curve

S
p

ee
d

Time

Initial ramp rate =
0.5*USER_SPEED_RAMPUP_RPM_PER_S

Ramp rate =
USER_SPEED_RAMPUP_RPM_PER_S

Application Note 17 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.3 Control schemes

In this software block the control schemes for the 3-phase PMSM FOC motor can be:

• Open loop voltage control

• Speed control

• Torque control

• Vq control

2.3.1 Open loop voltage control

In an open loop voltage control, a reference voltage (Vref) is used to cause the power inverter to generate a

given voltage at the motor. The mechanical load influences the speed and the current of the PMSM motor.

Figure 9 Open loop voltage control

2.3.2 Speed control

A speed control scheme is a closed loop control. This scheme uses a cascaded speed and currents control

structure. This is due to the change response requirement for a speed control loop which is much slower than
the one for current loop.

Figure 10 Speed control

USER_STARTUP_
VF_OFFSET

USER_STARTUP_VF_SLEWRATE_V_PER_HZ

USER_STARTUP_SPEED_
THRESHOLD_RPM

USER_STARTUP_SPEED_RPM

Vref

RPM

PMSM Motor

Power
Stage

VVref

Control Scheme -Speed Control

Speed PI Controller

error

+

Ki
s

Uk

Kp Limiter

+

+

= ?0
Ik

if Yk=Uk

Yk

if

Yk≠Uk

Limiter
-

+
FOCInput.Ref_Speed

PLL_Estimator.RotorSpeed_In

+

Torque PI Controller

error
+

Ki
s

Uk

Kp Limiter

+

+

Ik

Yk
Limiter

-

+
+

Flux PI Controller

error
+

Ki
s

Uk

Kp Limiter

+

+

Ik

Yk
Limiter

-

+
+FOCInput.Ref_Id

Park_Transform.Id

Park_Transform.Iq

Car2Polar.Torque_Vq

Car2Polar.Flux_Vd

Application Note 18 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Direct FOC startup and transition startup (open loop to closed loop) modes are supported in speed control.

The speed PI controller supports integral anti-windup. The integral output is held stable when either PI output

or integral output reaches its limit.

The output of the speed PI is used as the reference for the torque PI controller.

Transition mode – 3 steps startup with Maximum Efficiency Tracker (MET)

Figure 11 3 steps motor startup mechanism

The three steps are:

1. The motor starts in V/f open loop control state and ramp-up to a user defined startup speed.

2. Sensorless MET closed-loop control state takes over. This state is added to ensure the stator flux is

perpendicular to the rotor flux in a smooth and controlled way.

3. The state machine switches to FOC_CLOSED_LOOP state and ramps up the motor speed to the user defined

target speed.

Advantages:

• High energy efficiency MET and FOC closed-loop

• Smooth transitions for all the three steps

• V/f open-loop -> MET closed loop at low motor speed, therefore low startup power

V/f MET FOC

Phase Current Iu

I_Alpha

MET

Application Note 19 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.3.3 Torque control direct startup

PMSM FOC motor control software provides direct startup torque control. The control loop consists of the d-
axis (Flux) and q-axis (Torque) PI controllers. The motor torque is maintained at torque reference value (Iq_ref).
Any change in the load will cause the speed of the motor to change but the torque remains constant.

This control scheme is useful in applications where direct current control is important, such as e-bike or
battery-operated devices for example.

Figure 12 Torque control scheme

Control Scheme -Torque Control

FOCInput.Ref_Iq

Torque PI Controller

error
+

Ki
s

Uk

Kp Limiter

+

+

Ik

Yk
Limiter

-

+
+

Flux PI Controller

error
+

Ki
s

Uk

Kp Limiter

+

+

Ik

Yk
Limiter

-

+
+FOCInput.Ref_Id

Park_Transform.Id

Park_Transform.Iq

Car2Polar.Torque_Vq

Car2Polar.Flux_Vd

Application Note 20 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.3.4 Vq control direct startup

The Vq control is used when a fast response is required and varying speed is not a concern.

The speed PI control loop and torque PI control loop are disabled.

Figure 13 Vq control scheme

2.3.5 D-axis and Q-axis decoupling

The control of Id and Iq currents are not independent from one another. The Id current has an effect on the Iq

current and vice-versa.

This coupling effect acts as a disturbance which becomes prominent during transient conditions at high speed.

To correct for this coupling effect, feed-forward decoupling is applied to each axis to remove the disturbance.

Torque voltage, 𝑉𝑞 = 𝑉𝑞 −𝜔𝐿𝑞𝐼𝑞

Flux voltage, 𝑉𝑑 = 𝑉𝑑 +𝜔𝐿𝑑𝐼𝑑

Assuming the torque inductance and the flux inductance are equal, ω represents the estimated speed from the
PLL estimator output.

Control Scheme -Vq Control

Flux PI Controller

error
+

Ki
s

Uk

Kp Limiter

+

+

Ik

Yk
Limiter

-

+
+FOCInput.Ref_Id

Park_Transform.Id

Car2Polar.Flux_Vd

Park

Transform

-
+

Id

PI-Controller

Cartesian

to Polar

Transform

Clarke

Transform

SVM

Modulator

Current

Calculation

PLL

Estimator

I_U

I_V

I_W

I_Alpha_1Q31

I_Beta_1Q31

MATH

MATH

Vref32

Vref_AngleQ31

Torque_Vq

Flux_Vd

Ref_Vq

RotorAngleQ31

Ramp

MATH

Id

Iq

Ref_Id CCU80

PWM Generator

with integrated

deadtime control

ADC

A
D

C
 T

ri
g

g
e

r

ADC_Iu

ADC_Iw

ADC_Iv

DCLink

Get_ADC

Phase

Current

Iu

Iw

CCU8_MODULE_PHASE_U

Iv
C

u
rr

e
n

tS
e

c
to

rN
o

CCU8_MODULE_PHASE_V

CCU8_MODULE_PHASE_W

RotorSpeed_In

Application Note 21 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Figure 14 FOC control with dq decoupling

2.4 Cartesian to Polar transform

Using the outputs from the torque and flux PI controllers in XMC1300/XMC1400, the Cartesian to Polar

transform is calculated with the hardware CORDIC coprocessor in circular vectoring mode.

Figure 15 Cartesian to Polar transform

Table 5 XMC1000 CORDIC settings for Cartesian to Polar transform

Parameters Settings

CORDIC Control Mode Circular Vectoring Mode

K ≈ 1.646760258121

Magnitude Prescaler, MPS 2

CORDX Cart2Polar.Flux_Vd

CORDY Cart2Polar.Torque_Vq

CORDZ PLL_Estimator.RotorAngleQ31

According equations:

To improve the execution the function is divided into two, for parallel processing; the start CORDIC function
and the read CORDIC result function. While the CORDIC coprocessor is making the calculation, the CPU can

execute other software functions such as the PI controller for example, and read the CORDIC result later.
Instead, in XMC4400, the calculations are done immediately in FPU (not in parallel) calling fpu_cart2polar()

Park

Transform

-

-

-

+

Iq

PI-Controller

Id

PI-Controller
Speed

PI-Controller
+

+

CCU80

PWM Generator

with integrated

deadtime control

Cartesian

to Polar

Transform

Clarke

Transform

SVM

Modulator

Current

Calculation
ADC

PLL

Estimator

A
D

C
 T

ri
g
g
e
r

ADC_Iu

ADC_Iw

ADC_Iv

DCLink

I_U

I_V

I_W

I_Alpha_1Q31

I_Beta_1Q31

MATH

MATH

Vref32

Vref_AngleQ31

Torque_Vq

Flux_Vd

Ref_Id

Ref_Iq

Ref_Speed
Ramp

Ramp
MATH

Id

Iq

RotorSpeed_In

RotorAngleQ31

Get_ADC

Phase

Current

Iu

Iw

CCU8_MODULE_PHASE_U

Iv

C
u
rr

e
n
tS

e
ct

o
rN

o

CCU8_MODULE_PHASE_V

CCU8_MODULE_PHASE_W+

+

ωLqIq

ωLdId

-

+

On-chip hardware

Off-chip hardware

Software

Legend:

Cart2Polar Car2Pol_GetResult

Cart2Polar.Vref_AngleQ31

Cart2Polar.Vref32

Cart2Polar.Torque_Vq

Cart2Polar.Flux_Vd

PLL_Estimator.RotorAngleQ31 MATH -> CORDX

MATH -> CORDZ














+==

==

+==

VdFluz

VqTorque

AngleQref

ref

VqTorqueVdFluxref

V

V
QRotorAngleCORDZV

CORDXKMPSCORDXV

MPSVVKMPSVKCORDX

_

_

31_

32

2

_

2

_32

arctan31,

2145.1*/*

,/*/*



Application Note 22 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

function implemented in fpu_math2 library. The results from the Cartesian to Polar transform are fed into the
Space Vector Modulation (SVM) module.

2.5 Space Vector Modulation (SVM)

Space Vector Modulation (SVM) transforms the stator voltage vectors into Pulse Width Modulation (PWM)
signals (compare match values).

Figure 16 PWM SVM function

PMSM FOC motor control software supports different modes of SVM:

• 7-segment SVM

• 5-segment SVM

• SVM with Pseudo Zero Vector

• 4-segment SVM

• Over-modulation SVM

Each CCU80 timer slice controls an inverter phase with complementary outputs. Dead-time is inserted to
prevent a DC link voltage short-circuit. The dead-time value is configured by the user in the header file;

pmsm_foc_invertercard_parameter.h

The timer counting scheme used in the CCU80 is asymmetrical edge aligned mode. This is to have the same
CCU80 settings for 7-segment SVM, 4-segments SVM, and Pseudo Zero Vector PWM. With the asymmetric mode,

there is more flexibility for sampling shunt currents via the ADC.

The default initial settings of the CCU80 module are for the Infineon Motor Control Application Kit XMC1300
KIT_XMC1X_AK_MOTOR_001, and XMC4400 KIT_XMC4400_DC_V1.

Table 6 CCU80 default initial settings for 3-phase SVM generation

Parameters Settings for XMC1300/XMC1400 and XMC4400

Timer Counting Mode Edge aligned mode

Shadow Transfer on Clear Enabled

Prescaler mode Normal

Passive level Low

Asymmetric PWM Enable

Output selector for CCU80.OUTy0 Connected to inverted CC8yST1

Output selector for CCU80.OUTy1 Connected to CC8yST1

Dead time clock control Time slice clock frequency, 𝑓𝑡𝑐𝑙𝑘

Dead time value USER_DEAD_TIME_US*USER_PCLK_FREQ_MHZ (750 nsec)

SVM
Modulator

Cart2Polar.Vref32

Cart2Polar.Vref_AngleQ31

CCU8_MODULE_PHASE_U→CR1
CCU8_MODULE_PHASE_U→CR2

CCU8_MODULE_PHASE_V→CR1
CCU8_MODULE_PHASE_V→CR2

CCU8_MODULE_PHASE_W→CR1
CCU8_MODULE_PHASE_W→CR2

Application Note 23 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Parameters Settings for XMC1300/XMC1400 and XMC4400

Phase U Slice Period Match

Interrupt Event

Enabled

Trap Interrupt Event Enabled

2.5.1 7-segment SVM

Figure 17 7-segment SVM

Using the voltage space vector in sector A as an example; the following equations are used to calculate PWM

on-time of the SVM.

𝑉⃗ 𝑟𝑒𝑓 =
𝑇0
𝑇𝑆
𝑉⃗ 0 +

𝑇1
𝑇𝑆
𝑉⃗ 1 +

𝑇2
𝑇𝑆
𝑉⃗ 2

𝑇𝑆 = 𝑇0 + 𝑇1 + 𝑇2

𝑇1 =
√3|𝑉𝑟𝑒𝑓|𝑇𝑆

𝑉𝐷𝐶
𝑠𝑖𝑛 (

𝜋

3
− 𝜃𝑟𝑒𝑙)

𝑇2 =
√3|𝑉𝑟𝑒𝑓|𝑇𝑆

𝑉𝐷𝐶
𝑠𝑖𝑛(𝜃𝑟𝑒𝑙)

𝑇0 = 𝑇𝑆 − 𝑇1 − 𝑇2

Where:

𝑇𝑆 Sampling period

𝑉⃗ 0 Zero vector

𝑉⃗ 1 𝑉⃗ 2 Active vectors

𝑇0 Time of zero vector(s) is applied. The zero vector(s) is 𝑉⃗ 0[000],𝑉⃗ 7[111] or both

𝑇1 Time of active vector 𝑉⃗ 1 is applied within one sampling period

𝑇2 Time of active vector 𝑉⃗ 2 is applied within one sampling period

𝑇𝐷𝐶 Inverter DC link voltage

Sector A

Application Note 24 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

𝜃𝑟𝑒𝑙 Relative angle between Vref and V1 (0 ≤ 𝜃𝑟𝑒𝑙 ≤
𝜋

3
)

For example, in SVM sector A, the PWM on time for phase U is PWM period minus 𝑇0 2⁄ , phase V is PWM period
minus (𝑇0 2⁄ + 𝑇1) and phase W is 𝑇0 2⁄ .

Figure 18 7-segment SVM timing diagram in SVM sector A

2.5.2 5-segment SVM

The 5-segment SVM uses the same equations as in 7-segment SVM to calculate the T0, T1, and T2 timing. In 5-

segment SVM, the zero vector is only𝑉⃗ 0[000]. Unlike in 7-segment SVM, the zero vectors are 𝑉⃗ 0[000]

and𝑉⃗ 7[111].

For example, in SVM sector A, the PWM on time for phase U is PWM period minus 𝑇0, phase V is PWM period

minus (𝑇0 + 𝑇1) and phase W is zero.

CCU80 Slice 0 (Phase U)

t0

TS

Vu

Vv

Vw

[100] [110]

T1/2

[111]

T2/2T0/4

t

t

t

T2/2 T1/2 T0/2

[110] [100] [000] [111]

T0/4

PR

CR1

CR2

Timer Value

Application Note 25 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Figure 19 5-segment SVM timing diagram in SVM sector A

2.5.3 Pseudo Zero Vector (PZV)

In single-shunt current reconstruction, the current through one of the phase can be sensed across the shunt
resistor during each active vector. However, under certain conditions, for example at sector crossovers or when

the length of the vector is low, the duration of one or both active vectors (𝑇1 < 𝑇𝑚𝑖𝑛 or 𝑇2 < 𝑇𝑚𝑖𝑛) is too small
to guarantee reliable sampling of the phase currents. These conditions are shaded in the space vector diagram
as shown in the Figure 20.

Figure 20 7-segment SVM - single shunt sensing

In order to resolve this, Pseudo Zero Vector (PZV) is used in these conditions for single-shunt current sensing.
The Pseudo Zero Vector time 𝑇𝑍 is adjusted to ensure adequate ADC sampling time for the phase currents
sensing.

TS

Vu

Vv

Vw

[100] [110]

T1/2 T2/2

t

t

t

T2/2 T1/2 T0

[110] [100] [000]

CCU80 Slice 0 (Phase U)

t0

PR

CR1

CR2

Timer Value

V4[011] V1[100]

V2[110]V3[010]

V6[101]V5[001]

Vu

Vv

Vw

[100]

[110]

T1/2

[111]
T2/2

T0/4

t

t

t
T2/2

T1/2 T0/2

[110]

[100] [000] [111]

T0/4

Application Note 26 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Figure 21 Pseudo Zero Vector

The figure above shows the equations to calculate the 𝑇1 and 𝑇2 timing.

Figure 22 shows the timing diagram and the SVM diagram of the Pseudo Zero Vector.

Figure 22 Pseudo Zero Vector timing diagram in sector A

2.5.4 4-segment SVM

This SVM pattern is also used in the single shunt current sensing technique. Pseudo Zero Vector is useful in
certain conditions, at sector crossovers, or when the length of the vector is low. However, if PZV is used
throughout, the motor might not be able to spin up to its maximum target speed due to the limitation in the

voltage amplitude; the higher the 𝑇𝑍 value, the lower the motor speed that it can reach. This is the shaded area

in the SVM diagram in Figure 22. To resolve this condition, 4-segment SVM is used.

In the PMSM_FOC software, a transition between PZV and 4-segment SVM PWM generation is implemented to
resolve this issue. When 𝑇1 and 𝑇2 are greater than 𝑇𝑚𝑖𝑛 and the motor speed is more than 75% of the
maximum motor speed, 4-segment SVM is used. In this way, maximum target speed can be achieved.

 

minmin210

min21

min2

minmin1

4
3

sin
3

2

2
3

sin
3

sin
3

)(
3

sin
3

T
V

VT
TTTTTT

T
V

VT
TT

T
V

VT
T

TTT
V

VT
T

rel

DC

refs

ss

rel

DC

refs

rel

DC

refs

Zrel

DC

refs









+


==

+







+


=+

+


=

=+










=












Note: Tmin is PWM dead time + driver delay + ADC sampling time

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[011] [001] [000]

Tz Tz T0/2

CCU80 Slice 0 (Phase U)

t

PR

CR2

CR1

Timer Value

V4[011] V1[100]

V2[110]V3[010]

V6[101]V5[001]

Application Note 27 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Figure 23 4-segment SVM

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[000]

T0/2

θrel

T1

Ts

V4[011] V1[100]

Vref

V2[110]V3[010]

V6[101]V5[001]

A
B

C

D
E

F

V2
T2

Ts

V1

4-Segment SVM

CCU80 Slice 0 (Phase U)

t

PR

CR2

CR1

Timer Value

Application Note 28 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.5.5 Over-modulation SVM

For sinusoidal commutation, 𝑉𝑟𝑒𝑓 has to be smaller than 86% of the maximum 𝑉𝑟𝑒𝑓.

For non-sinusoidal commutation, the SVM can have a higher 𝑉𝑟𝑒𝑓 amplitude. This technique is referred to as

over-modulation of SVM.

Figure 24 shows the area (shaded in red) where the over-modulation technique is used.

Figure 24 Over-modulation

In the PMSM FOC software, the over-modulation is implemented by reducing the amplitude of 𝑉𝑟𝑒𝑓 to the

𝑉𝑟𝑒𝑓_𝑛𝑒𝑤. When 𝑇1 plus 𝑇2 is more than PWM period, 𝑇𝑆, the vector is reduced to follow the edge of the hexagon.

This is done by reducing the 𝑇1 and 𝑇2 timing proportionally.

𝑇1 and 𝑇2 are re-calculated as:

𝑇1_𝑛𝑒𝑤 = 𝑇1 ×
𝑇𝑆

𝑇1 + 𝑇2

𝑇2_𝑛𝑒𝑤 = 𝑇𝑆 − 𝑇1_𝑛𝑒𝑤

In over-modulation, the time for zero vector is reduced to zero. The new timing diagram of SVM sector A is
shown in the left diagram in Figure 24. From the diagram, it shows that only 2-phase currents, 𝐼𝑣 and 𝐼𝑤, can be

measured.

When the motor is running at high-speed, over-modulation is used to maximize DC bus utilization. The
drawback of over-modulation is that the output voltage is not sinusoidal, and it contains high-order harmonics

which cause acoustic noise.

Vref

Vref_new

θrel

T1'
Ts

V4[011] V1[100]

Vref

VDC
1
√3

V2[110]

V6[101]V5[001]

A
B

C

D
E

F

V2
T2'
Ts

V1

Over-modulation

TS

Vu

Vv

Vw

[110]

T2_new/2

t

t

t

T2_new/2 T1_new

[110] [100]

V3[010]

Vref_new

t

CCU80 Slice 3
Signal

ADC Trigger

Application Note 29 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.6 DC link voltage

The DC link voltage is measured via the voltage divider on the power inverter board. The measured value is
scaled to 2^12.

The voltage divider ratio value is defined in the pmsm_foc_invertercard_parameter.h (refer to chapter 7.2.2).

Figure 25 DC link voltage divider

2.7 Clarke transform

In this module the phase currents (𝐼𝐼_𝑢, 𝐼𝐼_𝑣, 𝐼𝐼_𝑤) from the current sensing module, are transformed into

currents I_Alpha and I_Beta on the 2-phase orthogonal reference frame.

Figure 26 Clarke transform

Equations for Clarke transform:

𝐼𝛼 = 𝐼𝐼_𝑢

𝐼𝛽 =
1

√3
∙ 𝐼𝐼_𝑢 +

2

√3
∙ 𝐼𝐼_𝑣 =

1

√3
∙ (𝐼𝐼_𝑢 + 2 ∙ 𝐼𝐼_𝑣)

Where:

𝐼𝐼_𝑢 + 𝐼𝐼_𝑣 + 𝐼𝐼_𝑤 = 0

Scaling factor of the Current.I_U, I_V and I_W are based on the current scaling (see chapter 2.10). In

XMC1300/XMC1400 the outputs of the Clarke Transform are shifted left by 14 bits (CORDIC_SHIFT) due to the
code optimization for XMC CORDIC hardware module.

DC Link Voltage [Vdc]

R1

R2

Input to ADC [Vo]

USER_DC_LINK_DIVIDER_RATIO =
R2

R1+R2

Clarke_Transform.I_Alpha_1Q31Current.I_U
Clarke

Transform
Current.I_V

Current.I_W Clarke_Transform.I_Beta_1Q31

Application Note 30 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.8 Park transform

In the Park transform, the currents I_Alpha and I_Beta are resolved to a rotating orthogonal frame with rotor
angle.

Figure 27 Park transform

In XMC1300/XMC1400, the Park transform is calculated by the CORDIC coprocessor.

𝐼𝑞 = (−𝐼𝛼 ∙ sin(𝑅𝑜𝑡𝑜𝑟𝐴𝑛𝑔𝑙𝑒) + 𝐼𝛽 ∙ cos(𝑅𝑜𝑡𝑜𝑟𝐴𝑛𝑔𝑙𝑒)) ∗ 𝐶𝑂𝑅𝐷𝐼𝐶_𝐺𝐴𝐼𝑁

𝐼𝑑 = (𝐼𝛼 ∙ cos(𝑅𝑜𝑡𝑜𝑟𝐴𝑛𝑔𝑙𝑒) + 𝐼𝛽 ∙ sin(𝑅𝑜𝑡𝑜𝑟𝐴𝑛𝑔𝑙𝑒)) ∗ 𝐶𝑂𝑅𝐷𝐼𝐶_𝐺𝐴𝐼𝑁

Note: : CORDIC_GAIN = K/MPS

The input PLL_Estimator.RotorAngleQ31 is shifted left by 14 bits due to code optimized for XMC CORDIC

hardware module (refer to XMC1300 or XMC1400 reference manual [1]).

Scaling factor of 𝐼𝑞 and 𝐼𝑑 are based on the current scaling (see chapter 2.10).

Table 7 XMC1000 CORDIC settings for Park transform

Parameters Settings

CORDIC Control Mode Circular Rotating Mode

K ≈ 1.646760258121

Magnitude Prescaler, MPS 2

CORDX Clarke_Transform.I_Beta_1Q31

CORDY Clarke_Transform.I_Alpha_1Q31

CORDZ PLL_Estimator.RotorAngleQ31

In XMC4400, the Park transform is calculated by the FPU using fpu_park_q31() function implemented in
fpu_math2 library.

Clarke_Transform.I_Alpha_1Q31
Park

Transform
Clarke_Transform.I_Beta_1Q31

PLL_Estimator.RotorAngleQ31

ParkTransform_
GetResult

Park_Transform.Iq

Park_Transform.IdMATH -> CORDX

MATH -> CORDY

Application Note 31 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

2.9 Protection

The PMSM FOC motor control software supports the following protection schemes:

• CCU80 CTrap Function

• Over-Current Protection

• Over/Under Voltage Protection

CCU80 CTrap Function

Trap function of the CCU8 module provides hardware overload condition protection. The CTrap input pin is
connected to the fault pin of the gate driver. Once the gate driver detects a fault, the CTrap pin is set to active

state and the PWM outputs are set to PASSIVE level. The CTrap interrupt is triggered. In the Interrupt Service
Routine, the gate driver is disabled and the motor state machine is set to TRAP_PROTECTION state.

Over-Current Protection (only in XMC1300/XMC1400)

The average current flow through DC link shunt resistor is sampled every cycle of PWM. This value is read to
detect an over-current condition. Once this condition occurs, the reference motor speed is scaled down by a
factor till the current is within the limit (USER_IDC_MAXCURRENT_A) defined in the user configuration file.

The variable FOCInput.overcurrent_factor, is used to update motor speed using this equation:

𝐹𝑂𝐶𝐼𝑛𝑝𝑢𝑡. 𝑅𝑒𝑓_𝑆𝑝𝑒𝑒𝑑 =
𝑀𝑜𝑡𝑜𝑟. 𝑅𝑒𝑓𝑆𝑝𝑒𝑒𝑑 ∗ 𝐹𝑂𝐶𝐼𝑛𝑝𝑢𝑡. 𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟

4096

FOCInput.overcurrent_factor is reduced if the average DC link current is above the limit.

The nominal value of the FOCInput.overcurrent_factor is 4096. This value is increased back to nominal when

the average DC link current is within the limit. In XMC4400, this feature is not supported.

Over/Under Voltage Protection

The DC link voltage is continuously converted. If the DC link voltage is less than or greater than specific user
limits, an interrupt is generated and the function pmsm_foc_over_under_voltage_isr () is called. The gate

driver is disabled to stop driving the motor. The CCU8 timer is still running and the motor state machine is
changed to DC_LINK_UNDER_VOLTAGE or DC_LINK_OVER_VOLTAGE state.

The voltage protection check is not done during motor ramping and open loop condition.

2.10 Scaling

PMSM FOC software uses integers to represent real-world floating-point variables, such as angle, current, and
voltage. To provide the best resolution, the software represents the Physical Value depending on the Target

Value.

For example, the phase current is represented by 0 - 100% of the Target Value, where the Target Value is the

maximum current that can be measured by the current sensing circuit.

The following equation shows the conversion of Physical Value to the Norm Value represented in the software.

𝑁𝑜𝑟𝑚 𝑉𝑎𝑙𝑢𝑒 =
𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 ∗ 2𝑁

𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒

Application Note 32 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Table 8 Scaling used in PMSM FOC software

Parameter Scaling Range

Target value [Unit] N [%] [hex]

SVM Amplitude
(𝑉𝑟𝑒𝑓)

𝑁_𝑉𝑟𝑒𝑓_(𝑆𝑉𝑀) [Volts] 15 0% to

100%

0x0 to 0x7FFF

Current

𝐼_𝑈, 𝐼_𝑉, 𝐼_𝑊,

𝐼𝑞, 𝐼𝑑

𝑁_𝐼_(𝛼,𝛽) [A] 15 -100% to

100%

0x8001 to 0x7FFF

Angle of rotor

position, Angle

of space vector

360° [degree] 16 + USER_RES_INC 0 to 360° 0x0 to 0xXFFFF

(for 16+ USER_RES_INC

bit)

Speed 𝑁𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑

[degree/second]

log2(𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 0% to

100%

0x0 to max_speed_interger

In the following sections, the calculations of the Target Values are described.

Scaling for SVM voltage

Figure 28 SVM voltage scaling

𝑉𝑟𝑒𝑓 =
𝑁_𝑉𝑟𝑒𝑓_𝑆𝑉𝑀

215
∙ 𝑉𝑟𝑒𝑓_𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑁_𝑉𝑟𝑒𝑓_𝑆𝑉𝑀 is the maximum reference voltage of SVM

𝑁_𝑉𝑟𝑒𝑓_𝑆𝑉𝑀 =
1 − 4𝜆

√3
𝑉𝐷𝐶

𝜆 = 𝑇𝑍 𝑇𝑆⁄ is the pseudo zero vector ratio, λ = 0 for standard SVM

𝑉𝐷𝐶 is inverter DC link voltage, USER_VDC_LINK_V

Example:

USER_VDC_LINK_V is 24.0f, λ = 0

 𝑁_𝑉𝑟𝑒𝑓_(𝑆𝑀𝑉) = 13.86 V

0 215

Vref(max)

Vref

Vref_Integer

Application Note 33 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

To represent 𝑉𝑟𝑒𝑓 = 0.5 V, the software integer, 𝑉𝑟𝑒𝑓_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 is 1182.

Scaling for phase current

Figure 29 Phase current scaling

The Target Value of the current is the maximum current that can be measured by the current sensing circuit:

𝑁_𝐼_(𝛼,𝛽) =
𝑉𝐴𝑅𝐸𝐹/2

𝑅𝑠ℎ𝑢𝑛𝑡 × 𝐺𝑂𝑝𝐴𝑚𝑝

If internal ADC gain is used, 𝐺𝑂𝑝𝐴𝑚𝑝 is replaced with the ADC gain factor setting.

Scaling for angle and speed

Figure 30 Angle scaling

In the PMSM_FOC software, it uses 16-bit (or 16 + USER_RES_INC bits where USER_RES_INC: 0~8) integers to
represent angles of 0° to 360°. The angle scaling equation is:

0 215

N_I_αβ

Iαβ_Ampere

Iαβ _Integer2-15

-N_I_αβ

Current [A]

0 216+RES_INC

360°

Angledeg

AngleInteger

Angle

Application Note 34 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

𝐴𝑛𝑔𝑙𝑒𝑑𝑒𝑔 =
360°

216+𝑅𝐸𝑆_𝐼𝑁𝐶
∙ 𝐴𝑛𝑔𝑙𝑒𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Following the angle scaling, the speed scaling is:

𝜔𝑑𝑒𝑔𝑟𝑒𝑒/𝑠𝑒𝑐𝑜𝑛𝑑 =
𝑁𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑

2N
∙ 𝜔𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Where:

𝜔𝑖𝑛𝑡𝑒𝑔𝑒𝑟 is the angle increase/decrease every CCU8 PWM cycle (i.e. integer speed)

Target Value for speed is:

𝑁𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 =
𝑈𝑆𝐸𝑅_𝑆𝑃𝐸𝐸𝐷_𝐻𝐼𝐺𝐻_𝐿𝐼𝑀𝐼𝑇_𝑅𝑃𝑀 ∗ 𝑈𝑆𝐸𝑅_𝑀𝑂𝑇𝑂𝑅_𝑃𝑂𝐿𝐸_𝑃𝐴𝐼𝑅

60
∗ 360° 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 =
𝑁𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 ∗ 2

16+𝑈𝑆𝐸𝑅_𝑅𝐸𝑆_𝐼𝑁𝐶

60 ∗ 𝑓𝐶𝐶𝑈8_𝑃𝑊𝑀

𝑁 = log2(𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

Note: If speed control is not done in every CCU8 PWM cycle, the scaling indicated above needs to be
adjusted accordingly based on the speed control rate.

Figure 31 Speed scaling

Example:

• Motor maximum speed, USER_SPEED_HIGH_LIMIT_RPM = 10,000 rpm

• Motor pole pairs, USER_MOTOR_POLE_PAIR = 4

• CCU8 PWM Frequency = 25 KHz

• USER_RES_INC = 3

 𝑁𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 =
(10000 𝑟𝑝𝑚∗4)∗360°

60
= 240,000 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠𝑒𝑐𝑜𝑛𝑑

0 2N =
max_speed_integer

Nmax_speed

ωdeg/sec

ωInteger

Speed
(degree/second)

Application Note 35 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

 𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 =
240,000∗216+3

360∗25,000
= 13,981

 𝑁 = log2(𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑖𝑛𝑡𝑒𝑔𝑒𝑟) = log2(13,981) = 13.77

To represent speed 2,000 rpm which is 48,000 (degree/second), the software integer, 𝜔𝑖𝑛𝑡𝑒𝑔𝑒𝑟= 2,796

2.11 Determination of flux and torque current PI gains

To calculate the initial values of the PI gains of the torque and flux current control, it is necessary to know the
electrical parameters of the motor. For the SPMSM motor, the torque inductance and the flux inductance are
considered equal.

Figure 32 Torque / Flux current control loop

The calculation of the PI gains is made by using the pole-zero cancellation technique as illustrated. By

having 𝐾𝑃 𝐾𝐼⁄ = 𝐿 𝑅⁄ , the controller zero will cancel the motor pole. With this the transfer function of the
control loop is a first order LPF with time constant, 𝑇𝑐. In addition, the proportional gain calculation is based

on motor inductance and the integral gain is on the motor resistance.

At constant motor speed the Back-EMF of the motor is near constant. Therefore it is negligible in the frequency
domain. The figure shows the simplified diagram after pole-zero cancellation.

s

K
K I

p + ++

PI

sL R

MotorEBEMF

e

-
Id or Iq

-
Iref

Application Note 36 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC sensorless software components

Figure 33 Simplified current control loop due to pole-zero cancellation

As 𝐾𝑃 𝐿⁄ = 𝐾𝐼 𝑅⁄ = 𝜔𝑐, the PI controller gains are:

Proportional Gain 𝐾𝑃 = 𝜔𝑐𝐿

Integral Gain 𝐾𝐼 = 𝜔𝑐𝑅

Where:

• 𝜔𝑐 is the cutoff frequency of the first order LPF.

• L is the motor inductance

• R is the motor resistance.

In the digital controller implementation, the integral part is a digital accumulator. Therefore the 𝐾𝐼 gain has to
include a scaling factor for the sampling time 𝑇𝑆, which is the PWM frequency.

Revised formula:

Proportional Gain 𝐾𝑃 = 𝜔𝑐𝐿 × 𝐴

Integral Gain 𝐾𝐼 = 𝜔𝑐𝑅 × 𝑇𝑆 = 𝑅𝑇𝑆𝐾𝑃 𝐿⁄

Where:

• A is the XMC hardware optimize scaling factor.

Based on the past experience, set the cutoff frequency to three times of the maximum electrical motor speed to
obtain a good tradeoff between dynamic response and sensitivity to the measurement noise.

+

PI

sL R

Motor

e

-
Id or IqIref

R

L

s

KI









+

I

PI

K

K
s

s

K
1 ++

PI

sL R

MotorEBEMF

e

-
Id or Iq

-
Iref 








+

R

L
sR 1/1

Application Note 37 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

3 Current sensing and calculation

This module is used to measure motor phase currents using the VADC peripheral.

Figure 34 Current sensing and calculation functions

Two techniques to measure phase currents

• Single shunt current sensing (only in XMC1300/XMC1400)

• Three shunt current sensing

You can select the option of the current sensing technique in the user configuration file.

The phase currents measurements are synchronized with the PWM SVM pattern generation. The fourth slice of
the CCU80 module, slice 3 (slice 2 in XMC4400), is used to trigger the ADC conversions. Initial settings of the

CCU80 and VADC modules for different current sensing techniques are listed in their respective sub-chapters,
chapter 3.1 and chapter 3.2.

The figure below shows the timing diagram of the three shunt current sensing technique using synchronous
ADC conversion.

Figure 35 Three shunt current sensing timing diagram using synchronous conversion ADC

Current_

Reconstruction

Current.I_U

Current.I_V

Current.I_W

FOCOutput.Previous_SVM_SectorNo

FOCOutput.New_SVM_SectorNo

Get_ADCPhase

Current

ADC.ADC_Iu

ADC.ADC_Iv

ADC.ADC_Iw

t
0

TS

Vu

Vv

Vw

[100] [110]

T1/2

[111]

T2/2T0/4

t

t

t

T2/2 T1/2 T0/2

[110] [100] [000] [111]

T0/4

t

CCU80 Slice 3
Signal

ADC Trigger

CCU80 Phase U

Timer Count

PWM Period match &
PWM Update

PWM Period match &
PWM Update

PWM Period Match ISR

CR1

CR2

G0
CH0
G1

CH0

G0
CH1
G1

CH1
Gx

CHy
Gx

CHy
...

Application Note 38 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

Internal ADC Gain Feature

In default applications an OP-amp is used to amplify the voltage drop above the current shunt to combine low

power losses and high ADC accuracy. This method is supported by the XMC PMSM FOC motor control software.

Figure 36 External phase current amplifier

Additionally, the XMC supports an analog gain stage for the ADC (VADC). With this feature an external fast op-

amp is not required for the phase current signals. This leads to cost saving in the BOM of the PCB boards.

R2
XMC1302

Vdd (5V)

GND

Rdc

i_
p
h

a
se

_
x

GND

R1

C1 ADC

with gain

G

VADCInput to

ADC

 R2: USER_RIN_PULL_UP_KOHM

 R1: USER_RIN_OFFSET_KOHM

𝑉𝐴𝐷𝐶
𝐺𝑅1

𝑅1 +𝑅2
𝑉𝑑𝑑+

𝑅2
𝑅1 +𝑅2

𝐺 𝑅𝑑𝑐 𝐼𝑑𝑐

Figure 37 Phase current amplifier with On-chip gain

Input to ADC

Amplifier Bias Voltage

+

-

R
sh

u
n

t
i_

p
h

as
e

_x

USER_R_PHASECURRENT_FEEDBACK_KOHM

USER_RIN_PHASECURRENT_KOHM

Application Note 39 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

3.1 Single shunt current sensing (only in XMC1300/XMC1400)

The single shunt current measurement technique measures the power supply current and, with knowledge of
the switching states, recreates the three phase current of the motors.

Figure 38 Single shunt sensing technique

The Pseudo Zero Vector (PZV) SVM is used to ensure enough time is given for single shunt current sensing.

Figure 39 shows the direction of the voltage space vector and what current can be measured in that state. The

CCU80 slice 3 is used as a timer to automatically trigger the ADC conversion at specific time as shown in Figure

39. The ADC conversions are triggered at both the rising and falling edges of the CCU80 slice 3 signal (slice 2 in

XMC4400). When 4–segment SVM is used, the ADC conversion trigger points are also changed, refer to Figure 40.

θrel

V4[011] V1[100]

Vref

V1
Tz

Ts

V2
Tz

Ts

V2[110]V3[010]

V6[101]V5[001]

A
B

C

D
E

F

V5
Tz

Ts

V4
Tz

Ts

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[011] [001] [000]

Tz Tz T0/2

Iu

-Iu

-Iw
Iw

t

Idc

0

t

ADCT1ADCTz2

ADCTz1

ADCT2

CCU80 Slice 3
Signal

2Tz TS - 2Tz
PWM Period match &

SVM PWM Update

PWM Period match
& SVM PWM Update

SVM
Update

PWM Period Match ISR

Reload CCU8 Slice 3
CR and PR values

Reload CCU8 Slice 3
CR and PR values

Application Note 40 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

Figure 39 Single shunt – 3-phase current sensing in sector A

Figure 40 Smooth transition from PZV to 4-segment SVM in sector A

The VADC source interrupt event is enabled and its service routine performs the following tasks:

• Read the results of the ADC conversion

• Generate the phase current values and scale the values to 215

The measured 12-bit current value is scaled to 1Q15 format.

In PZV:

• Current -> 𝐼_𝑈 = (𝐼𝐴𝐷𝐶𝑇1 − 𝐼𝐴𝐷𝐶𝑇𝑧1) ∗ 2
3

• Current -> 𝐼_𝑊 = (𝐼𝐴𝐷𝐶𝑇2 − 𝐼𝐴𝐷𝐶𝑇𝑧2) ∗ 2
3

In 4-segment SVM:

• Current -> 𝐼_𝑈 = (𝐼𝐴𝐷𝐶𝑇1 − 𝐼𝐴𝐷𝐶_𝐵𝑖𝑎𝑠) ∗ 2
4

• Current -> 𝐼_𝑊 = (𝐼𝐴𝐷𝐶𝑇2 − 𝐼𝐴𝐷𝐶_𝐵𝑖𝑎𝑠) ∗ 2
4

The two tables below show the initial settings of the VADC and CCU80 slice 3 for single shunt current sensing
technique.

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[011] [001] [000]

Tz Tz T0/2

Iu

-Iu

-Iw

Iw

t

Idc

0

t

ADCT1ADCTz2

ADCTz1

ADCT2

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[000]

T0/2

Iu

-Iw t

Idc

0

t

ADCT1 ADCT2

4-Segment SVMPZV SVM

Smooth Transistion

CCU80
Slice 3

CCU80
Slice 3

Application Note 41 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

Table 9 VADC initial settings for single shunt

Parameters Settings

Request Source for Single Shunt Queue

Request Source for other Channels Background Scan

FIFO for Single Shunt 2-Stage Buffer

Source Interrupt Enabled

ADC Conversion Trigger Signal CCU80.ST3A (through gating select input)

ADC Conversion Trigger Edge Both Rising and Falling Edges

Table 10 CCU80 slice 3 initial setting for single shunt

Parameters Settings

Timer Counting Mode Edged Aligned

Single Shot Mode Enabled

Period Register 2 ∗ 𝑇𝑍

Compare Register Channel 1, CR1 𝑇𝑍 ∗ 0.85

Compare Register Channel 2, CR2 𝑇𝑍 + 𝑇𝑍 ∗ 0.85

Application Note 42 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

3.2 Three shunt current sensing

The three shunt current measurement technique is more robust compared with single shunt sensing. Using this
technique in XMC1300/XMC1400, we can select two out of the three phase currents for the current
reconstruction calculation. In the XMC4400, we use all the three phases.

Figure 41 Three shunt sensing technique

For three shunt current sensing, the ADC conversion trigger is set at half of the PWM cycle where all the low-side

switches are on, refer to Figure 42. The current will always flow through the shunt resistor when the low-side
switch is on and high-side switch is off.

Figure 42 Three shunt, 3-phase current sensing in sector A

IU

t
0

-IU

IV

t
0

-IV

IW

t
0

-IW

TS

Vu

Vv

Vw

[100] [110]

T1/2

[111]

T2/2T0/4

t

t

t

T2/2 T1/2 T0/2

[110] [100] [000] [111]

T0/4

t

CCU80 Slice 3
Signal

ADC Trigger

Application Note 43 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

In the current calculation function, the measured 12-bit current value is scaled to 1Q15 format.

• Current -> 𝐼_𝑈 = (𝐴𝐷𝐶_𝐵𝑖𝑎𝑠_𝐼𝑢 − 𝐼𝐴𝐷𝐶_𝐼𝑢) ∗ 2
3

• Current -> 𝐼_𝑉 = (𝐴𝐷𝐶_𝐵𝑖𝑎𝑠_𝐼𝑣 − 𝐼𝐴𝐷𝐶_𝐼𝑣) ∗ 2
3

• Current -> 𝐼_𝑊 = (𝐴𝐷𝐶_𝐵𝑖𝑎𝑠_𝐼𝑤 − 𝐼𝐴𝐷𝐶_𝐼𝑤) ∗ 2
3

The initial settings of the VADC module and CCU80 slice 3 are detailed in the following tables.

Table 11 VADC initial settings for three shunt

Parameters Settings

Request Source for Three Shunt Queue

Request Source for Other Channels Background Scan

FIFO Disabled

Source Interrupt Disabled

ADC Conversion Trigger Signal CCU80.ST3A (through gating select input)

ADC Conversion Trigger Edge Rising Edge

Table 12 CCU80 slice 3 initial setting for three shunt

Parameters Settings

Timer Counting Mode Edged Aligned

Single Shot Mode Disabled

Period Register Same as Period Register value for 3-phase PWM

Compare Register Channel 1 Half of Period Register value

Compare Register Channel 2 Compare Register Channel 1 value + 1

Application Note 44 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

3.2.1 Asynchronous theory (only in XMC1300/XMC1400)

The term asynchronous conversion is related to the independency of the Groups. This mode is an easy
implementation and the benefit is a free Group 1, no reload of the ADC, and easy to understand.

In the default configuration all three ADC inputs are sampled one after the other, and all three currents are

measured one after each other. This mode does not require a reload of the ADC and is especially suitable if
three ADCs are available (Not true for XMC1000). You can manually distribute the channels to the Groups. The

main drawback is that the time to measure is up to double the time of an advanced implementation. Due to the
required long current measurement window it is recommended to use this implementation only for
demonstration purposes. It’s not implemented in the XMC4400 family.

Vu

Vv

Vw

[100] [110][111]

t

t

t
[110] [100] [000] [111]

ADC Trigger

G0
Iu

G0
Iv

G0
Iw

...

PWM Period match PWM Period match

Figure 43 Asynchronous conversion sequence

3.2.2 Synchronous theory

In the XMC1300 and XMC1400 families, this implementation uses the three following hardware features:

The first feature allows synchronized sampling and sequential conversion of two shunt currents. This improves
the accuracy and reduces the minimum measurement window. Both VADC Sample and Hold units are used for

this feature to measure two currents at the same time (for example phase U and V). This method is not

impacted if another measurement runs in the background. This gives rise to the implementation name
‘synchronous conversion’.

The second hardware feature improves the measurement for large amplitudes. In three phase leg shunt current
measurement the current is measured in the middle where all high-side switches are off. This measurement

window decreases with rising amplitudes, general higher torque. Which phase has a small measurement

window depends on the sector (see Figure 44).

Application Note 45 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

Figure 44 SVM sectors at high motor torque

The software changes the sequence of measurement depending on the sector. Therefore, it can measure the
two non-critical phase currents. For example, for sectors A and F it can assign 𝐼𝑉 and 𝐼𝑊 ADC channels.

The following table shows the synchronous measured phases per sector.

Table 13 Phase measurement per SVM sectors

SVM sectors Shunt current measured

Sector A and F Phase W

Phase V

Sector B and C Phase U

Phase W

Sector D and E Phase V

Phase U

The second hardware feature is the alias feature of the ADC, which allows for fast changing of the sequence, so
even large amplitudes can be measured.

Consequently, the software discards the measurement of the third phase if the measurement window is
smaller than the minimum measurement time Tmin. It is then switching from 3 leg shunt measurement to 2 leg
shunt measurement. In three areas the minimum measurement window fall below Tmin at two phases. The
Figure 45 shows which area can be measured with 3 or 2 shunt measurement.

θrel

V4[011] V1[100]

Vref

V2[110]V3[010]

V6[101]V5[001]

Sector AB
Sector C

Sector D
E

Sector F

TS

Vu

Vv

Vw

[100] [110]

T1/2

[111]

T2/2T0/4

t

t

t

T2/2 T1/2 T0/2

[110] [100] [000] [111]

T0/4

Sector A Sector F
TS

Vu

Vv

Vw

t

t

TS

Vu

Vv

Vw

t

t

Sector B Sector C
TS

Vu

Vv

Vw

t

t

TS

Vu

Vv

t

t

Sector D Sector E
TS

Vu

Vv

Vw

t

t

Vu

Vv Vw

[100] [101]

T1/2

[111]

T2/2T0/4

t

T2/2 T1/2 T0/2

[101] [100] [000] [111]

T0/4

ADC Trigger

Phase U current
measurement
window is too

small

ADC Trigger

ADC Trigger
ADC Trigger

ADC Trigger
ADC Trigger

Phase V current
measurement
window is too

small

Phase W current
measurement
window is too

small

[010] [110]

T1/2

[111]

T2/2T0/4

t

T2/2 T1/2 T0/2

[110] [010] [000] [111]

T0/4

[010] [011]

T1/2

[111]

T2/2T0/4

t

T2/2 T1/2 T0/2

[011] [010] [000] [111]

T0/4

[001] [101]

T1/2

[111]

T2/2T0/4

t

T2/2 T1/2 T0/2

[101] [001] [000] [111]

T0/4

Vw

[001] [011]

T1/2

[111]

T2/2T0/4

t

T2/2 T1/2 T0/2

[011] [001] [000] [111]

T0/4

Application Note 46 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

V4[011] V1[100]

V2[110]V3[010]

V6[101]V5[001]

Tmin
Immeasurable at 3 shunt

Immeasurable at 2 shunt

Legend:

Figure 45 SVM 2/3 leg shunt immeasurable areas

The switching of the parallel sampled phases requires that all three inputs (𝐼𝑈, 𝐼𝑉 , 𝐼𝑊) are available for both
groups (G0 and G1). Normally this would double the pin consumption. The third hardware feature of the
XMC1300 and XMC1400 family avoid this doubling by overlapping group channels. Up to four pins are accessible

from both groups.

In the XMC4400 family, four VADCs are present, so all phases can be measured in a synchronized way. Each

phase is connected to a different ADC, and each channel is aliased to channel 0.

Application Note 47 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

3.2.3 Synchronous Implementation

Using the alias feature in the ADC module, we can assign different ADC input channels to be converted in
parallel. In XMC1300/XMC1400, we can measure the two most non-critical phase currents for all the SVM
sectors. For sectors A and F, we assign 𝐼𝑉 and 𝐼𝑊 ADC channels. Whereas in the XMC4400 family, we can
measure all three phases unconditionally.

The following table shows the synchronous measured phases per sector for XMC1300/XMC1400.

Table 14 Aliasing settings for SVM sectors for XMC1300/XMC1400

SVM sectors Shunt current measured Alias channels for CH0

Sector A and F Phase W (Pin P2.9) Group 0 Channel 2

Phase V (Pin P2.10) Group 1 Channel 2

Sector B and C Phase U (Pin P2.11) Group 0 Channel 4

Phase W (Pin P2.9) Group 1 Channel 4

Sector D and E Phase V (Pin P2.10) Group 0 Channel 3

Phase U (Pin P2.11) Group 1 Channel 3

The implementation for all sectors are shown in the following figures. The CH0 of the master (G0) and the slave
(G1) are measured synchronously. After the conversion the CH1 of the master (G0) and the slave (G1) is
measured.

Figure 46 Synchronous conversion using alias feature in XMC1300 and XMC1400 – sectors A and F

Figure 47 Synchronous conversion using alias feature in XMC1300 and XMC1400 – sectors B and C

θ

V4[011] V1[100]

Vref

V2[110]V3[010]

V6[101]V5[001]

A
B

C

D
E

F

Master Group
(G1)

Slave Group
(G0)

CH1 CH1 Idc

Synchronous
Conversion

CH3 IU

Alias

CH0Trigger CH0

CH2 IV
Alias

CH2 IW
Alias

CCU80.ST3

Master Group
(G1)

Slave Group
(G0)

CH1 CH1 Idc

Synchronous
Conversion

CH2 IV

Alias

CH0Trigger CH0

CH4 IW
Alias

CH4 IU
Alias

CCU80.ST3
θ

V4[011] V1[100]

Vref

V2[110]V3[010]

V6[101]V5[001]

A
B

C

D
E

F

Application Note 48 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Current sensing and calculation

Figure 48 Synchronous conversion using alias feature in XMC1300 and XMC1400 – sectors D and E

Vu

Vv

Vw

[100] [110][111]

t

t

t
[110] [100] [000] [111]

ADC TriggerPWM Period match PWM Period match

G0
CH0
G1

CH0

G0
CH1
G1

CH1
Gx

CHy
...

Gx
CHy

Figure 49 Synchronous conversion sequence in XMC1300/XMC1400

In XMC4400, all the three phases are sensed synchronously at the trigger point.

Figure 50 Synchronous conversion sequence in the XMC4400 family

Master Group
(G1)

Slave Group
(G0)

CH1 CH1 Idc

Synchronous
Conversion

CH4 IW

Alias

CH0Trigger CH0

CH3 IU
Alias

CH3 IV
Alias

CCU80.ST3

θ

V4[011] V1[100]

Vref

V2[110]V3[010]

V6[101]V5[001]

A
B

C

D
E

F

Application Note 49 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Motor speed and position feedback in sensorless FOC control

4 Motor speed and position feedback in sensorless FOC control

The rotor speed and position feedback of the motor are determined in the PLL Estimator software library. This
library contains the Infineon patented IP and is provided as a compiled libPLL_Estimator.a file. The following

are the list of APIs provided in the library.

Note: It is important that these APIs are called in the exact order indicated.

1. PLL_Imag(int32_t Vref_AngleQ31, int32_t I_Alpha_1Q31, int32_t I_Beta_1Q31)

2. PLL_Imag_GetResult(PLL_EstimatorType* const HandlePtr)

3. PLL_Vref(int32_t Delta_IV, uint32_t Vref32, int32_t PLL_UK, int32_t Phase_L, PLL_EstimatorType* const

HandlePtr)

4. PLL_Vref_GetResult(PLL_EstimatorType* const HandlePtr)

5. PLL_GetPosSpd(PLL_EstimatorType* const HandlePtr)

Below is a brief description of each API and the required parameters.

Table 15 PLL_Imag() function

Name PLL_Imag(int32_t Vref_AngleQ31, int32_t I_Alpha_1Q31, int32_t I_Beta_1Q31)

Description In XMC1300/XMC1400. this function starts the first CORDIC calculation of the
sensorless estimator. In XMC4400, this functions makes the first FPU calculation

and loads the result in PLL_Estimator structure.

Input Parameters Vref_AngleQ31 Angle of voltage space vector

I_Alpha_1Q31 Alpha coordinate of current space vector

I_Beta_1Q31 Beta coordinate of current space vector

HandlePtr Pointer to the structure of PLL_Estimator

Return (only in

XMC4400)

Current_I_Mag Current magnitude

Delta_IV To be provided as input parameter for the second

CORDIC calculation

Table 16 PLL_Imag_GetResult() function

Name PLL_Imag_GetResult(PLL_EstimatorType* const HandlePtr)

Description In XMC1300/XMC1400, this function reads out the results of the first CORDIC

calculation of the sensorless estimator. In XMC4400, this function is not called.

Input Parameters HandlePtr Pointer to the structure of PLL_Estimator

Return (only in

XMC1300/XMC1400)

Current_I_Mag Current magnitude

Delta_IV To be provided as input parameter for the second

CORDIC calculation

Table 17 PLL_Vref() function

Name PLL_Vref(int32_t Delta_IV, uint32_t Vref32, int32_t PLL_UK, int32_t Phase_L,

PLL_EstimatorType* const HandlePtr)

Application Note 50 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Motor speed and position feedback in sensorless FOC control

Description In XMC1300/XMC1400, this function starts the second CORDIC calculation of the
sensorless estimator. In XMC4400, this functions does the second FPU calculation

and loads the result in PLL_Estimator pointer.

Input Parameters Delta_IV Result of the first CORDIC calculation of the sensorless

estimator

Vref32 SVM voltage magnitude of last PWM cycle

PLL_Uk PLL Estimator PI controller output

Phase_L Phase inductance of motor stator winding

HandlePtr Pointer to the structure of PLL_Estimator

Return(in

XMC1300/XMC1400)

Current_I_Mag Updated current magnitude

Return(in XMC4400) VrefxSinDelta It is used for PLL_Estimator

Table 18 PLL_Vref_GetResult() function

Name PLL_Vref_GetResult(PLL_EstimatorType* const HandlePtr)

Description In XMC1300/XMC1400, this function reads the results of the second CORDIC

calculation of the sensorless estimator. In XMC4400, this function is not called.

Input Parameters HandlePtr Pointer to the structure of PLL_Estimator

Return (only in

XMC1300/XMC1400)

VrefxSinDelta It is used for PLL_Estimator

Table 19 PLL_GetPosSpd() function

Name PLL_GetPosSpd(PLL_EstimatorType* const HandlePtr)

Description This function is to calculate and read the rotor position and rotor speed from the

sensorless estimator.

Input Parameters HandlePtr Pointer to the structure of PLL_Estimator

Return RotorAngleQ31 Estimated rotor position

 RotorSpeed_In Estimated rotor speed

Application Note 51 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Interrupts

5 Interrupts

Interrupt events and priorities in the PMSM FOC software are listed in the following table:

Table 20 Interrupt priorities

Interrupt events Priorities Comment

CTrap 0 (Highest priority) Fault detection

ADC Queue Source 1 Only for single shunt sensing(that

is not implemented in XMC4400).
It is disabled for three shunt

sensing.

PWM Period Match (Phase U) 2 State machine execution.

Secondary Loop 3 APIs for low priority and low cycle

frequency.

Over/Under Voltage Protection 1 Event happens only if DC bus is

outside Voltage range

5.1 PWM period match interrupt

The PMSM_FOC state machine is executed in Phase U PWM frequency period match Interrupt Service Routine.

The Interrupt Service Routine consists of a state machine (see chapter 6).

An example of the flow of the PWM period match interrupt is shown in Figure 51. This example shows the flow

of the FOC direct startup control scheme. The current sensing technique chosen is three shunt synchronous
conversion.

Application Note 52 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Interrupts

Figure 51 PWM period match Interrupt Service Routine flowchart

PWM Period Match
Interrupt

State machine at
FOC_CLOSED_LOOP

Other state

Miscellaneous tasks like:
Ramp up,

Speed adjustment,
Check motor stop command

Update SVM PWM

Read ADC
Potentiometer

Service Watchdog

Read Shunt-
Currents

FOC Control
Functions

Counter > 64

Counter++

Clear Counter

Return

Yes

Yes

No

No

Application Note 53 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Interrupts

5.2 Ctrap interrupt

When a TRAP condition is detected at the selected input pin (P0.12), the CCU80 outputs are set to passive level
and Trap_Protection_INT() is executed. In the Interrupt Service Routine, the gate driver is disabled and the
motor state is set to TRAP_PROTECTION. This ISR is executed with the highest priority, level 0.

5.3 ADC source interrupt (only in XMC1300/XMC1400)

This interrupt is only enabled for single shunt current sensing. It is triggered at the end of ADC conversion. In

the ISR, the ADC results are read.

Figure 52 ADC source interrupt timing diagram

5.4 Secondary loop interrupt

This loop is used for slower tasks such as communication or a watchdog service. The trigger is generated from

an independent timer. This means it is not mandatory that the frequency is synchronous with the PWM period
match interrupt. For deterministic reasons its frequency is intended to be a fraction of

USER_CCU8_PWM_FREQ_HZ (default 20 kHz).

5.5 Over/Under voltage protection

This interrupt is triggered from ADC only when the DC bus is outside of the voltage range.

TS

Vu

Vv

Vw

t

t

t

T1

[100]

T2

[110] [111]

T0/2

[011] [001] [000]

Tz Tz T0/2

Iu

-Iu

-Iw
Iw

t

Idc

0

t

ADCT1ADCTz2

ADCTz1

ADCT2

CCU80 Slice 3
Signal

2Tz TS - 2Tz

ADC Source
Interrupt

Application Note 54 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Motor state machine

6 Motor state machine

The PMSM FOC software has an internal state machine:

MOTOR_IDLE

This is the first state entered after power-on or software reset. In this state the inverter is disabled and it reads
the bias voltage of the ADC pins that are connected to the motor phase currents. The state machine and Timer

are started. Exit from this state occurs when the motor start command is received.

EN_INVERTER_BOOTSTRAP

In this state the inverter is enabled and the bootstrap capacitors are charged for a defined period. It reads the
bias voltage of the ADC pins that are connected to the motor phase currents.

Exit from this state occurs after the bootstrap time.

PRE-POSITIONING

This state is only for Direct FOC Startup control schemes. In this state the rotor is aligned to a known position to

get the maximum starting torque. The amplitude input to the SVM function is gradually increased to a defined
value USER_STARTUP_VF_OFFSET_V, for a specific time USER_ROTOR_PREPOSITION_TIME_MS. These macros

are defined in the pmsm_foc_motor_XXXX.h file (see chapter 7.2.3.2).

VF_OPENLOOP_RAMPUP

In this state the motor starts in V/F open loop control mode.

Exit from this state occurs when the motor speed reaches the startup threshold speed defined in the macro

USER_STARTUP_SPEED_THRESHOLD_RPM.

MET_FOC

This state enables a smooth transition from open loop to closed loop with maximum energy efficiency.

FOC_CLOSED_LOOP

In this state the motor is running in FOC mode. The FOC functions are executed.

FOC_CLOSED_LOOP_BREAK

This function is the same as the FOC_CLOSED_LOOP expect that no target values are accepted. The target

value is ramping down in an S-curve.

After crossing the FOC_EXIT_SPEED the state is changed to MOTOR_STOP.

Application Note 55 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Motor state machine

MOTOR_HOLD

This state is entered when the motor speed is below 10% of the maximum speed. The motor is set to hold with
a 50% ON and 50% OFF PWM. A Motor break command in this state will lead directly to a MOTOR_STOP.

Figure 53 SVM outputs in motor brake condition

MOTOR_STOP

This state is entered from all states with the stop command (and other state related conditions). The motor
output is set to tristate and the inverter is disabled. This leads to an uncontrolled freewheeling of the motor.

The state exits to the idle state after processing.

TRAP_PROTECTION

This state is entered if Ctrap is triggered.

To exit this state, set the target value below the MOTOR_HOLD_THRESHOLD and set the break or stop

command.

DCLINK_UNDER_VOLTAGE

This state is entered when the DC link voltage is below the limits set by the user. The gate driver is disabled and

the motor will be in free running.

Only the motor stop or motor brake command will exit this state.

DCLINK_OVER_VOLTAGE

This state is entered when the DC link voltage is above the limits set by the user. The gate driver is disabled, and
the motor will be free-running.

Only the motor stop or motor brake command will exit this state.

TS

Vu

Vv

Vw

[111]

T0/4

t

t

t

T0/2

[000] [111]
T0/4

TS

Vu

Vv

Vw

t

t

t

Tz Tz

[111]

T0/2

[000]
Tz Tz T0/2

Low side ONHigh side ON High side ON High side ONLow side ON

7-Segment SVM Peudo zero vector

Application Note 56 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Motor state machine

EN INVERTER

BOOTSTRAP
MOTOR

STOP

PRE
POSITIONING

TRAP
PROTECTION

MET FOC
FOC CLOSED

LOOP

V/F OPEN
LOOP

RAMPUP

After some time if in mode:
(Direct FOC Startup)

After some time if in mode:
(V/f Open Loop)

 (V/f FOC)

Motor speed > Transition speed
(V/f FOC)

Motor in
stable mode

Motor START
command

Ctrap

DCLINK OVER
UNDER

VOLTAGE

over-voltage, under-voltage

ALL

Power on Reset/
Software reset

MOTOR

IDLE

MOTOR
HOLD

Motor STOP
command

FOC CLOSED
LOOP BREAK

Ramping
down Motor BREAK

command

Motor BREAK
command

Motor BREAK
command

Alignment time
expired

Motor speed <
 Foc exit speed

(3x low speed limit)

Target value <
Min. target vlaue

(V/f Open Loop)

XXX: Control scheme variant
XXX: Condition

Legend:

Target value <
Min. target vlaue

Wait some
Cycles

Figure 54 PMSM FOC state machine

For different control schemes, the flow of the state machine is different.

The following schemes are available:

• Direct FOC Startup

− SPEED_CONTROLLED_DIRECT_FOC

− TORQUE_CONTROLLED_DIRECT_FOC

− VQ_CONTROLLED_DIRECT_FOC

• V/f FOC

− SPEED_CONTROLLED_VF_MET_FOC

• V/f Open Loop

− SPEED_CONTROLLED_VF_ONLY

Application Note 57 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7 Configuration

The default configuration of the parameters in the PMSM FOC software is set based on the XMC1000 Motor
Control Application Kit. The configuration is split up in to 3 levels:

• User configuration

− Allows fast access to the general configuration such as the FOC scheme and selection of one of the pre-
configured, purchasable hardware boards.

• Hardware configuration

− Allows for specialization of the controller card, inverter card, and motors. With this configuration you can
adapt the hardware configuration to your application and board. Configurations such as pinout and

maximum speed can be found here.

• FOC configuration

− Allows you to change basic values and constant calculations. One example is the over-voltage definition

of 120% of the DC link voltage. Most of this configurations are essential, calculated, and should not be
changed by you, which is why they are not described in this document.

7.1 User Configuration

The user configuration allows for fast access to the general configuration such as the FOC scheme and selection
of one of the pre-configured, purchasable hardware boards. All configuration options are available in the file

PMSM_FOC\Configuration\file pmsm_foc_user_config.h.

The default settings are for the “Maxon motor 267121” used in the Infineon XMC1302 Motor Control Application

Kit, KIT_XMC1X_AK_MOTOR_001.

7.1.1 General

PMSM FOC hardware Kit

Various configuration options are available for the software. The configurations are mainly independent from

each other. The hardware consists of:

• Controller_Card (MCUCARD_TYPE)

• Inverter_Card (INVERTERCARD_TYPE)

• Motor (MOTOR_TYPE)

In this document a combination of all three is referred to as a:

• hardware kit (PMSM_FOC_HARDWARE_KIT)

Many purchasable boards are pre-defined. Additionally it is possible to exchange parts of the hardware board.
To support these options you can select a custom hardware kit and adapt the MCUCARD_TYPE,
INVERTERCARD_TYPE, and MOTOR_TYPE, and the associated paths.

#define PMSM_FOC_HARDWARE_KIT KIT_XMC1X_AK_MOTOR_001

− Select a pre-defined hardware kit.

Options:

− KIT_XMC1X_AK_MOTOR_001 – Infineon XMC1000 Motor Control Application Kit

− KIT_XMC750WATT_MC_AK_V1 – XMC 750Watt Motor Control Application Kit

Application Note 58 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− KIT_XMC14_BOOT_001 – XMC1404 CPU card for KIT_XMC1X_AK_MOTOR_001

− KIT_XMC750WATT_MC_AK_V1 – with XMC1404 version

− KIT_MOTOR_DC_250W_24V

− IFX_MADK_EVAL_M1_05F310 Kit

− IFX_MADK_EVAL_M1_05_65D_V1

− IFX_MADK_EVAL_M1_CM610N3

− CUSTOM_KIT – User defined motor control system.

− KIT_XMC4400_EXAGON

− KIT_XMC4400_ISOLATED

Current sensing

#define CURRENT_SENSING

 USER_THREE_SHUNT_SYNC_CONV

− Define the current sensing technique used.

Options:

− USER_SINGLE_SHUNT_CONV – Single shunt current sensing technique with Pseudo Zero Vector PWM

generation, refer to chapter 3.1 (not implemented in XMC4400)

− USER_THREE_SHUNT_ASSYNC_CONV – Three shunt current sensing technique with ADC standard

conversion, refer to chapter 3.2 (not implemented in XMC4400)

− USER_THREE_SHUNT_SYNC_CONV – Three shunt current sensing technique with ADC synchronous

conversion, refer to chapter 3.2.1

FOC control schematic

#define MY_FOC_CONTROL_SCHEME SPEED_CONTROLLED_DIRECT_FOC

− Define the FOC control scheme.

Options:

− SPEED_CONTROLLED_DIRECT_FOC – Direct FOC start-up using speed control, refer to chapter 2.3.2

− SPEED_CONTROLLED_VF_ONLY – Open loop speed control, refer to chapter 2.3.1

− SPEED_CONTROLLED_VF_MET_FOC – Open loop start-up to MET to closed loop FOC speed control,

refer to chapter 2.3.2

− TORQUE_CONTROLLED_DIRECT_FOC – Direct FOC start-up using torque control,

refer to chapter 2.3.3

− VQ_CONTROLLED_DIRECT_FOC – Direct FOC start-up using voltage torque control,

refer to chapter 2.3.4

Input selection for target values

#define SETTING_TARGET_SPEED SET_TARGET_SPEED

− Define the concept of how a target value is provided.

Note: Only one option out of the following options is available at the same time. Additionally, depending
on the MY_FOC_CONTROL_SCHEME, the input is stored as Target_Speed, Target_Torque, or
Target_Voltage.

Application Note 59 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

Options:

− SET_TARGET_SPEED – An API function is available to store the target value. Additionally µC/Probe can

be used for update.

− BY_POT_ONLY – The potentiometer is used to control motor operation via the ADC pin.

− BY_UART_ONLY – Reference speed is set via UART communication. (not available in XMC4400)

SVM switching schematic

#define SVM_SWITCHING_SCHEME STANDARD_SVM_7_SEGMENT

− Define the SVM switching scheme.

Options:

− STANDARD_SVM_7_SEGMENT – 7-segment switching mode (see chapter 2.5.1)

− STANDARD_SVM_5_SEGMENT – 5-segment switching mode (see chapter 2.5.2)

µC/Probe GUI selection

#define uCPROBE_GUI_OSCILLOSCOPE ENABLED

− Enable or disable the firmware support for Micrium µC/Probe GUI and oscilloscope tool. If enabled it is

called in the pmsm_foc_controlloop_isr().

Protections and limitations

#define VDC_UNDER_OVERVOLTAGE_PROTECTION ENABLED

− Enable or disable the DC link voltage protection.

#define VDC_UNDER_OVERVOLTAGE_PERCENTAGE (20U)

− Set limit check +-20% for over-voltage and under-voltage.

#define OVERCURRENT_PROTECTION ENABLED

− Enable or disable DC link current protection. (not implemented in XMC4400)

#define USER_IDC_MAXCURRENT_A (10.0f)

− This setting is the maximum DC link current limit. This limit is checked if the over-current protection
feature is enabled. Once this limit is hit, the reference speed is reduced (see over-current protection in
chapter 2.9). (not implemented in XMC4400)

#define VDC_MAX_LIMIT ((VADC_DCLINK * 19U)>>4)

− Set the maximum DC link voltage limit for ramp-down operation. The default setting is 18.7% more than

nominal DC link voltage. You should change this limit according to your hardware design.

#define WATCH_DOG_TIMER ENABLED

− Enable or disable the watchdog timer feature.

Application Note 60 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.1.2 Custom Kit configuration

Controller_Card

#define MCUCARD_TYPE defined by PMSM_FOC_HARDWARE_KIT

#define MCUCARD_TYPE_PATH defined by PMSM_FOC_HARDWARE_KIT

− In the default configuration this is defined by the hardware board. To configure a custom MCU card or

combination, the hardware board CUSTOM_KIT should be used. Only the hardware board combinations
are tested.

Options for MCUCARD_TYPE:

− CUSTOM_MCU

− EVAL_M1_1302

− KIT_XMC13_BOOT_001

− KIT_XMC1300_DC_V1

− BOOTKIT_XMC1400_V1

− KIT_XMC1400_DC_V1

− KIT_XMC4400_DC_V1

− KIT_XMC4400_EE1_001

Note: It is necessary to adapt the MCUCARD_TYPE_PATH according to the selection.

Inverter_Card

#define INVERTERCARD_TYPE defined by PMSM_FOC_HARDWARE_KIT

#define INVERTERCARD_TYPE_PATH defined by PMSM_FOC_HARDWARE_KIT

− In the default configuration this is defined by the hardware board. To configure a custom inverter card or

combination, the hardware board CUSTOM_KIT should be used. Only the hardware board combinations
are tested.

− CUSTOM_INVERTER

− EVAL_M1_05_65A

− EVAL_M1_05F310

− EVAL_M1_CM610N3

− KIT_MOTOR_DC_250W_24V

− PMSM_LV15W

− POWERINVERTER_750W

− KIT_XMC4X_MOT_GPDLV_001

Note: It is necessary to adapt the INVERTERCARD_TYPE_PATH according to the selection.

Motor

#define MOTOR_TYPE defined by PMSM_FOC_HARDWARE_KIT

#define MOTOR_TYPE_PATH defined by PMSM_FOC_HARDWARE_KIT

− In the default configuration this is defined by the hardware board. To configure a custom motor or
combination the hardware board CUSTOM_KIT should be used. Only the hardware board combinations
are tested.

Application Note 61 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− CUSTOM_MOTOR

− MAXON_MOTOR_267121

− NANOTEC_MOTOR_DB42S03

Note: It is necessary to adapt the INVERTERCARD_TYPE_PATH according to the selection.

Application Note 62 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.1.3 Advanced user configuration

ADC specific configurations

#define ADC_STARTUP_CALIBRATION DISABLED

− Enable or disable the ADC startup calibration feature. Please enable this feature if using XMC1302AA step
(not implemented in XMC4400).

#define ADC_ALTERNATE_REFERENCE DISABLED

− Enable or disable the ADC alternative reference feature. If enabled, the channel 0 is used as the reference
(not implemented in XMC4400).

#define ADC_ALTERNATE_REF_PHASEUVW DISABLED

− This value disables or enables the alternate reference for phase UVW. This option is only available if
alternate reference is enabled (not implemented in XMC4400).

#define ADC_ALTERNATE_REF_SINGLESHUNT DISABLED

− This value disables or enables the alternate reference for phase single shunt. This option is only available
if alternate reference is enabled (not implemented in XMC4400).

#define MOTOR_HOLD_THRESHOLD

 Defined by MY_FOC_CONTROL_SCHEME

− This value defines the minimum valid digital value. This value is required due to the physical behavior of

potentiometers and analog-to-digital conversion. All values below this value are assumed to be zero or

off.

#define FOC_EXIT_SPEED (SPEED_LOW_LIMIT * 3)

− This is the limit until the motor is ramping down before changing the state from
FOC_CLOSED_LOOP_BREAKING to MOTOR_STOP.

#define SPEED_LOW_LIMIT SPEED_LOW_LIMIT_RPM

#define SPEED_LOW_LIMIT_RPM calculated

− This value is used as the minimum allowed speed. It is calculated from USER_SPEED_LOW_LIMIT_RPM
but scaled for MCU calculation.

Secondary Loop callback

#define PMSM_FOC_SECONDARYLOOP_CALLBACK DISABLED

− Enable or disable a callback in the secondary loop. If enabled the function needs to be created by the

user. The callback function is by default executed in flash to reduce SRAM consumption. For fast
execution you have to manually add the SRAM code attribute.

#define USER_SECONDARY_LOOP_FREQ_HZ (1000U)

− This value defines the target secondary loop frequency in Hz. This loop is used for slower tasks like

communication or a watchdog service. This frequency is intended to be a fraction of

USER_CCU8_PWM_FREQ_HZ (default 20 kHz)

Application Note 63 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

FOC control

#define DQ_DECOUPLING ENABLED

− Enable or disable the dq decoupling feature.

7.1.4 Torque control specific

These configurations are only available if:

MY_FOC_CONTROL_SCHME is set to TRQUE_CONTROLLED_DIRECT_FOC

#define USER_IQ_CURRENT_ALLOWED_A (2.0f)

− Set the high limit of the reference torque current in amperes.

#define USER_IQ_REF_LOW_LIMIT (0U)

− Set the low limit of the reference torque current.

#define USER_IQ_REF_HIGH_LIMIT (32768* USER_IQ_CURRENT_ALLOWED_A/I_MAX_A)

− Scale the high limit of the reference torque current in 1Q15 format.

#define USER_IQ_RAMPUP (10U)

− Torque current ramp-up steps used in linear ramp generator.

− 1 step is (1/32768) * I_MAX_A where I_MAX_A is equal to (5.0 V/(USER_R_SHUNT_OHM *
OP_GAIN_FACTOR)) / 2.

#define USER_IQ_RAMPDOWN (10U)

− Torque current ramp-down steps used in linear ramp generator.

− 1 step is (1/32768) * I_MAX_A where I_MAX_A is equal to (5.0 V/(USER_R_SHUNT_OHM *

OP_GAIN_FACTOR)) / 2.

#define USER_IQ_RAMP_SLEWRATE (50U)

− Define the frequency to ramp-up/ramp-down Iq.

− In every USER_IQ_RAMP_SLEWRATE *PWM cycles, ramp-up Iq by USER_IQ_RAMPUP steps, or ramp-down

Iq by USER_IQ_RAMPDOWN step.

Application Note 64 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.1.5 VQ control specific (V/f)

#define USER_VQ_VOLTAGE_ALLOWED_V (10U)

− Set the limit of the torque voltage in volts. This value must be less than VREF_MAX_V.

#define USER_VQ_REF_LOW_LIMIT (0U)

− Set the low limit of the reference torque voltage.

#define USER_VQ_REF_HIGH_LIMIT

 (32768* USER_VQ_VOLTAGE_ALLOWED_V/VREF_MAX_V)

− Scale the limit of the reference torque voltage to 1Q15 format.

− VREF_MAX_V is defined as DC link voltage divided by square root of 3.

#define USER_VQ_RAMPUP (2U)

− Define the number of steps to ramp-up the torque voltage in the linear ramp generator.

#define USER_VQ_RAMPDOWN (2U)

− Define the number of steps to ramp-down the torque voltage in the linear ramp generator.

#define USER_VQ_SLEWRATE (10U)

− Define the frequency to ramp-up/ramp-down Vq. In every USER_VQ_RAMP_SLEWRATE * PWM cycles,

ramp-up Vq by USER_VQ_RAMPUP steps, or ramp-down Vq by USER_VQ_RAMPDOWN step.

7.1.6 MET specific

#define USER_MET_THRESHOLD_HIGH (64U)

− Define the high threshold limit for speed hysteresis control in MET motor state.

#define USER_MET_THRESHOLD_LOW (16U)

− Define the low threshold limit for speed hysteresis control in MET motor state.

#define USER_MET_LPF (2U)

− Low pass filter factor for the MET threshold calculation, Y[n] = Y[n-1] + (X[n] – Y[n-1]) >> USER_MET_LPF

Application Note 65 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.2 Hardware configuration

The detailed hardware configuration allows specialization of the controller card, inverter card, and motors.
With this configuration you can adapt the hardware configuration to your application and board.
Configurations such as pinout and maximum speed can be found here.

The configuration is separated in to three types:

• PMSM_FOC\Configuration\Controller_Card

• PMSM_FOC\Configuration\Inverter_Card

• PMSM_FOC\Configuration\Motors

7.2.1 Controller Card

Table 21 GPIO configuration

Define XMC1300/XMC1400 value XMC4400 value Notes

#define TRAP_PIN P0_12 P0_7 External CCU80 Ctrap

input pin assignment

#define

INVERTER_EN_PIN

P0_11 P0_12 This pin connects to the
enable pin of the inverter

switch/gate drivers.

#define

PHASE_U_HS_PIN
P0_0 P0_5

#define

PHASE_U_LS_PIN

P0_1 P0_2

#define

PHASE_V_HS_PIN

P0_7 P0_4

#define

PHASE_V_LS_PIN

P0_6 P0_1

#define

PHASE_W_HS_PIN

P0_8 P0_6

#define

PHASE_W_LS_PIN

P0_9 P0_11

Application Note 66 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

Table 22 XMC Alternate output pin register setting

Define XMC1300/XMC1400 value XMC4400 value

#define

PHASE_U_HS_ALT_SELEC

T

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

#define

PHASE_U_LS_ALT_SELECT

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

#define
PHASE_V_HS_ALT_SELEC

T

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

#define

PHASE_V_LS_ALT_SELECT

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

#define

PHASE_W_HS_ALT_SELEC

T

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

#define
PHASE_W_LS_ALT_SELEC

T

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT5

XMC_GPIO_MODE_OUTPUT

_PUSH_PULL_ALT3

• XMC alternate output pin register value setting. CCU80 PWM output is selected.

• Please refer to XMC1300 or XMC1400 reference manual [1] for the alternate output setting.

Application Note 67 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

Table 23 Primary Loop and SVM Resources (CCU8)

Define XMC1300/XMC1400 value Notes

#define CCU8_MODULE CCU80 CCU80

#define CCU8_MODULE_PHASE_U CCU80_CC80 CCU80_CC80

#define CCU8_MODULE_PHASE_V CCU80_CC81 CCU80_CC81

#define CCU8_MODULE_PHASE_W CCU80_CC82 CCU80_CC83

#define CCU8_MODULE_ADC_TR CCU80_CC83 CCU80_CC82

#define

CCU8_MODULE_PRESCALER_VALUE

(0U) (0U)

• Assign the XMC CCU8 module for SVM generation. Multiple modules are available, with the actual amount
dependent on the device.

• Assign the timer slice of the CCU8 module for phase U, V, W PWM generation and current trigger.

• Assign the CCU8 module timer slice for the ADC conversion trigger (TR). The pre-scaler effects the
resolution. Changing the frequency should re-calculate this value. The lowest possible value should always

be taken.

Secondary loop resources (CCU4)

#define SECONDARY_LOOP_MODULE CCU40

#define SECONDARY_LOOP_SLICE CCU40_CC42

#define SECONDARY_LOOP_MODULE (0U)

− Necessary only in XMC4400.

#define SECONDARY_LOOP_SLICE_NUM (2U)

#define SECONDARY_LOOP_SLICE_SHADOW_TRANS_ENABLE_Msk

 XMC_CCU4_SHADOW_TRANSFER_SLICE_2

#define SECONDARY_LOOP_SLICE_PRESCALER (2U)

− Assign the CCU4 module timer slice for the secondary loop. It is mandatory that slice name, slice number,
and slice shadow transfer enable mask match. The pre-scaler effects the resolution. Changing the

frequency should re-calculate this value.

ADC resources for three shunt synchronous conversion for XMC1300/XMC1400 (VADC)

#define VADC_IU_G1_CHANNEL (3U) // P2.11

#define VADC_IU_G0_CHANNEL (4U) // P2.11

#define VADC_IV_G1_CHANNEL (2U) // P2.10

#define VADC_IV_G0_CHANNEL (3U) // P2.10

#define VADC_IW_G1_CHANNEL (4U) // P2.9

#define VADC_IW_G0_CHANNEL (2U) // P2.9

− The channel number is equivalent to a pin. In the default configuration channel IU, IV, and IW from G0

and G1 are connected to the same pin, reducing the pin consumption.

Note: The connection between group channel number and pin is visible in the reference manual.

Application Note 68 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

ADC resources for three shunt asynchronous conversion for XMC1300/XMC1400 (VADC)

#define VADC_IU_GROUP VADC_G1

#define VADC_IU_GROUP_NO (1U)

#define VADC_IV_GROUP VADC_G1

#define VADC_IV_GROUP_NO (1U)

#define VADC_IW_GROUP VADC_G1

#define VADC_IW_GROUP_NO (1U)

− This configuration selects which ADC group is used for measurement. It is mandatory that the Group

name and number match. Additionally, in the default the group for IU, IV, and IW needs to be the same. If
you prefer to use two groups, it is necessary to have one XMC_VADC_QUEU_ENTRY with .external_trigger

= true per group.

#define VADC_IU_CHANNEL (3U) // P2.11

#define VADC_IU_RESULT_REG (3U)

#define VADC_IV_CHANNEL (2U) // P2.10

#define VADC_IV_RESULT_REG (2U)

#define VADC_IW_CHANNEL (4U) // P2.9

#define VADC_IW_RESULT_REG (4U)

− The channel number is equivalent to a pin. The connection between group channel number and pin is

visible in the reference manual. The only restriction in selecting the result register is that every register
needs a unique number.

ADC resources for three shunt synchronous conversion for XMC4400 (VADC)

#define VADC_IU_GROUP VADC_G0

#define VADC_IU_GROUP_NO (0U)

#define VADC_IV_GROUP VADC_G1

#define VADC_IV_GROUP_NO (1U)

#define VADC_IW_GROUP VADC_G2

#define VADC_IW_GROUP_NO (2U)

#define VADC_IU_CHANNEL (1U)

#define VADC_IU_RESULT_REG (15U)

#define VADC_IV_CHANNEL (7U)

#define VADC_IV_RESULT_REG (3U)

#define VADC_IW_CHANNEL (1U)

#define VADC_IW_RESULT_REG (0U)

ADC resources for single shunt conversion (VADC) (only for XMC1300/XMC1400)

#define VADC_ISS_GROUP VADC_G1

#define VADC_ISS_GROUP_NO (1U)

#define VADC_ISS_CHANNEL (1U) // P2.7

#define VADC_ISS_RESULT_REG (15U)

Application Note 69 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− This configuration selects which ADC group is used for measurement. It is mandatory that the Group
name and number match. The channel number is equivalent to a pin. The connection between group
channel number and pin is visible in the reference manual. There are no other restrictions regarding the
group, channel, or result register selection.

ADC resources for DC link voltage measurement (VADC)

#define VADC_VDC_GROUP VADC_G1

#define VADC_VDC_GROUP_NO (1U)

#define VADC_VDC_CHANNEL (5U) //(1U) in XMC4400

#define VADC_VDC_RESULT_REG (5U) //(4U) in XMC4400

− This configuration selects which ADC group is used for measurement. It is mandatory that the Group
name and number match. The channel number is equivalent to a pin. The connection between group
channel number and pin is visible in the reference manual. There are no other restrictions regarding the
group, channel, or result register selection.

ADC resources for average DC link voltage measurement (VADC) (only in XMC1300/XMC1400)

#define VADC_IDC_GROUP VADC_G0

#define VADC_IDC_GROUP_NO (0U)

#define VADC_IDC_CHANNEL (6U) // P2.1

#define VADC_IDC_RESULT_REG (6U)

− This configuration selects which ADC group is used for measurement. It is mandatory that the Group

name and number match. The channel number is equivalent to a pin. The connection between group
channel number and pin is visible in the reference manual. There are no other restrictions regarding the

group, channel, or result register selection.

ADC resources for Potentiometer measurement (VADC)

#define VADC_POT_GROUP VADC_G1

#define VADC_POT_GROUP_NO (1U)

#define VADC_POT_CHANNEL (7U) //(5U) in XMC4400

#define VADC_POT_RESULT_REG (7U) //(14U) in XMC4400

− This configuration selects which ADC group is used for measurement. It is mandatory that the Group
name and number match. The channel number is equivalent to a pin. The connection between group

channel number and pin is visible in the reference manual. There are no other restrictions regarding the
group, channel, or result register selection.

UART pin configuration (UART) (only in XMC1300/XMC1400)

#define UART_ENABLE USIC0_CH1_P1_2_P1_3

− If SETTING_TARGET_SPEED is set to BY_UART_ONLY the input output pins can be configured.

Options:

− USIC0_CH0_P1_4_P1_5 – UART channel 0 used to receive commands to control motor operations. Port
pins P1.4 and P1.5 are configured to receive and transmit data. ADC potentiometer result is discarded.

Application Note 70 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− USIC0_CH1_P1_2_P1_3 – UART channel 1 used to receive commands to control motor operations. Port
pins P1.2 and P1.5 are configured to transmit and receive data. ADC potentiometer result is discarded.

Debug PWM (CCU4) (only in XMC1300/XMC1400)

#define DEBUG_PWM_0_ENABLE (0U)

#define DEBUG_PWM_1_ENABLE (0U)

− Up to two debug PWMs are available. This value enables instance 0 and/or instance 1 of the debug PWM.

Options:

− 0 - Disabled

− 1 – Enabled

#define DEBUG_PWM_CCU4_MODULE CCU40

#define DEBUG_PWM_PERIOD_CNTS (400U)

#define DEBUG_PWM_50_PERCENT_DC_CNTS

 ((uint16_t)(DEBUG_PWM_PERIOD_CNTS >> 1))

− This configurations defines which module is used, the Frequency via Period cnts and 50% dc.

#define REVERSE_CRS_OR_0 (- Tmp_CRS)

− This value defines how negative values are interpreted.

Options:

− 0 - zero

− - Tmp_CRS - absolute value

#define DEBUG_PWM_0_SLICE CCU40_CC40

#define DEBUG_PWM_0_SLICE_NUM (0U)

#define DEBUG_PWM_0_SLICE_SHADOW_TRANS_ENABLE_Msk

 XMC_CCU4_SHADOW_TRANSFER_SLICE_0

− Assign CCU4 module timer slice for debugPWM 0. It is mandatory that the slice name, slice number, and

slice shadow transfer enable mask all match. The pre-scaler is by default 0 to support the highest
frequency.

#define DEBUG_PWM_0_PORT XMC_GPIO_PORT1

#define DEBUG_PWM_0_PIN (0U)

#define DEBUG_PWM_0_ALT_OUT

 XMC_GPIO_MODE_OUTPUT_PUSH_PULL_ALT2

− This configures the output of the PWM for debug instance 0. It is mandatory that an associated Port-Pin,

alternate output, and CCU4 slice are all chosen. This information can be found in the reference manual.

#define DEBUG_PWM_1_SLICE CCU40_CC41

#define DEBUG_PWM_1_SLICE_NUM (1U)

#define DEBUG_PWM_1_SLICE_SHADOW_TRANS_ENABLE_Msk

 XMC_CCU4_SHADOW_TRANSFER_SLICE_1

Application Note 71 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− Assign CCU4 module timer slice for debugPWM 1. It is mandatory that the slice name, slice number, and
slice shadow transfer enable mask all match. The pre-scaler is per default 0 to support the highest
frequency.

#define DEBUG_PWM_1_PORT XMC_GPIO_PORT0

#define DEBUG_PWM_1_PIN (4U)

#define DEBUG_PWM_1_ALT_OUT

 XMC_GPIO_MODE_OUTPUT_PUSH_PULL_ALT4

− This configures the output of the PWM for debug instance 1. It is mandatory that an associated Port-Pin,

alternate output and CCU4 slice is chosen. This information can be found in the reference manual.

Application Note 72 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.2.2 Inverter board configuration for current and voltage sensing

General

#define USER_CCU8_PWM_FREQ_HZ (20000U)

− This macro defines the PWM frequency in Hz. This is the fastest loop and the control loop. The main tasks
of the FOC are done in this loop or fractions of it. The PMSM FOC software can support up to 25 kHz (with

a maximum 30 kHz in some cases).

#define USER_MAX_ADC_VDD_V (5.0f)

− This value defines the maximum input of the XMC ADC in volts. The XMC1000 family has a wide input
range. Common is 5V and 3.3V. The input value is in float. Most physical scaling’s are linked to this

define.

Supply voltage

#define USER_VDC_LINK_V (24.0f)

− This macro defines the nominal DC voltage in volts, used in the motor inverter board. It is used for scaling
and limit check +-20% (default) for over-voltage and under-voltage.

#define USER_DC_LINK_DIVIDER_RATIO (5.1f/(5.1f+47.0f))

//In XMC4400 (5.6f)/(5.6f+56.0f)

− See chapter 2.6. The DC link voltage divider ratio is R2/(R1+R2).

− This value influences the scaling of the ADC results.

Output, Bridge Driver and B6 Bridge

#define USER_DEAD_TIME_US (0.75f)

− This macro defines the dead-time in microseconds. This value has to be defined according to the

switches and bridge drivers. A too small value leads to a short cut. A high value reduces the maximum
voltage that can be applied. In default settings the same dead-time is applied to the rising and falling
edge. If not compensated for, the dead-time adds a constant error.

#define USER_BOOTSTRAP_PRECHARGE_TIME_MS (20U)

− This is the initial bootstrap capacitor pre-charging time in milliseconds. Depending on the driver and

driver circuit this time needs to be adapted. Some drivers have implemented a bootstrap charge pump
and do not require a bootstrap. If the time is to short the high-side switches will not turn on for the first
cycles. There is no drawback if the time is too long except that the time between start request and start is

delayed by the bootstrap time.

#define CCU8_INPUT_TRAP_LEVEL

 XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_LOW

− Define the CCU8 input trap signal logic level according to the gate driver fault signal active level.

Options:

− XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_LOW

− XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH

Application Note 73 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

#define GATE_DRIVER_INPUT_LOGIC PASSIVE_LOW

− This macro defines the logic level of the gate driver. Out of this definition the MOTOR_COASTING_xx and
MOTOR_RUN_xx configuration are defined.

Options:

− PASSIVE_HIGH

− PASSIVE LOW

#define INVERTER_ENABLE_PIN (1U)

− This macro defines the logic of the inverter pin.

Options:

− 1 = Active high

− 0 = Active low

Current measurement

#define INTERNAL_OP_GAIN DISABLED

− The XMC VADC has an internal gain. If this is used, no external OP is required. This configuration enables
or disables the internal ADC gain. The current measurement configuration changes based on this

configuration.

#define USER_R_SHUNT_OHM (0.05f)

− Current shunt resistance in ohm. Value in DC link measurement or value per phase in leg shunt

measurement. This value is used to calculate I_MAX which is later used to limit the reference current in
torque control mode and other FOC functions such as angle estimation.

#define USER_DC_SHUNT_OHM (0.05f)

− DC link current shunt resistance in ohms.

− This value is used for over-current protection with a DC link shunt.

Current measurement: internal OP enabled

#define OP_GAIN_FACTOR (3U)

− If internal ADC channel gain factor is enabled, the definition of the OP_GAIN_FACTOR is according to the

XMC built-in gain factor: 1, 3, 6, and 12.

− It is mandatory that only hardware available gain factors are used.

#define USER_RIN_OFFSET_KOHM (2.0f)

− Offset resistor in kilo Ω as a floating number.

− The purpose is explained in Figure 37 Phase current amplifier with On-chip gain.

#define USER_RIN_PULL_UP_KOHM (10.0f)

− Offset resistor in kilo Ω as a floating number.

− The purpose is explained in Figure 37 Phase current amplifier with On-chip gain.

Application Note 74 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

Current measurement: internal OP disabled

#define USER_RIN_PHASECURRENT_KOHM (1.0f)

− This is the RIN resistor value in the phase current amplifier (see Figure 36).

− The unit is in kilo Ω.

#define USER_R_PHASECURRENT_FEEDBACK KOHM (16.4f)

− This is the feedback resistor value in the phase current amplifier.

− The unit is in kilo Ω.

− With the USER_RIN_PHASECURRENT_KOHM, the gain of the current amplifier is calculated.

− See Figure 36.

#define USER_RIN_DCCURRENT_KOHM (10.0f)

− This is the RIN resistor value in the DC link current amplifier.

− The unit is in kilo Ω.

− See Figure 36.

#define USER_R_DCCURRENT_FEEDBACK KOHM (75.0f)

− This is the feedback resistor value in the DC link current amplifier.

− The unit is in kilo Ω.

− With the USER_RIN_DCCURRENT_KOHM, the gain of the DC current amplifier is calculated.

− See Figure 36.

Application Note 75 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

7.2.3 Motor specific configuration

7.2.3.1 Motor parameter

#define USER_MOTOR_R_PER_PHASE_OHM (6.8f)

− Define the motor phase to neutral resistance in ohms.

#define USER_MOTOR_L_PER_PHASE_uH (3865.0f)

− Define the motor phase to neutral stator inductance in micro henry.

− For IPMSM (Interior Permanent Magnet Synchronous Motor) brushless DC motor, q-axis inductance (Lq)
of one motor phase is used.

#define USER_MOTOR_POLE_PAIR (4U)

− Number of pole pairs in the motor, used to calculate the electrical RPM of the rotor.

#define USER_SPEED_HIGH_LIMIT_RPM (4530.0f)

− This value is used as the maximum allowed target speed. Additional control parameters are calculated

from this value. The motor Nominal speed should be used.

#define USER_SPEED_LOW_LIMIT_RPM (USER_SPEED_HIGH_LIMIT_RPM/30)

− This value is used as minimum allowed target speed. In sensor-less motor control it is mandatory to

measure a phase current. At low torque (usually at low speed) it is not possible to provide a sufficient
motor control. The minimum speed is application dependent. A default 30% of the high speed limit is

configured.

#define USER_SPEED_RAMPUP_RPM_PER_S (500U)

#define USER_SPEED_RAMPDOWN_RPM_PER_S (500U)

− To ensure smooth control a ramp generator is implemented between target input and PI controller. This
configuration defines the maximum ramp-up and ramp-down in RPM/sec.

#define PWM_THRESHOLD_USEC (2U)

− Minimum threshold for current measurement in 3 leg shunt measurement mode. If this value is
exceeded, the 2 leg shunt measurement is used. This threshold includes the current ringing and ADC

measurement time.

#define USER_STARUP_SPEED_RPM (0U)

− Define the initial speed for V/f open loop in RPM.

#define USER_STARTUP_SPEED_THRESHOLD_RPM (500U)

− Define the threshold speed to transit from open loop control to closed loop control.

#define USER_STARTUP_VF_OFFSET_V (1.0f)

− V/f open loop control startup voltage offset.

#define USER_STARTUP_VF_SLEWRATE_V_PER_HZ (0.1f)

Application Note 76 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

− V/f open loop control startup slew rate in volts per Hz.

#define USER_ROTOR_PREPOSITION_TIME_MS (100)

− Time in milliseconds, for motor pre-positioning.

7.2.3.2 PI settings

The default PI settings of each motors are stored in “..\PMSM_FOC\Configuration\Motors”. For the ”Maxon
motor 267121” used in the Infineon XMC1000 Motor Control Application Kit, KIT_XMC1X_AK_MOTOR_001, the
file pmsm_foc_motor_MAXON_MOTOR_267121.h contains related configurations.

PI settings for the speed controller

#define PI_SPEED_KP (1U << 15)

− Configure proportional gain for speed control block.

− Minimum value is 1.

− Maximum is 32767.

#define PI_SPEED_KI (3U)

− Configure integral gain for speed control block.

− Minimum value is 0.

− Maximum is 32767.

#define PI_SPEED_SCALE_KPKI (10U + USER_RES_INC)

− Configure scaling factor of KP and KI.

− KP and KI are scaled-up by 2^ PI_SPEED_SCALE_KPKI.

− The USER_RES_INC is a constant defined in pmsm_foc_const.h file.

− The maximum value of PI_SPEED_SCALEKPKI is 15.

− The minimum value is USER_RES_INC.

#define PI_SPEED_IK_LIMIT_MIN (-(((1<<15)*3)>>2))

− Configure minimum output value of the integral buffer.

− Minimum value is -32768

#define PI_SPEED_IK_LIMIT_MAX (((1<<15)*3)>>2)

− Configure maximum output value of the integral buffer.

− Maximum value is 32767

#define PI_SPEED_UK_LIMIT_MIN (16U)

− Configure minimum output value of the speed PI control block.

− Minimum value is -32768.

#define PI_SPEED_UK_LIMIT_MAX (32767U)

− Configure maximum output value of the speed PI control block.

− Maximum value is 32767.

Application Note 77 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

#define USER_RES_INC (3U)

− This define increase the calculation resolution for the angle. It should never exceed 8U and
PI_SPEED_SCALE_KPKI should not exceed 15U.

PI settings for the torque controller

#define PI_TORQUE_KP (USER_DEFAULT_IQID_KP)

− Configure proportional gain for torque control block.

− The gain value is determined by the equation 𝐾𝑃 = 𝜔𝑐𝐿 × 𝐴 (see chapter 2.11).

#define PI_TORQUE_KI

 (USER_DEFAULT_IQID_KI)

− Configure integral gain for torque control block.

− The gain value is determined by the equation 𝐾𝐼 = 𝑅𝑇𝑆𝐾𝑃 𝐿⁄ (see chapter 2.11).

#define PI_TORQUE_SCALE_KPKI (SCALING_CURRENT_KPKI)

− Configure scaling factor of KP and KI.

− The KP and KI are scaled-up by 2^ PI_TORQUE_SCALE_KPKI.

#define PI_TORQUE_IK_LIMIT_MIN (-32768)

− Configure minimum output value of the integral buffer.

− Minimum value is -32768.

#define PI_TORQUE_IK_LIMIT_MAX (32767)

− Configure maximum output value of the integral buffer.

− Maximum value is 32767.

#define PI_TORQUE_UK_LIMIT_MIN (-32768)

− Configure minimum output value of the torque PI control block.

− Minimum value is -32768.

#define PI_TORQUE_UK_LIMIT_MAX (32767)

− Configure maximum output value of the torque PI control block.

− Maximum value is 32767.

PI settings for the flux controller

#define PI_FLUX_KP (USER_DEFAULT_IQID_KP)

− Configure proportional gain for flux control block.

− The gain value is determined by the equation 𝐾𝑃 = 𝜔𝑐𝐿 × 𝐴 (see chapter 2.11).

#define PI_FLUX_KI (USER_DEFAULT_IQID_KI >> 0)

− Configure integral gain for flux control block.

− The gain value is determined by the equation 𝐾𝐼 = 𝑅𝑇𝑆𝐾𝑃 𝐿⁄ (see chapter 2.11).

Application Note 78 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

#define PI_FLUX_SCALE_KPKI (SCALING_CURRENT_KPKI + 0)

− Configure scaling factor of KP and KI.

− The KP and KI are scaled-up by 2^ PI_FLUX_SCALE_KPKI.

#define PI_FLUX_IK_LIMIT_MIN (-32768)

− Configure minimum output value of the integral buffer.

− Minimum value is -32768.

#define PI_FLUX_IK_LIMIT_MAX (32767)

− Configure maximum output value of the integral buffer.

− Maximum value is 32767.

#define PI_FLUX_UK_LIMIT_MIN (-32768)

− Configure minimum output value of the flux PI control block.

− Minimum value is -32768.

#define PI_FLUX_UK_LIMIT_MAX (32767)

− Configure maximum output value of the flux PI control block.

− Maximum value is 32767.

PI settings for the PLL Estimator controller

#define PI_PLL_KP (1U << 8)

− Configure proportional gain for PLL Estimator control block.

− Minimum value is 1.

− Maximum is 32767.

#define PI_PLL_KI (1U << 6)

− Configure integral gain for PLL Estimator control block.

− Minimum value is 0.

− Maximum is 32767.

#define PI_PLL_SCALE_KPKI (19U – USER_RES_INC)

− Configure scaling factor of KP and KI.

− The KP and KI are scaled-up by 2^ PI_PLL_SCALE_KPKI.

− The USER_RES_INC is a constant defined in pmsm_foc_feature_config.h file.

− The minimum value of PI_PLL_SCALEKPKI is 15.

#define PI_PLL_IK_LIMIT_MIN (-(1 << (30 – PI_PLL_SCALE_KPKI)))

− Configure minimum output value of the integral buffer.

− Minimum value is -32768.

Application Note 79 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Configuration

#define PI_PLL_IK_LIMIT_MAX (1 << (30 – PI_PLL_SCALE_KPKI))

− Configure maximum output value of the integral buffer.

− Maximum value is 32767.

#define PI_PLL_UK_LIMIT_MIN (SPEED_LOW_LIMIT >> 4)

− Configure minimum output value of the PLL Estimator PI control block.

− Minimum value is -32768.

#define PI_PLL_UK_LIMIT_MAX (SPEED_HIGH_LIMIT + SPEED_LOW_LIMIT)

− Configure maximum output value of the PLL Estimator PI control block.

− Maximum value is 32767.

Application Note 80 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software data structure

8 PMSM FOC software data structure

8.1 FOC control module input data structure

This data structure defines the input variables used in the FOC functions.

Table 24 FOCInput data structure

Category

(Structure)

Variable name Data type /

Range

Description Remark

FOCInput Phase_L signed 32-bit Motor inductance per phase Motor parameters
Initialize once

only
Phase_R signed 32-bit Motor resistance per phase

Phase_L_Scale 16-bit / 8 – 18 Scaling for inductance;

Real inductance in

SW = Phase_L/(2 Phase_L_Scale)

CCU8_Period 16-bit CCU8 period. CCU8

PWM 1KHz to 90KHz

Initialize once

only

Res_Inc 16-bit / 0 – 8 Resolution increase, SW uses

(16+Res_Inc) bit to represent 360°

LPF_N_BEMF 16-bit / 0 – 8 LPF factor for BEMF

Threshold 32-bit BEMF threshold for transitions to

FOC

Threshold_LOW 16-bit / 0 – 512 LOW BEMF threshold, for

transitions to FOC

Threshold_HIGH 16-bit / 0 – 512 HIGH BEMF threshold, for

transitions to FOC

Flag_State 16-bit / 0 or 1 0: Motor to run in FOC

1: Always in transition state

BEMF1 signed 32-bit BEMF of sensorless estimator

BEMF2 signed 32-bit BEMF of sensorless estimator

overcurrent_factor 16-bit / 0-4096 Used to reduce motor speed

when over-current is detected

Ref_Speed signed 32-bit Motor reference speed for Speed

PI controller

Vq_Flag 16-bit / 0 or 1 0: FOC Vq from Iq PI controller

1: Vq from external

Vq signed 32-bit /

0 – 32767

Vq input from external, e.g.:

handler of e-bike

Ref_Id signed 32-bit Id reference for Id PI controller Default = 0

Ref_Iq signed 32-bit Reference of Iq PI controller from

external

Iq_PI_Flag 16-bit / 0 or 1 0: Reference of Iq PI controller

from speed PI output

1: Reference of Iq PI controller =

Ref_Iq from external

Application Note 81 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software data structure

8.2 FOC control module output data structure

This data structure defines the output variables in the FOC functions.

Table 25 FOCOutput data structure

Category

(Structure)

Variable name Data type /

Range

Description

FOCOutput Rotor_PositionQ31 signed 32-bit Rotor angle feedback, from the sensorless

estimator

Speed_By_Estimator signed 32-bit Rotor speed feedback, from the sensorless

estimator

Previous_SVM_SectorNo 16-bit / 0 – 5 SVM sector number in previous PWM cycle

New_SVM_SectorNo 16-bit / 0 – 5 SVM sector number in current PWM cycle

8.3 FOC control module data type

The table below shows the data structures of the variables used in the FOC control functions.

Table 26 Data structures used in FOC functions

Category

(Structure)

Variable name Data type / Range Description

Current I_U signed 16-bit /

1Q15 data format

Current of Iu current sensing

I_V signed 16-bit /

1Q15 data format
Current of Iv current sensing

I_W signed 16-bit /

1Q15 data format

Current of Iw current sensing

Clarke_Transform I_Alpha_1Q31 signed 16-bit /

1Q15 data format

Current I_Alpha, output of Clarke Transform

I_Beta_1Q31 signed 16-bit /

1Q15 data format

Current I_Beta, output of Clarke Transform

Park_Transform Id signed 16-bit /

1Q15 data format

Current Id, output of Park Transform

Iq signed 16-bit /

1Q15 data format

Current Iq, output of Park Transform

Car2Polar Flux_Vd signed 32-bit Voltage Vd, output of PI Flux controller

Torque_Vq signed 32-bit Voltage Vq, output of PI Torque controller

Vref32 32-bit SVM voltage magnitude of last PWM cycle

Vref_AngleQ31 signed 32-bit SVM voltage angle of last PWM cycle

SVM_Vref16 16-bit SVM voltage magnitude in open loop control

SVM_Angle16 16-bit SVM angle in open loop control

Application Note 82 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software data structure

8.4 SVM module data structure

This data structure defines the variables used in the SVM module.

Table 27 Data structure used in SVM module

Category

(Structure)

Variable name Data type / Range Description Remark

SVM CurrentSectorNo 16-bit / 0 – 5 SVM new sector number,

0 to 5 represent sector A to F

PreviousSectorNo 16-bit / 0 – 5 To keep track of sector

number in last PWM cycle

Flag_3or2_ADC 16-bit / 0 or 0xBB To indicate using 2 or 3 ADC
results of phase currents for

current construction

0: USE ALL ADC

0xBB: USE 2 ADC

For three shunt
current sensing

technique

SVM_Flag 16-bit / 0 or 0xAD To indicate using SVM with

PZV or standard 4-segment

SVM

0: PZV

0xAD: Standard 4-seg SVM

For single shunt
current sensing

technique

8.5 Get current software module data structure

This data structure defines the variables used in the Get Current module where the phase current ADC results
are read.

Table 28 Data structure used in get current module

Category

(Structure)

Variable Name Data Type / Range Description Remark

ADC ADC_Iu 16-bit / 0 – 4095 Store phase U current

ADC result

Three shunt
current sensing

technique ADC_Iv 16-bit / 0 – 4095 Store phase V current ADC

result

ADC_Iw 16-bit / 0 – 4095 Store phase W current

ADC result

ADC_Bias_Iu 16-bit / 0 – 4095 Bias of ADC_Iu

ADC_Bias_Iv 16-bit / 0 – 4095 Bias of ADC_Iv

ADC_Bias_Iw 16-bit / 0 – 4095 Bias of ADC_Iw

ADCTrig_Point 16-bit / 0 – CCU8 Slice 3

period value

VADC trigger position;

This is compare match
value for CCU8 slice 3

timer

ADC_Bias 16-bit / 0 – 4095 Bias of single shunt

current input

Application Note 83 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software data structure

Category

(Structure)

Variable Name Data Type / Range Description Remark

ADC_ResultTz1 16-bit / 0 – 4095 ADC value of the first
phase current ADC

sampling

Single shunt
current sensing

technique

ADC_ResultTz2 16-bit / 0 – 4095 ADC value of the second
phase current ADC

sampling

ADC_Result3 16-bit / 0 – 4095 ADC value of the third
phase current ADC

sampling

ADC_Result4 16-bit / 0 – 4095 ADC value of the fourth

phase current ADC

sampling

ADC_Result1 signed 32-bit Two most critical Phase

current results for current

reconstruction

ADC_Result2 signed 32-bit

ADC3Trig_Point 16-bit / 0 to

ADC4Trig_Point

VADC trigger position;

This is compare match

value for CCU8 slice 3

timer

ADC4Trig_Point 16-bit /

ADC3Trig_Point+1 to

CCU8 Slice3 period

value

VADC trigger position;

This is compare match

value for CCU8 slice 3

timer

Result_Flag 16-bit / 0 – 2 To indicate ADC result is

for first CCU8 slice 3 cycle
or second CCU8 slice 3

cycle or for standard 4-

segment SVM:

0: First cycle, PZV

1: Second cycle, PZV

2: Standard 4-seg SVM

ADC_POT 0 – 4095 Store ADC result of

potentiometer

ADC_DCLink 0 – 4095 Store ADC result of DC link

voltage

ADC_IDCLink 0 – 4095 Store ADC result of

average DC link current

Application Note 84 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

9 PMSM FOC software API functions

In this chapter the PMSM FOC software API functions are documented. The APIs are grouped into User
Functions and Controller APIs.

To improve the performance and to reduce the CPU loading, most of the time critical APIs are executed in the
SRAM. The table below shows the list of APIs that are executed in SRAM.

Table 29 List of APIs

Type API function name
Execute
in SRAM

Execute
in Flash

User Functions

pmsm_foc_motor_start() x

pmsm_foc_motor_stop() x

pmsm_foc_motor_brake () x

pmsm_foc_set_motor_target_speed () x

pmsm_foc_set_motor_target_torque () x

pmsm_foc_set_motor_target_voltage () x

pmsm_foc_get_motor_speed () x

Interrupt service routine

pmsm_foc_controlloop_isr() x

pmsm_foc_secondaryloop_isr()

pmsm_foc_over_under_voltage_isr()
x x

Controlloop ISR

Startup

pmsm_foc_bootstrap_charge() x

pmsm_foc_enable_inverter() x

pmsm_foc_disable_inverter() x

pmsm_foc_directfocrotor_pre_positioning() x

pmsm_foc_vf_foc_openloop_rampup() x

pmsm_foc_vf_smooth_transition_to_foc() x

pmsm_foc_misc_works_of_met() x

InOut handling

pmsm_foc_get_IDCLink_current() x

pmsm_foc_linear_ramp_generator() x

pmsm_foc_linear_torque_ramp_generator() x

pmsm_foc_Linear_vq_ramp_generator() x

pmsm_foc_scurve_ramp_generator() x

pmsm_foc_svpwm_update() x

pmsm_foc_adc34_triggersetting() x

pmsm_foc_adctz12_triggersetting() x

pmsm_foc_get_adcphasecurrent() x

General

pmsm_foc_error_handling() x

pmsm_foc_motor_hold() x

pmsm_foc_misc_works_of_foc() x

Controller

pmsm_foc_speed_controller() x

pmsm_foc_torque_controller() x

pmsm_foc_vq_controller() x

Secondaryloop ISR

pmsm_foc_misc_works_of_irq() x

XMC_WDT_Service() x

pmsm_foc_secondaryloop_callback() x

Over_under_voltage_isr pmsm_foc_disable_inverter() x

Application Note 85 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

9.1 User Functions

User functions are intended to be called by external users. They are the interface to other applications.

pmsm_foc_motor_start ()

This API is called to start the motor.

If the Motor.State is TRAP_PROTECTION the trap is cleared and the MCU is reinitialized.

Table 30 pmsm_foc_motor_start()

Input Parameters -

Return -

Updated Variables Motor.State EN_INVERTER_BOOTSTRAP

pmsm_foc_motor_stop ()

This API is called to disable the inverter and set all output pins in tristate. This will lead to an uncontrolled
freewheeling. For a controlled ramp-down you should use the pmsm_foc_set_motor_target_speed/torque.

− If the Motor.State is TRAP_PROTECTION the trap is cleared and the MCU is re-initialized.

Table 31 pmsm_foc_motor_stop()

Input Parameters -

Return -

Updated Variables Motor.State MOTOR_STOP

pmsm_foc_motor_brake ()

This API is called to ramp-down the motor.

Table 32 pmsm_foc_motor_stop()

Input Parameters -

Return -

Updated Variables Motor.State FOC_CLOSED_LOOP_BRAKE if state isn’t

TRAP_PROTECTION

Application Note 86 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_set_motor_target_speed ()

This API is called to set the target speed. The scaling is application specific and the input parameter is limited
by SPEED_HIGH_LIMIT and SPEED_LOW_LIMIT. To stop the motor pmsm_foc_motor_stop() function should be

used. The MCU will approach the reference speed to the target speed using the ramp generator.

This function is only available if SETTING_TARGET_SPEED is configured with SET_TARGET_SPEED and
MY_FOC_CONTROL_SCHEME is SPEED_CONTROLLED_VF_MET_FOC or SPEED_CONTROLLED_DIRECT_FOC.

Table 33 pmsm_foc_set_motor_target_speed ()

Input Parameters (uint32)motor_target_speed

Return -

Updated Variables Motor.Target_Speed

pmsm_foc_set_motor_target_torque ()

This API is called to set the target speed. The scaling is application specific and the input parameter is limited

by USER_IQ_REF_HIGH_LIMIT and USER_IQ_REF_LOW_LIMIT. To stop the motor pmsm_foc_motor_stop()
function should be used. The MCU will approach the reference speed to the target speed using the ramp

generator.

This function is only available if SETTING_TARGET_SPEED is configured with SET_TARGET_SPEED and
MY_FOC_CONTROL_SCHEME is TORQUE_CONTROLLED_DIRECT_FOC.

Table 34 pmsm_foc_set_motor_target_torque ()

Input Parameters (uint32) motor_target_torque

Return -

Updated Variables Motor. Target_Torque

pmsm_foc_set_motor_target_voltage ()

This API is called to set the target speed. The scaling is application specific and the input parameter is limited
by USER_VQ_REF_HIGH_LIMIT and USER_VQ_REF_LOW_LIMIT. To stop the motor pmsm_foc_motor_stop()
function should be used. The MCU will approach the reference speed to the target speed using the ramp
generator.

This function is only available if SETTING_TARGET_SPEED is configured with SET_TARGET_SPEED and

MY_FOC_CONTROL_SCHEME is VQ_CONTROLLED_DIRECT_FOC.

Table 35 pmsm_foc_set_motor_target_voltage ()

Input Parameters (uint32) motor_target_voltage

Return -

Updated Variables Motor.Target_Voltage

Application Note 87 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_get_motor_speed ()

This API returns the motor speed in RPM based on Motor.Speed.

Table 36 pmsm_foc_get_motor_speed ()

Input Parameters -

Return Speed in RPM

Updated Variables -

pmsm_foc_get_Vdc_link ()

This API returns the voltage value of DC bus.

Table 37 pmsm_foc_get_Vdc_link ()

Input Parameters -

Return Voltage in V

Updated Variables -

Application Note 88 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

9.2 Controlloop ISR

9.2.1 Startup

The following list of APIs are executed for the direct FOC startup.

pmsm_foc_bootstrap_charge ()

The function of this API is to perform a motor brake and charge the gate driver bootstrap capacitor. At the same

time the motor phase currents bias are read and updated.

This API is called in the EN_INVERTER_BOOTSTRAP motor state.

Table 38 pmsm_foc_bootstrap_charge ()

Input parameters None -

Return None -

Updated variables ADC.ADC_Bias_Iu ADC bias value for phase U current

ADC.ADC_Bias_Iv ADC bias value for phase V current

ADC.ADC_Bias_Iw ADC bias value for phase W current

Motor.State Updated motor state to PRE_POSITIONING once

motor start command is received

Motor.Transition_Status Motor status flag for transition;

Change this flag to MOTOR_TRANSITION once motor

start command is received

pmsm_foc_enable_inverter ()

This function enables the inverter pin and connects the PWM GPIOs to the PWM signal.

Table 39 pmsm_foc_enable_inverter ()

Input Parameters None -

Return None -

Updated Variables None -

pmsm_foc_disalbe_inverter ()

This function disables the inverter pin and sets the PWM GPIOs to tristate.

Table 40 pmsm_foc_disable_inverter ()

Input Parameters None -

Return None -

Updated Variables None -

Application Note 89 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_directfocrotor_pre_positioning ()

This API is to set the initial rotor position/alignment. It is called in the PRE_POSITIONING motor state. It
initializes the PI controller variables and FOCInput, and changes the motor state to FOC_CLOSED_LOOP.

Table 41 pmsm_foc_directfocrotor_pre_positioning ()

Input parameters None -

Return None -

Updated variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v and

I_w updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

I_Alpha and I_Beta updated

Car2Polar.Vref Increase Vref value gradually for SVM

Motor.State Updated motor state to FOC_CLOSED_LOOP once

preposition timer expired

FOCInput Initialized FOCInput variables before entering

FOC_CLOSED_LOOP

PI_Speed

PI_Torque

PI_Flux

PI_PLL

Initialized PI controllers variables before entering

FOC_CLOSED_LOOP

pmsm_foc_vf_foc_openloop_rampup ()

This API is called in the VFOPENLOOP_RAMP_UP motor state. It sets the initial rotor position/alignment and

then ramps-up the motor in open loop. Once the motor speed your defined VF_TRANSITION_SPEED, the motor
state is changed to MET_FOC.

Table 42 pmsm_foc_vf_foc_openloop_rampup()

Input Parameters None -

Return None -

Updated Variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v

and I_w updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

I_alpha and I_Beta updated

Car2Polar.Vref Increase Vref value gradually for SVM

Motor.State Updated motor state to MET_FOC once motor speed

ramp-up to a predefined value

FOCInput Initialized FOCInput variables before entering

MET_FOC

PLL_Estimator Called PLL_Estimator API and update variables

before entering MET_FOC

Application Note 90 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_vf_smooth_transition_to_foc ()

This API is called in the MET_FOC motor state. It is for MET control strategy. Once the stator flux is
perpendicular to the rotor flux, return the status as MOTOR_STABLE.

Table 43 pmsm_foc_vf_smooth_transition_to_foc ()

Input Parameters None -

Return Motor. Transition_Status Motor mode status

MOTOR_STABLE: MET is done, can switch to next

state

MOTOR_TRANSITION: MET function not done

Updated Variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v

and I_w updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

Clarke transform function is called and I_alpha and

I_Beta updated

Car2Polar.Vref,

Car2Polar.Vref_AngleQ31

Car2Polar Vref and Vref_AngleQ31 updated

FOCInput FOCInput variables updated

PLL_Estimator PLL_Estimator APIs are called and variables are

updated

pmsm_foc_misc_works_of_met ()

This routine checks for a motor stop command while waiting for MET state to be finished.

Once the MET is complete (Motor.Mode_Flag == MOTOR_STABLE), it switches the motor state to

FOC_CLOSED_LOOP.

Table 44 pmsm_foc_misc_works_of_met()

Input Parameters Motor.Mode_Flag Motor mode status

Return None -

Updated Variables Motor.State Updated motor state to FOC_CLOSED_LOOP once

Motor.Mode_Flag == MOTOR_STABLE

FOCInput Initialized FOCInput variables before entering

FOC_CLOSED_LOOP

PI_Speed

PI_Torque

PI_Flux

PI_PLL

Initialized PI controllers variables before entering

FOC_CLOSED_LOOP

PLL_Estimator.RotorAngleQ31 Initialize rotor angle for the first FOC PWM cycle

before entering FOC_CLOSED_LOOP

Application Note 91 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

9.2.2 InOut handling

pmsm_foc_get_IDCLink_current ()

This functions updates the DC link value in a scaled version.

Table 45 pmsm_foc_get_IDCLink_current ()

Input Parameters -

Return -

Updated Variables ADC.ADC_IDCLink

pmsm_foc_get_adcphasecurrent ()

This API is only used in the three shunt current sensing technique. It reads the ADC results of the 3-phase
currents.

If synchronous conversion is used, the VADC alias channels settings are also updated according to the SVM

sector (only in XMC1300/XMC1400).

Table 46 pmsm_foc_get_adcphasecurrent ()

Input Parameters SVM.PreviousSectorNo SVM sector number in previous PWM cycle

SVM.CurrentSectorNo Current SVM sector number

Return ADC.ADC_Iu ADC Phase U current result

ADC.ADC_Iv ADC Phase V current result

ADC.ADC_Iw ADC Phase W current result

Updated Variables -

pmsm_foc_linear_ramp_generator ()

In this routine, the linear ramp generator for speed control is implemented.

Table 47 pmsm_foc_linear_ramp_generator()

Input Parameters set_val Target speed value

rampup_rate Speed ramp-up rate

rampdown_rate Speed ramp-down rate

speedrampstep Number of steps changed every (rampup_rate or

rampdown_rate) x PWM cycles

Return Motor.Ref_speed Motor reference speed for PI speed controller

Updated Variables Motor.Ramp_Up_Rate Motor speed ramp-up rate

Motor.Ramp_Counter Ramp counter

Application Note 92 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_linear_torque_ramp_generator ()

In this routine the linear ramp generator for torque control is implemented.

Table 48 pmsm_foc_linear_torque_ramp_generator()

Input Parameters current_set Target torque value

inc_step Torque ramp-up rate

dec_step Torque ramp-down rate

Return FOCInput.Ref_Iq Motor reference torque for PI torque controller

Updated Variables -

pmsm_foc_linear_vq_ramp_generator ()

In this routine the linear ramp generator for Vq control is implemented.

Table 49 pmsm_foc_linear_vq_ramp_generator()

Input Parameters set_val Target Vq value

inc_step Vq ramp-up rate

dec_step Vq ramp-down rate

Return FOCInput.Vq Reference Vq for Cartesian to Polar transformation

Updated Variables -

pmsm_foc_scurve_ramp_generator ()

In this routine the S-curve ramp generator for speed control is implemented.

Table 50 pmsm_foc_scurve_ramp_generator()

Input Parameters set_val Target speed value

rampup_rate Speed ramp-up rate

rampdown_rate Speed ramp-down rate

speedrampstep Number of steps changed every (rampup_rate or

rampdown_rate) x PWM cycles

Return Motor.Ref_speed Motor reference speed for PI speed controller

Updated Variables Motor.Ramp_Up_Rate Motor speed ramp-up rate

Motor.Ramp_Dn_Rate Motor speed ramp-down rate

Motor.Ramp_Counter Ramp counter

Application Note 93 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_svpwm_update ()

In this API the SVM algorithm is executed and 3-phase PWM duty cycles are updated.

Table 51 pmsm_foc_svpwm_update ()

Input Parameters Amplitude Amplitude of voltage space vector

Angle Angle of voltage space vector

Return -

Updated Variables SVM.PreviousSectorNo Backup current SVM sector number

SVM.CurrentSectorNo Update current SVM sector number

pmsm_foc_adctz12_triggersetting ()

This API is only called in the single shunt current sensing technique. It is to set the first two trigger points for the
ADC conversion. The settings of the trigger points are the pre-calculated constants in the configuration file.

Table 52 pmsm_foc_adctz12_triggersetting()

Input Parameters -

Return -

Updated Variables -

pmsm_foc_adc34_triggersetting ()

This API is only called in the single shunt current sensing technique. This API is to set the third and fourth

trigger points for the ADC conversion.

Table 53 pmsm_foc_adc34_triggersetting()

Input Parameters ADC.ADC3Trig_Point Third trigger point setting

ADC.ADC4Trig_Point Fourth trigger point setting

Return -

Updated Variables -

Application Note 94 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

9.2.3 General

pmsm_foc_misc_works_of_foc ()

In this routine, if the motor is ramping-up in speed/torque/Vq, the reference speed or reference torque or Vq, is
updated based on the ramping rate.

Table 54 pmsm_foc_misc_works_of_foc()

Input Parameters Motor.Mode_Flag Motor mode status

Return None -

Updated Variables Motor.State Update motor state to MOTOR_HOLD if motor stop

command received

Motor.Ref_Speed Updated if SPEED_CONTROLLED_DIRECT_FOC or
SPEED_CONTROLLED_VF_MET_FOC control scheme

is selected

FOCInput.Ref_Iq Updated if TORQUE_CONTROLLED_DIRECT_FOC

control scheme is selected

FOCInput.Vq Updated if VQ_CONTROLLED_DIRECT_FOC control

scheme is selected

pmsm_foc_error_handling ()

This function handles the return from a TRAP state. You can enter a reaction for a TRAP. One option is to re-

initialize the motor control after a period of time. In the default there is no automated return from a TRAP state.

Table 55 pmsm_foc_error_handling ()

Input Parameters

Return

Updated Variables Motor.State MOTOR_HOLD

pmsm_foc_Clear_trap ()

This function clears the hardware trap state and clears the Motor state. It is called by the motor stop and motor
brake in case of a TRAP.

Table 56 pmsm_foc_Clear_trap ()

Input Parameters

Return

Updated Variables Motor.CCU8_Trap_Status 0x00

 Motor.State MOTOR_IDLE

pmsm_foc_motor_hold ()

This function is used for startup and active freewheeling. In active freewheeling the speed is reduced to zero
but the PWM pattern is still updated.

Table 57 pmsm_foc_motor_hold ()

Application Note 95 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

Input Parameters

Return

Updated Variables

9.2.4 Controller

pmsm_foc_speed_controller ()

This API is called if SPEED_CONTROLLED_DIRECT_FOC or SPEED_CONTROLLED_VF_MET_FOC control scheme
are selected. It executes the FOC speed control algorithm and FOC calculations. It is called in the

FOC_CLOSED_LOOP motor state.

With the MATH coprocessor (in XMC1302, XMC1402 and XMC1404) there is a timing gain of a few microseconds

by interleaving the CPU calculation with CORDIC computations (see the flowchart in Figure 55).

Table 58 pmsm_foc_speed_controller()

Input Parameters ADC.ADC_Bias_Iu ADC bias value for phase U current

ADC.ADC_Bias_Iv ADC bias value for phase V current

ADC.ADC_Bias_Iw ADC bias value for phase W current

FOCInput.Ref_Speed Reference speed value

SVM.CurrentSectorNo SVM current sector number

Return Motor.Speed Current motor speed from PLL Estimator

Updated Variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v

and I_w updated

Park_Transform.Iq,

Park_Transform.Id

Park transform function is called and Iq and Id

updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

Clarke transform function is called and I_alpha

and I_Beta updated

Car2Polar.Vref,

Car2Polar.Vref_AngleQ31

Car2Polar function is called and Vref and

Vref_AngleQ31 updated

PI_Speed

PI_Torque

PI_Flux

PI_PLL

PI controller functions are called and the PI

outputs updated

PLL_Estimator PLL Estimator APIs are called and the variables

updated

FOCOuput.Speed_by_Estimator Estimated rotor speed from PLL Estimator

FOCOutput.Rotor_PositionQ31 Estimated rotor position from PLL Estimator

Application Note 96 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

Figure 55 FOC speed control flowchart

FOC_Speed_Controller

Get ADC Phase
Currents

Current
Reconstruction

Clarke Transform

Park Transform
Start CORDIC
computation

Speed PI Controller

Park Transform get
result

Read result from
CORDIC

PLL Estimator API
PLL_Imag()

Start CORDIC
computation

Torque PI
Controller

PLL Estimator API
PLL_Imag_GetResult()

Read result from CORDIC

PLL Estimator API
PLL_Vref()

Start CORDIC computation

Flux PI Controller

PLL Estimator API
PLL_Vref_GetResult()

Read result from CORDIC

Car2Polar
Start CORDIC
computation

PLL Estimator API
PLL_GetPosSpdf()

Car2Polar get result
Read result from

CORDIC

Return

/*CORDIC - Park Transform of FOC*/

MATH->CON = CORDIC_ROTATION_MODE;

MATH->CORDZ = PLL_Estimator.Rotor_AngleQ31;

MATH->CORDY = Current.I_Alpha_1Q31;

MATH->CORDX = Current.I_Beta_1Q31; /* Auto-start CORDIC */

/* CPU computes following simultaneously when CORDIC is computing*/

/* Put other code here for CPU to execute, e.g.: */

PI_controller_anti_windup(FOCInput.Ref_speed, PLL_Estimator.RotorSpeed_in, &PI_Speed);

/*CORDIC Results*/

while (MATH->STATC & 0x01) continue; /* Wait if CORDIC still running */

Current.Iq = MATH->CORRX;

Current.Id = MATH->CORRY;

/* CPU computes following simultaneously when CORDIC is computing*/

/* Put other code here for CPU to execute, e.g.: */

PI_controller(PI_Speed.Uk,Park_Transform.Iq, &PI_Torque);

/*CORDIC – PLL Estimator */

/* Read CORDIC Results */

/* CPU computes following simultaneously when CORDIC is computing*/

/* Put other code here for CPU to execute, e.g.: */

PI_controller(FOCInput.Ref_Id,Park_Transform.Id, &PI_Flux);

/*CORDIC – PLL Estimator */

/* Read CORDIC Results */

/*CORDIC – Car2Polar of FOC*/

MATH->CON = CORDIC_VECTORING_MODE;

MATH->CORDZ = PLL_Estimator.Rotor_AngleQ31;

MATH->CORDY = Car2Polar.Torque_Vq;

MATH->CORDX = Car2Polar.Flux_Vd; /* Auto-start CORDIC */

/* CPU computes following simultaneously when CORDIC is computing*/

/* Put other code here for CPU to execute, e.g.: */

PLL_GetPosSpd(&PLL_Estimator);

/* Read CORDIC Results */

Application Note 97 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_torque_controller ()

This API is called if the TORQUE_CONTROLLED_DIRECT_FOC control scheme is selected. It executes the FOC
torque control and its calculations. It is called in the FOC_CLOSED_LOOP motor state.

Table 59 pmsm_foc_torque_controller ()

Input Parameters ADC.ADC_Bias_Iu ADC bias value for phase U current

ADC.ADC_Bias_Iv ADC bias value for phase V current

ADC.ADC_Bias_Iw ADC bias value for phase W current

FOCInput.Ref.Iq Reference torque value

SVM.CurrentSectorNo SVM current sector number

Return Motor.Speed Current motor speed from PLL Estimator

Updated Variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v

and I_w updated

Park_Transform.Iq,

Park_Transform.Id

Park transform function is called and Iq and Id

updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

Clarke transform function is called and I_Alpha and

I_Beta updated

Car2Polar.Vref,

Car2Polar.Vref_AngleQ31

Car2Polar function is called and Vref and

Vref_AngleQ31 updated

PI_Torque

PI_Flux

PI_PLL

PI controller functions are called and the PI outputs

updated

PLL_Estimator PLL Estimator APIs are called and the variables

updated

FOCOuput.Speed_by_Estimator Current motor speed from PLL Estimator

FOCOutput.Rotor_PositionQ31 Current motor position from PLL Estimator

Application Note 98 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_vq_controller (void)

This API is called if the VQ_CONTROLLED_DIRECT_FOC control scheme is selected. It executes the FOC VQ
control and FOC calculations. It is called in the FOC_CLOSED_LOOP motor state.

Table 60 pmsm_foc_vq_controller(void)

Input Parameters ADC.ADC_Bias_Iu ADC bias value for phase U current

ADC.ADC_Bias_Iv ADC bias value for phase V current

ADC.ADC_Bias_Iw ADC bias value for phase W current

FOCInput.Vq Reference Vq value

SVM.CurrentSectorNo SVM current sector number

Return Motor.Speed Current motor speed from PLL Estimator

Updated Variables Current.I_u, Current.I_v,

Current.I_w

Current reconstruct function is called and I_u, I_v

and I_w updated

Park_Transform.Iq,

Park_Transform.Id

Park transform function is called and Iq and Id

updated

Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

Clarke transform function is called and I_alpha and

I_Beta updated

Car2Polar.Vref,

Car2Polar.Vref_AngleQ31

Car2Polar function is called and Vref and

Vref_AngleQ31 updated

PI_Flux

PI_PLL

PI controller functions are called and the PI outputs

updated

PLL_Estimator PLL Estimator APIs are called and the variables

updated

FOCOuput.Speed_by_Estimator Current motor speed from PLL Estimator

FOCOutput.Rotor_PositionQ31 Current motor position from PLL Estimator

9.3 Secondaryloop ISR

pmsm_foc_misc_works_of_irq ()

This API is called in the secondary loop with a default 1 kHz frequency. It will read the motor speed you have set
and will scale it up (see chapter 2.10 for scaling).

Table 61 pmsm_foc_misc_works_of_irq()

Input Parameters None -

Return None -

Updated Variables Motor.Target_Speed If SETTING_TARGET_SPEED is set to BY_POT_ONLY
or BY_UART_ONLY the value is updated. Which

value is updated depends on

MY_FOC_CONTROL_SCHEME setting.

Motor.Target_Torque

Motor.Target_Voltage

Application Note 99 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

pmsm_foc_secondaryloop_callback ()

This API is only available if PMSM_FOC_SECONDARYLOOP_CALLBACK is ENABLED. You need to define this
function. The secondary loop is placed in the flash to support large functions. To reduce execution time the

function can be placed in RAM manually.

Table 62 pmsm_foc_misc_works_of_irq()

Input Parameters None -

Return None -

Updated Variables User defined

9.4 FPU library

All the mathematical functions the field oriented control needs to work are implemented in the FPU library
fpu_math2. In particular it also implements the sine, cosine, arctangent, magnitude, and the park transform.

9.4.1 Theory

A good choice to implement the sine, cosine and arctangent is using the lookup table(LUT). The sine, cosine
and park transform functions are imported from the CMSIS library with the relative LUT (for support look at

CMSIS support manual). For arctangent, it’s impossible to use only look up table because of its infinite and not
periodic domain, so the library uses a mix of LUT and math approximation. For the arctangent LUT, 300 variable

step samples are used in the domain from 0 to a certain value (in library set to 5.02).

Figure 56 Sample distribution

The mathematical map to convert tangent value to the sample vector index is in relation with the second

derivative of the arctangent function, properly scaled and adapted:

𝑦 =
(

𝑥
𝐴𝑇_𝑋_𝑆𝐶𝐴𝐿𝐼𝑁𝐺 + 𝐴𝑇_𝑋_𝑂𝐹𝐹𝑆𝐸𝑇)

2

1 + (
𝑥

𝐴𝑇_𝑋_𝑆𝐶𝐴𝐿𝐼𝑁𝐺 + 𝐴𝑇_𝑋_𝑂𝐹𝐹𝑆𝐸𝑇)
2 ∙ 𝐴𝑇_𝑌_𝑆𝐶𝐴𝐿𝐼𝑁𝐺 − 𝐴𝑇_𝑌_𝑂𝐹𝐹𝑆𝐸𝑇

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

A
n

gl
e

 [
ra

d
]

Tangent

Samples distribution

Application Note 100 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

Where x is the tangent value and y is the index vector. The best values for the parameters are defined in the
library.
Once the float index value is found, it is used for linear interpolation to find the angle value. The variable step is
used for mapping the function with more points where it is more curved. Because of the concavity of the
arctangent, the linear interpolation would always return an underestimated value. A constant is added to all

the samples to compensate for this phenomenon (AT_CC_ERROR).

For tangent larger than last LUT element, library uses the following math approximation:

𝑎𝑛𝑔𝑙𝑒 = −
1

𝑥
+

1

3𝑥3
−

1

5𝑥5
+
𝜋

2

Where x is the tangent and the result is in radiant.

The precision of the function arctangent is about 2E-6 radiants (0.00012 degrees, 20 bit in q31). Library support
is also an error correction that brings the precision to 5E-7 radiants (0.00003 degrees, 22 bit in q31). It’s

mandatory to call fpu_tangent_lookup_table_generation() before using fpu_cart2polar() function.

9.4.2 Library API

fpu_sin_q31 ()

This function calculates the sine of the given angle, both in q31.

Table 63 fpu_sin_q31 ()

Input parameters Angle Q31 format

Return Sin(Angle) Q31 format

Updated variables None

fpu_cos_q31 ()

This function calculates the cosine of the given angle, both in q31.

Table 64 fpu_cos_q31 ()

Input parameters Angle Q31 format

Return Cos(Angle) Q31 format

Updated variables None

fpu_park_q31 ()

This function calculates the park transform for given I_alpha, I_beta, and sine/cosine of rotor angle.

Table 65 fpu_park_q31 ()

Input parameters Clarke_Transform.I_Alpha,

Clarke_Transform.I_Beta

Y and X components of any physical quantity, in this

case, Clarke transform Currents.

 Angle_sine

Angle_cosine

The sine and cosine of the rotation angle, in this

case, rotor angle.

Return Park_Transform.Iq,

Park_Transform.Id

Y and X rotated components, in this case, Id and Iq.

Updated variables None

Application Note 101 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

PMSM FOC software API functions

fpu_cart2polar ()

This function calculates the polar coordinates starting from the cartesian coordinates of any physical quantity,
then it adds the offset angle to the polar one. Before using, it’s mandatory to call

fpu_tangent_lookup_table_generation().

Table 66 fpu_cart2polar ()

Input parameters Car2Polar.Flux_Vd

Car2Polar.Torque_Vq

Y and X components of any physical quantity, in this

case, flux and torque components.

 Rotor Angle An angle added to the polar one. In this case, rotor

angle.

Return Car2Polar.Vref32

Car2Polar.Vref_AngleQ31

Polar components of the physical quantity.

Updated variables None

fpu_tangent_lookup_table_generation()

This function calculates the samples for arctangent lookup table.

Table 67 fpu_cart2polar ()

Input parameters None

Return None

Updated variables Arctangent lookup table

Value for arctangent

#define AT_X_SCALING 2

#define AT_X_OFFSET 0.675f

#define AT_Y_SCALING 500.467269f

#define AT_Y_OFFSET 156.6511975f

#define AT_ERROR_CORRECTION 1

⎯ Enable error correction
#define AT_LAST_LUT_TANGENT 5.02719008f

⎯ Last element of the LUT table
#define FPU_PI 3.1415926535f

#define FPU_HALF_PI 1.57079632679f

#define AT_CC_ERROR 0.000000261111f

⎯ Offset of table values

Application Note 102 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Resources

10 Resources

• Infineon XMC1000 Motor Control Application Kit document: XMC1000 Motor Control Application Kit.

• Examples can be found at XMC1000.

• AP32370 - XMC1000 - PMSM FOC motor control software using XMC™.

• Infineon XMC1000 Motor Control Application Kit document: XMC4400 motor drive card.

http://www.infineon.com/cms/en/product/productType.html?productType=db3a30443ba77cfd013baec9ca5c0caa
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc1000-industrial-microcontroller-arm-cortex-m0/xmc1100/
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc4400_dc_v1/

Application Note 103 V1.6

 2023-06-15

PMSM FOC motor control software using XMC™
XMC1000/XMC4000

Revision history

11 Revision history

Document

version

Date Description of changes

1.5 2018-12-31 Updated this document according to the PMSM_FOC software version

1.5.x.

Chapter 1.6:

New structure of Software overview.

Chapter 3.2:

Improved description of 3 shunt measurement and clear separation of

Synchronous and Asynchronous conversion.

Chapter 7:

New structure for configuration.

Adapt to v1.5.x

Chapter 9:

New user functions.

XMC1400 added.

Kits added.

1.6 2023-06-15 Added XMC4400 support.

Trademarks of Infineon Technologies AG
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-15

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference: AP32370

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Key features
	1.2 Abbreviations and acronyms
	1.3 XMC™ resource allocation
	1.4 XMC™ hardware modules inter-connectivity
	1.5 Execution time and memory usage
	1.6 Software overview
	1.7 Limitations of use for PMSM FOC software

	2 PMSM FOC sensorless software components
	2.1 Motor start / speed change / motor stop operations control
	2.2 Ramp generator
	2.3 Control schemes
	2.3.1 Open loop voltage control
	2.3.2 Speed control
	2.3.3 Torque control direct startup
	2.3.4 Vq control direct startup
	2.3.5 D-axis and Q-axis decoupling

	2.4 Cartesian to Polar transform
	2.5 Space Vector Modulation (SVM)
	2.5.1 7-segment SVM
	2.5.2 5-segment SVM
	2.5.3 Pseudo Zero Vector (PZV)
	2.5.4 4-segment SVM
	2.5.5 Over-modulation SVM

	2.6 DC link voltage
	2.7 Clarke transform
	2.8 Park transform
	2.9 Protection
	2.10 Scaling
	2.11 Determination of flux and torque current PI gains

	3 Current sensing and calculation
	3.1 Single shunt current sensing (only in XMC1300/XMC1400)
	3.2 Three shunt current sensing
	3.2.1 Asynchronous theory (only in XMC1300/XMC1400)
	3.2.2 Synchronous theory
	3.2.3 Synchronous Implementation

	4 Motor speed and position feedback in sensorless FOC control
	5 Interrupts
	5.1 PWM period match interrupt
	5.2 Ctrap interrupt
	5.3 ADC source interrupt (only in XMC1300/XMC1400)
	5.4 Secondary loop interrupt
	5.5 Over/Under voltage protection

	6 Motor state machine
	7 Configuration
	7.1 User Configuration
	7.1.1 General
	7.1.2 Custom Kit configuration
	7.1.3 Advanced user configuration
	7.1.4 Torque control specific
	7.1.5 VQ control specific (V/f)
	7.1.6 MET specific

	7.2 Hardware configuration
	7.2.1 Controller Card
	7.2.2 Inverter board configuration for current and voltage sensing
	7.2.3 Motor specific configuration
	7.2.3.1 Motor parameter
	7.2.3.2 PI settings

	8 PMSM FOC software data structure
	8.1 FOC control module input data structure
	8.2 FOC control module output data structure
	8.3 FOC control module data type
	8.4 SVM module data structure
	8.5 Get current software module data structure

	9 PMSM FOC software API functions
	9.1 User Functions
	9.2 Controlloop ISR
	9.2.1 Startup
	9.2.2 InOut handling
	9.2.3 General
	9.2.4 Controller

	9.3 Secondaryloop ISR
	9.4 FPU library
	9.4.1 Theory
	9.4.2 Library API

	10 Resources
	11 Revision history

