
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document Number: 001-91184 Rev. *F 1

AN91184

PSoC® 4 BLE – Designing BLE Applications

Author: Uday Agarwal, Ajay Sahu

Associated Project: Yes

Associated Part Family: CY8C4XX7-BL, CY8C4XX8-BL, CYBL1XX6X, CYBL1XX7X

Software Version: PSoC Creator™ 4.2

Related Application Notes: See Related Documents

To get the latest version of this application note, please visit
http://www.cypress.com/go/AN91184.

More code examples? We heard you.
To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples web page.
You can also explore the PSoC video library here.

AN91184 shows how to design a Bluetooth® Low Energy (BLE) application based on PSoC 4 BLE, using standard profiles

defined by the Bluetooth SIG that are included in the BLE Component in PSoC Creator. It demonstrates how to build an

application with the BLE Health Thermometer Profile on the CY8CKIT-042-BLE kit.

Contents

1 Introduction .. 1
2 PSoC Resources ... 2
3 PSoC Creator .. 3
4 Standard Services Versus Custom Services 4

4.1 BLE Health Thermometer 4
5 PSoC Creator Project: Health Thermometer 5

5.1 Configure the Component 5
5.2 Configure the Firmware 18
5.3 Hardware Configuration 23

5.4 Build and Program the Device 24
6 Application Testing .. 25

6.1 CySmart Central Emulation Tool 25
6.2 CySmart Mobile App ... 29
6.3 Summary .. 31

7 Related Documents ... 32
Appendix A. Code examples 33
Worldwide Sales and Design Support 37

1 Introduction

Bluetooth Low Energy (BLE) is an ultra-low-power wireless standard introduced by the Bluetooth Special Interest Group
(SIG) for short-range communication. The BLE physical layer, protocol stack, and profile architecture are designed and
optimized to minimize power consumption. Similar to Classic Bluetooth, BLE operates in the 2.4-GHz ISM band but
with lower bandwidths ranging from 125 kbps to 2 Mbps.

Cypress’ PSoC 4 BLE is a programmable embedded system-on-chip (SoC), integrating BLE along with programmable
analog and digital peripheral functions, memory, and an Arm® Cortex®-M0 microcontroller on a single chip.

This application note discusses how to use the PSoC Creator BLE Component to design a BLE Health Thermometer
application using the Health Thermometer standard profile, and then validate the application using the CySmart Central
Emulation Tool and the CySmart mobile app. The PSoC Creator BLE Component has the standard profiles pre-built;
this makes it very easy to use these services in BLE-enabled projects.

This application note assumes that you are familiar with the basics of BLE, PSoC, the PSoC Creator IDE, and
temperature measurement using a thermistor. Refer to the following links:

▪ AN91267 – Getting Started with PSoC 4 BLE

▪ PSoC Creator home page

▪ AN66477 – PSoC® 3, PSoC 4, and PSoC 5LP – Temperature Measurement with a Thermistor

http://www.cypress.com/
http://www.cypress.com/PSoCCreator/
http://www.cypress.com/go/AN91184
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/video-library/
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble
http://www.cypress.com/psoccreator/
http://www.cypress.com/documentation/application-notes/an66477-psoc-3-psoc-4-and-psoc-5lp-temperature-measurement

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 2

2 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device and quickly and
effectively integrate it into your design. For a comprehensive list of resources, see KBA86521, How to Design with
PSoC 3, PSoC 4, and PSoC 5LP.

The following is an abbreviated list for PSoC 4 BLE:

▪ Overview: PSoC Portfolio, PSoC Roadmap

▪ Product Selectors: PSoC 1, PSoC 3,
PSoC 4, or PSoC 5LP. In addition, PSoC
Creator includes a device selection tool.

▪ Datasheets describe and provide electrical
specifications for the PSoC 41XX-BL and
PSoC 42XX-BL device families.

▪ Application Notes and Code Examples
cover a broad range of topics, from basic to
advanced level. Many of the application notes
include code examples. PSoC Creator
provides additional code examples.

▪ Technical Reference Manuals (TRMs)
provide detailed descriptions of the
architecture and registers in each PSoC 4
BLE device family.

▪ CapSense Design Guide: Learn how to design
capacitive touch-sensing applications with the PSoC 4
BLE family of devices.

▪ Development Tools

 CY8CKIT-042-BLE Bluetooth Low Energy (BLE)
Pioneer Kit includes connectors for Arduino™
compatible shields and Digilent® Pmod™ daughter
cards.

 CySmart BLE Host Emulation Tool for Windows,
iOS, and Android is an easy-to-use GUI that
enables you to test and debug your BLE Peripheral
applications. Source code for CySmart mobile apps
is also available at Cypress website.

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/psoc
http://www.cypress.com/?rID=86788&source=an79953
http://www.cypress.com/?id=1573&source=an79953
http://www.cypress.com/?id=5041&source=an79953
http://www.cypress.com/?id=4976&source=an79953
http://www.cypress.com/?id=5044&source=an79953
http://www.cypress.com/psoccreator/
http://www.cypress.com/psoccreator/
http://www.cypress.com/?docID=50617
http://www.cypress.com/?docID=50617
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=5284&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=5284&applicationID=0&l=0
http://www.cypress.com/?rID=78578
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/cysmart
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 3

3 PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and
firmware design of systems based on PSoC 3, PSoC 4, PSoC 5LP, and PSoC 6. With PSoC Creator, you can:

1. Browse the collection of code examples from the
File > Code Example menu.

2. Explore the library of 100+ Components

3. Drag and drop Components to build your hardware
system design in the main design workspace

4. Review Component datasheets

5. Configure Components using configuration
tools

6. Codesign your application firmware with the
PSoC hardware

Figure 1. PSoC Creator Features

Configure

Components

Develop

Firmware

Open

Datasheet

Download

 Button

Browse Code

Examples

Drag and Drop

Components

6

1

2

3

4

5

Explore Component

Catalog

http://www.cypress.com/
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 4

4 Standard Services Versus Custom Services

The Bluetooth SIG defines a set of services that can be configured as either a GATT client or a GATT server. These
services are termed Standard Services. Some examples of standard services include: Heart-Rate Service, Health
Thermometer Service, Blood Pressure Service, and Immediate Alert Service. Refer to the Bluetooth Developer Portal
for the complete list of standard services.

These standard services are defined to address a wide variety of applications. For example, the Heart Rate Service
can be configured to report data from a Heart-Rate Sensor in a wristband or a chest-strap monitor. It can also expose
the amount of energy expended over a specified interval.

The BLE standard also allows you to create your own services, known as Custom Services. As the name suggests,
they are used to define services that are not covered by BLE standard services. These services are equally important
as they allow you to deploy BLE devices that can have custom applications.

4.1 BLE Health Thermometer

In the BLE Health Thermometer application (Figure 2), the thermometer device operates as the GAP Peripheral and
implements the Health Thermometer Sensor Profile, while the mobile device receiving the data operates as the GAP
Central and implements the Health Thermometer Collector Profile. In this example, the Health Thermometer Sensor
Profile implements two standard services – the Health Thermometer Service that comprises three characteristics (the
Temperature Measurement Characteristic, the Temperature Type Characteristic, and the Measurement Interval
Characteristic) and the Device Information Service that comprises nine characteristics, which will be described later in
this document.

Figure 2. BLE System Design

 Profile: Health Thermometer

 Collector role

 Profile: Health Thermometer

 Sensor role

Service

Health Thermometer Service

Characteristic

Temperature Measurement

Characteristic

Temperature Type

Characteristic

Temperature Interval

Requests data Provides data

Health Thermometer

Service

Device Information

Service

Link Layer: Master

GAP role: Central

GATT Server

GAP role: Peripheral

Thermometer

GATT Client

Link Layer: Slave

GATT

Client

GATT

Server

Scans Services Exposes Services
Collector

Profile
Sensor

Profile

Initiates physical link

connection

Accepts physical link

connection

GAP

Central
GAP

Peripheral

Establishes and

manages link
Advertises Capabilities

Link

Master

Link

Slave

http://www.cypress.com/
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 5

5 PSoC Creator Project: Health Thermometer

In this project, the PSoC 4 BLE device integrates the following:

▪ A BLE Component that operates as the Peripheral at the GAP layer and as the GATT server at the GATT layer.

▪ An ADC, which measures the voltage across a thermistor.

▪ A thermistor calculator, which calculates the temperature using the ADC reading.

▪ A user button, which wakes up the system from the Hibernate mode.

Figure 3 shows the PSoC Creator schematic of the Health Thermometer project.

Figure 3. PSoC Creator Schematic

5.1 Configure the Component

1. Create a new PSoC 4100 BLE / PSoC 4200 BLE Design project. If you are new to PSoC Creator, refer to the PSoC
Creator home page.

2. Drag and drop a BLE Component (Component Catalog > Communications) into the TopDesign schematic (refer
to Figure 4).

Figure 4. BLE Component

http://www.cypress.com/
http://www.cypress.com/psoccreator/
http://www.cypress.com/psoccreator/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 6

3. Double-click the BLE Component to configure it. The configuration window appears as shown in Figure 5.

Figure 5. BLE Component – Configuration Window

4. On the General tab of the Component Configuration window (refer to Figure 6), configure the following settings:

Name: BLE

Configuration: Profile Collection

Profile: Health Thermometer

Profile role: Thermometer (GATT Server)

Over-The-Air bootloading with code sharing: Disabled

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 7

Figure 6. General Tab

Note: Per the Bluetooth SIG, the Health Thermometer standard profile encapsulates the Health Thermometer Service
and the Device Information Service; therefore, these services are added by default, as shown in Figure 7. To learn
more about the Health Thermometer Profile or the Health Thermometer Service, refer to the Bluetooth Adopted
Specifications.

Figure 7. Health Thermometer Profile

5. Configure the Profiles tab with the following settings:

Service: Health Thermometer

Characteristic: Temperature Measurement

Fields: Temperature Units Flag

Value: Temperature Measurement Value in units of Celsius

Figure 8 shows the Temperature Measurement Characteristic configuration.

http://www.cypress.com/
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 8

Figure 8. Temperature Measurement Characteristic

Similarly, update the remaining services and characteristics per Table 1. An “N/A” in the Descriptor column means
that the fields and the values refer to the characteristic, but not to the descriptor. For example, the field
Temperature Text Description belongs to the characteristic Temperature Type in the Health Thermometer
service, but the fields Lower Inclusive Value and Upper Inclusive Value belong to the descriptor Valid Range
of the characteristic Measurement Interval.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 9

Table 1. Characteristic Configuration

Service Characteristic Descriptor Fields Value Remarks

Health
Thermometer

Temperature
Measurement

N/A
Temperature Units
Flag

Temperature Measurement
Value in units of degrees
Celsius

The possible values are
defined by the Bluetooth
SIG. The BLE Component
provides an option to select
one of the possible values.

Temperature
Type

N/A
Temperature Text
Description

Body (general)

The possible values are
defined by the Bluetooth
SIG. The BLE Component
provides an option to select
one of the possible values.

Measurement
Interval

N/A
Measurement
Interval

1

User-defined

Units: seconds,

Range: 1-65535

Measurement
Interval

Valid Range

Lower Inclusive
Value

1

User-defined

Units: seconds,

Range: 1-65535

Upper Inclusive
Value

60

User-defined

Units: seconds,

Range: 1-65535

Device
Information

Manufacturer
Name String

N/A Manufacturer Name Cypress Semiconductor User-defined

Model Number
String

N/A Model Number 1.0 User-defined

Serial Number
String

N/A Serial Number ** User-defined

Hardware
Revision String

N/A Hardware Revision CY8CKIT-042-BLE User-defined

Firmware
Revision String

N/A Firmware Revision ** User-defined

Software
Revision String

N/A Software Revision PSoC Creator 4.2 User-defined

Keep the remaining settings at their default values.

6. Configure the Bluetooth Device Address (BD_ADDR), the Device name, and the Appearance under General
settings of the GAP Settings tab, per Table 2. Figure 9 shows the general GAP settings.

Table 2. General Settings

Name Value Remarks

Public
address

Check Silicon
Generated Address

Use your Company ID and Company-assigned values as the address. If you do not have these
details, add the desired address in the field.

Device name MyThermometer User-defined

Appearance
Generic
Thermometer

The possible values are defined by the Bluetooth SIG. The BLE Component provides an option to
select one of the possible values.

Note: Public address refers to the unique 48-bit BD_ADDR that is used to identify the device. It is divided into two
parts: Company ID (24 bits) and Company assigned (24 bits). By default, the public address is loaded with the
Company ID of Cypress Semiconductor. You should use your 24-bit Company ID assigned by IEEE.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 10

Figure 9. Device Name and Appearance

7. The Advertisement Settings under Peripheral Role will be left at their default values for this project. Configure
the Advertisement packet settings under Peripheral role per Table 3. Figure 10 shows the advertisement packet
setting

Table 3. Advertisement Packet Settings

Name Check Box Value Remarks

Local Name Enabled Complete
Transmits the complete name as a part of the advertisement packet. You can send the
shortened name as well by selecting the number of characters to be sent.

Service UUID Enabled N/A
Transmits Service UUIDs (universally unique identifier) as a part of the advertisement
packet.

Service UUID > Health
Thermometer

Enabled N/A Transmits the Health Thermometer Service UUID as a part of the advertisement packet.

Service UUID > Device
Information

Enabled N/A Transmits the Device Information Service UUID as a part of the advertisement packet.

Appearance Enabled N/A Transmits the Appearance value as a part of the advertisement packet.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 11

Figure 10. GAP Settings – Advertisement Packet

Keep the remaining settings at their default values including the Scan response packet, Peripheral preferred
connection parameters and Security settings. Also, keep the settings in the L2CAP Settings tab at their default
values.

8. Click Apply and then click OK.

9. Place a Digital Input Pin Component and configure it as shown in Figure 11 and Figure 12.

Figure 11. Pin Configuration

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 12

Figure 12. Pin Interrupt Configuration

Note: The drive mode for the user switch is selected as Resistive pull up to keep the default state of the signal
as logic HIGH. When the switch is pressed, the pin is pulled to ground, driving the signal on the pin from logic HIGH
to logic LOW. Thus, the interrupt is set for Falling edge.

10. Place an Interrupt Component and connect it to the irq pin of the SW Component and rename it as “Wakeup_ISR”
as shown in Figure 13. The interrupt Component will be used to record the interrupt signal and trigger the respective
function.

Figure 13. SW Pin

11. Drag and drop the Sequencing SAR ADC Component and configure it per Table 4. Figure 14, and Figure 15 show
the Sequencing SAR ADC Component configuration settings.

Table 4. SAR ADC Component Configuration

Tab Name Value Remarks

General

Name ADC This name will be used as the prefix to the APIs for the Component.

Clock frequency (kHz) 6000
This application does not require a high accuracy. A faster sample rate
helps conserve power by reducing the active time.

Vref Select VDDA Input voltage range from 0 to VDDA.

Samples Averaged 16 Sample averaging of 16 helps averaging out any high-frequency noise.

Channels
Sequenced channels 1 Number of channels to be scanned

AVG Checked Enable averaging for the corresponding ADC channel

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 13

Figure 14. SAR ADC Configuration – General

Figure 15. SAR ADC Configuration – Channels

12. To measure temperature, follow steps 11 to 18.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 14

13. Place an Analog Mux Sequencer Component and configure it per Figure 16. The AMUX Component will be used
to mux multiple analog signals to the ADC input.

Figure 16. AMUX Configuration

14. Place the Thermistor Calculator Component and configure it per Figure 17. These settings configure this
Component for temperature measurement using the thermistor.

Figure 17. Thermistor Calculator Configuration

Note: For accurate temperature measurement, the Temperature (oC) and the Resistance (Ω) column must be
updated using the values given in the thermistor datasheet.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 15

15. Place two Analog Pin Components, and configure them per Figure 18 and Figure 19.

Note: These pins are configured as both analog pins and digital outputs. The digital output will allow us to drive
either pin to either VDD or VSS from the firmware.

Figure 18. Analog Pin Configuration – V_HIGH

Figure 19. Analog Pin Configuration – V_LOW

16. Place an Analog Pin Component and name it as “V_THERM.” Enable the External terminal.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 16

17. Connect the Analog Mux Sequencer, Sequencing SAR ADC, and Analog Pin Components per the schematic shown
in Figure 20.

Note: All of the blue components are from the “Off-Chip” catalog. These are used for documentation purposes only
but can be used to make the schematic more instructive of what is on the hardware.

Figure 20. Schematic – Temperature Measurement

18. In the Pins tab of the design-wide resources window, connect the pins as shown in Figure 21.

Figure 21. Pins Tab of the Design-Wide Resources Window

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 17

19. In the Clocks tab of the design-wide resources window, configure the IMO frequency as 12 MHz, as shown in
Figure 22.

Figure 22. Clock Configuration

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 18

5.2 Configure the Firmware

Figure 23 shows the firmware flow for the Health Thermometer application.

Figure 23. System Flowchart

Stack ON? Start Advertising

Device

Connected?

Retrieve Connection

Handle

Initialize WDT

Device

Disconnected?

- Configure wakeup pin

- Go to Hibernate

N

N

Y

Y

Y

Return from Generic

event handler

G
e

n
e

ri
c

 E
v

e
n

t
H

a
n

d
le

r

Indication

Enabled?
Start Indication

Indication

Disabled?
Disable Indication

Measurement

Interval Write?

Update Measurement

Interval

N

N

N

Y

Y

Y

Return from Generic

event handler

H
e

a
lt

h
 T

h
e

rm
o

m
e

te
r

E
v

e
n

t
H

a
n

d
le

r

BLE Event Handler

Advertising

Timeout?

- Configure wakeup pin

- Go to Hibernate
Y

N

N

Reset or Wakeup from

Hibernate

- Initialize ADC

- Provide Thermistor

reference

- Initialize BLE

- Register Generic

Event Handler

BLE-Init

Success?

Register Health

Thermometer Event

Handler

Y

Error HandlingN

Device

Connected?

S
y

s
te

m
 I
n

it
ia

li
z
a

ti
o

n
S

y
s

te
m

 N
o

rm
a

l
O

p
e

ra
ti

o
n

S
y

s
te

m
 L

o
w

 P
o

w
e

r
O

p
e

ra
ti

o
n

Application Firmware Flow

BLESS in

Deep Sleep

Put BLESS in Deep

Sleep mode

Get BLESS state

Process Events

- Configure wakeup pin

- Go to Hibernate

Measurement

Interval expired?

Measure Temperature

Y

Send Indication

Indication

Enabled?

Y

WDT event?

Y

Y

BLESS =

Initializing?

BLESS =

Deep Sleep or

ECO_ON

Put System in Deep

Sleep mode

Y
Rx/Tx

Complete?

Put System in Sleep

mode

N

N
Y

Y N

N

N

N

N

Y

N

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 19

Note: Source files for the application firmware are in the example project that is included with this application note. You
can either include the source files in your own project or you can use the completed example project as-is. There are
nine source files for the example project which are listed in Table 5.

Table 5. Example Project Source Files

Name Description

main.c

This is the main firmware file. It has only one function:

▪ main() – This function controls the flow of the complete application. Primary tasks performed as

a part of this function are initializing the system, application control that includes processing BLE
events, application flow control, and low-power implementation.

CommonFunctions.c/.h

Implements the common functions that are used for application control. It has the following functions:

▪ InitializeSystem() – Initializes all the blocks of the system.

▪ PrepareForDeepSleep – Prepares the system for low-power operation by putting the hardware

blocks in the Deep Sleep mode.

▪ WakupFromDeepSleep() – Restores the hardware blocks for normal operation.

Temperature.c/.h

It implements the temperature measurement by reading the measured data from the ADC and
calculating the temperature using the Thermistor Calculator Component. It also provides an option to
the user to simulate the temperature instead of measuring it from the temperature sensor. It has the
following functions:

▪ MeasureSensorVoltage() – This function measures the sensor voltage. This function is not

available when the sensor simulation option is selected. For more details, refer to the Sensor
Simulation section.

▪ ProcessTemperature() – This function measures or simulates the temperature value.

WatchdogTimer.c/.h

It implements the watchdog timer functionality and keeps track of the system time. It has the following
functions:

▪ WatchdogTimer_Start() – Starts the watchdog timer (WDT0) with a 1-s period and an interrupt

on match.

▪ WatchdogTimer_Isr() – The ISR for the WDT; it is used to track the measurement interval. This

function is a callback from the watchdog timer.

▪ WatchdogTimer_Stop() – Stops the watchdog timer (WDT0).

BLE_HTSS.c/.h

It handles the BLE-specific functionality of the project. It handles the events generated from the BLE
stack, explained in detail in the Event Handler section. It has the following functions:

▪ GenericEventHandler() – Handles the generic events generated by the BLE stack

▪ HtssEventHandler() – Handles the events generated for the Health Thermometer Service

▪ ProcessBLE() – Sends the temperature data as Indication to the GATT Client

▪ ConvertFloatTemp() – Converts the temperature data from IEEE-754 format to IEEE-11073

format

▪ EnableBLE() – Starts the BLE Component and registers the event handler functions

The following sections explain the operation of the Health Thermometer application. Note that the complete firmware
is not included in this document. Instead, the key concepts are explained in detail. Refer to the included example project
for the complete firmware. The Health Thermometer application state machine consists of four states:

▪ System Initialization

▪ Event Handler

 Generic Event Handler

 Health Thermometer Event Handler

▪ System Normal Operation

▪ System Low-Power Operation

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 20

These states are discussed in detail in the following sections.

5.2.1 System Ini t ia l izat ion

When the device is reset or wakes up from the Hibernate mode, the firmware performs initialization, which includes
starting the SAR ADC, enabling global interrupts, starting the opamps, and starting the watchdog timer. After the system
is initialized, it initializes the BLE Component, which handles the initialization of the complete BLE subsystem.

Note: As part of the BLE Component initialization, the user code must pass a pointer to the event-handler function that
should be called to receive events from the BLE stack. The Generic Event Handler shown in Figure 23 is registered as
a part of the BLE initialization. Code 1 shows the code to start the BLE Component and register the Generic Event
Handler.

Code 1. BLE Initialization

apiResult = CyBle_Start(GenericEventHandler);

If the BLE Component initializes successfully, the firmware registers the function that is called to receive the events for
the Health Thermometer Service and switches to the normal operation mode. Code 2 shows the snippet for registering
the Health Thermometer Service.

Code 2. Health Thermometer Service Event Handler

CyBle_HtsRegisterAttrCallback(HealthThermometetEventHandler);

5.2.2 Event Handler

In the BLE Component, results of any operation performed on the BLE stack are relayed to the application firmware via
a list of events. These events provide the BLE interface status and data. Events can be categorized as follows:

▪ Common events

Operations performed at the GAP layer, the GATT layer, and the stack’s L2CAP layer generate these events. For
example, a CYBLE_EVT_STACK_ON event is received when the BLE stack is initialized and turned ON, a
CYBLE_EVT_GAP_DEVICE_CONNECTED event is received when a connection with a remote device is
established, and a CYBLE_EVT_GATTS_WRITE_CMD_REQ event is generated when a Write Command is
received from the client. For more details on common events, refer to the API documentation of the BLE
Component (right-click the BLE Component in PSoC Creator and select Open API Documentation).

The application firmware must include an event handler function to successfully establish and maintain the BLE
link. Code 3 shows the implementation of the GenericEventHandler function, where events generated on the

initialization of the BLE stack, device connection, disconnection, and timeout are handled.

▪ Service-specific events

Service-specific events are generated because of operations performed on the standard services defined by the
Bluetooth SIG. For example, a CYBLE_EVT_HTSS_INDICATION_ENABLED event is received by the server when
the client writes the client configuration characteristic descriptor to enable the indication for the Temperature
Measurement Characteristic. For more details on service-specific events, refer to the API documentation of the
BLE Component.

The BLE Component can route these events to a service-specific event handler. The application firmware should
include a service-specific event handler function to handle these events. If a service-specific event handler is not
supported, then these events must be handled by the common event handler (GenericEventHandler). Code 4

shows the implementation of the service-specific event handler called HtssEventHandler.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 21

Code 3. Generic Event Handler

void GenericEventHandler(uint32 event, void *eventParam)

{

 switch(event)

 {

 /* This event is received when component is Started */

 case CYBLE_EVT_STACK_ON:

 {

 /* Stop watchdog to reduce power consumption during advertising */

 WatchdogTimer_Stop();

 /* Start Advertisement and enter Discoverable mode*/

 CyBle_GappStartAdvertisement(CYBLE_ADVERTISING_FAST);

 break;

 }

 /* This event is received when device is disconnected or advertising times out*/

 case CYBLE_EVT_GAP_DEVICE_DISCONNECTED:

 case CYBLE_EVT_TIMEOUT:

 {

 /* Sets the ENABLE_HIBERNATE flag to put system in Hibernate mode */

 SystemFlag |= ENABLE_HIBERNATE;

 break;

 }

 /* This event is received when connection is established */

 case CYBLE_EVT_GATT_CONNECT_IND:

 {

 /* Start watchdog timer with 1s refresh interval */

 /* Note: For this application, wakeup should be 1s because htssInterval

 * resolution is configured as 1s */

 WatchdogTimer_Start(REFRESH_INTERVAL);

 /* Retrieve BLE connection handle */

 connectionHandle = *(CYBLE_CONN_HANDLE_T *) eventParam;

 break;

 }

 default:

 {

 /* Error handling */

 break;

 }

 }

}

Code 4. Health Thermometer Service Event Handler

void HtssEventHandler(uint32 event, void* eventParam)

{

 CYBLE_HTS_CHAR_VALUE_T *interval;

 switch(event)

 {

 /* This event is received when indication are enabled by the central */

 case CYBLE_EVT_HTSS_INDICATION_ENABLED:

 {

 /* Set the htssIndication flag */

 htssIndication = true;

 break;

 }

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 22

 /* This event is received when indication are disabled by the central */

 case CYBLE_EVT_HTSS_INDICATION_DISABLED:

 {

 /* Reset the htssIndiciation flag */

 htssIndication = false;

 break;

 }

 /* This event is received when measurement interval is updated by

 * the central */

 case CYBLE_EVT_HTSS_CHAR_WRITE:

 {

 /* Retrive interval value */

 interval = ((CYBLE_HTS_CHAR_VALUE_T *)eventParam);

 htssInterval = interval->value->val[1];

 /* Update htssInterval with the updated value */

 htssInterval = (htssInterval << 8) | interval->value->val[0];

 break;

 }

 default:

 {

 /* Error handling */

 break;

 }

 }

}

5.2.3 System Normal Operat ion

In the system normal operation state, the firmware periodically calls CyBle_ProcessEvents() to process BLE stack-

related operations and checks if the connection is established.

Note: Any BLE stack-related operation such as receiving or sending data from or to the link layer and event generation
to the application layer are performed as a part of the CyBle_ProcessEvents() function call. In this application,

Code 1 initializes the stack, but the events related to the stack are generated only when the CyBle_ProcessEvents()

function is called. Similarly, other events related to device connection, disconnection, advertising timeout, and the
Health Thermometer Service are generated only when CyBle_ProcessEvents()is called.

If the connection is established, the firmware measures the temperature at regular intervals (configured by the
Measurement Interval Characteristic of the Health Thermometer Service). After measuring the temperature, if
Indications are enabled by the Central device, the firmware sends the temperature data to the BLE Central device as
indications.

In a BLE application, the device transmits or receives data only at periodic intervals, also known as advertising intervals
or connection intervals, depending on the BLE connection state. Thus, when the system normal operation task is
complete, to conserve power, the device enters the system low-power operation mode and wakes up at the next
connection/advertisement interval.

5.2.4 System Low-Power Operat ion

In the system low-power operation state, the device operates in one of the three possible power modes:

▪ Sleep

This mode is entered when the CPU is free but the BLE subsystem (BLESS) is active and busy in data transmission
or reception. In this scenario, the CPU is put into the Sleep mode while the remaining core, such as clocks and
regulator, is kept active for normal BLE operation. To conserve power, the internal main oscillator (IMO) frequency
is reduced to 3 MHz; on wakeup, it is switched back to 12 MHz.

▪ Deep Sleep

The firmware continuously tries to put the BLESS into the Deep Sleep mode. After the BLESS is successfully put
into the Deep Sleep mode, the remaining system also transitions to the Deep Sleep mode.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 23

Note: Transitioning the device into the Deep Sleep mode should happen immediately after the BLESS is put into
the Deep Sleep mode. If this cannot be guaranteed, the firmware should disable interrupts (to avoid servicing an
ISR) and recheck if the BLESS is still in the Deep Sleep mode or the ECO_ON mode. If the BLESS is in either of
these two modes, then the device can safely enter the Deep Sleep mode; if not, the device must wait until the
Rx/Tx event is complete.

▪ Hibernate

When the device is disconnected or the advertising interval times out, it enters the ultra-low-power mode called
“Hibernate”. After waking up from this mode, the firmware starts to execute from the beginning of main.c, although
the RAM contents are retained.

5.2.5 Sensor Simulat ion

If you do not have a thermistor and a reference resistor to measure the temperature, you may use the temperature
simulation mode to test the application. In this mode, the temperature data is simulated and incremented by 1 0C per
measurement interval (default value is 1 second). This can be done in the application code by changing the value of
the constant MEASURE_TEMPERATURE_SENSOR from 1 to 0 in the Temperature.h file, as shown in Code 5.

Code 5. Simulate Temperature Sensor

#define MEASURE_TEMPERATURE_SENSOR (0u)

5.3 Hardware Configuration

CY8CKIT-042-BLE Bluetooth Low Energy (BLE) Pioneer Kit is the development kit for Cypress PSoC 4 BLE devices.
Designed for flexibility, this kit offers footprint-compatibility with many third-party Arduino™ shields. The kit includes a
provision to populate an extra header to support Digilent® Pmod™ peripheral modules. In addition, the board features
a CapSense® slider, an onboard 1-Mb F-RAM, an RGB LED, a push-button switch, an integrated USB programmer, a
program debug header, and USB-UART/I2C bridges.

1. Place the CY8CKIT-142 PSoC 4 BLE Module (red module) on the BLE Pioneer Baseboard.

This kit does not have a thermistor, so to test the Health Thermometer application, you can use the BLE Pioneer
Kit along with one of the following options:

▪ External Thermistor – Connect an external 10-kΩ thermistor and a reference resistor to the BLE Pioneer Kit
as shown in Figure 24.

Figure 24. External Thermistor Connection

▪ Simulated Sensor – Instead of using a hardware sensor, the firmware simulates the temperature data and
increments the temperature by 1 ºC per measurement interval (default value is 1 second). Refer to the Sensor
Simulation section for details.

R
_R

ef

R
_T

h
er

m

P
3

.0

P
3

.1
P

3
.2

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-042-BLE

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 24

5.4 Build and Program the Device

1. Select Build > Build AN91184 to build and compile the firmware, as shown in Figure 25. The project should build
without warnings or errors.

Figure 25. Build Project

2. Plug the PSoC 4 BLE module (red module) to the BLE Pioneer baseboard, and then connect the kit to your PC
using the USB Standard-A to Mini-B cable (see Figure 26). Allow the USB enumeration to complete on the PC.

Figure 26. Connect BLE Pioneer Baseboard to PCB Using a USB Cable

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 25

3. Select Debug > Program, as shown in Figure 27. If there is only one kit connected to the PC, the programming
will start automatically. If multiple kits are present, PSoC Creator will prompt you to choose the kit to be
programmed.

Figure 27. Programming the Device

You can view the programming status on the PSoC Creator status bar (lower-left corner of the window), as shown in
Figure 28.

Figure 28. Programming Status

6 Application Testing

The Health Thermometer application can be tested using the CySmart Central Emulation Tool or the CySmart mobile
app.

6.1 CySmart Central Emulation Tool

You can use the CySmart Central Emulation Tool along with the CY5670 or CY5677 CySmart USB Dongle (BLE
Dongle) to test and verify the operation of a BLE Peripheral device.

Download the latest CySmart Central Emulation Tool from www.cypress.com/cysmart.

To verify the Health Thermometer application using the CySmart Central Emulation Tool, do the following:

1. Connect the BLE Dongle to the PC and start the CySmart Central Emulation Tool from Start > All Programs >
CySmart 1.3 > CySmart 1.3.

The CySmart Central Emulation Tool detects the BLE Dongle connected to the USB drive.

http://www.cypress.com/
http://www.cypress.com/cysmart

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 26

2. Click Connect to connect to the BLE Dongle, as shown in Figure 29.

Figure 29. Select BLE Dongle Target

3. When the PC is connected with the BLE Dongle, click Start Scan to find the BLE devices, as shown in Figure 30.

Figure 30. Start Scan

The discovered BLE devices are listed in the CySmart Central Emulation Tool window, as shown in Figure 31.

Figure 31. Discovered Devices

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 27

4. Select the device “MyThermometer” by clicking on the name, and then click Connect, as shown in Figure 31.

When the BLE Dongle is connected to the BLE device, a new tab with the device name and the BD_ADDR is
added, as shown in Figure 32.

Figure 32. Connect to MyThermometer

5. To discover all the attributes exposed by the Peripheral “MyThermomemeter,” click Discover All Attributes, as
shown in Figure 32.

All discovered attributes are grouped and displayed as shown in Figure 33.

Figure 33. Discovered Attributes

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 28

6. To read the measured temperature, select the Client Characteristic Configuration descriptor of the Temperature
Measurement characteristic, as shown in Figure 34 and Figure 35.

Figure 34. Enable Indications – Step A

7. Write a value of 02 in the Client Characteristic Configuration descriptor to enable indications (measured
temperature data will be reported by indications), as shown in Figure 35.

Note: Refer to Client Characteristic Configuration Descriptor for more details about bit definitions.

Figure 35. Enable Indications – Step B

The “Temperature Measurement” attribute is updated with the measured temperature value, as shown in
Figure 36.

Figure 36. Measured Temperature

The value read back is a 5-byte hex value, where first byte is the Flags configured in the BLE Component and the next
3-byte value is the temperature value represented in the Little Endian format for IEEE-11073 float values. The last byte
represents the decimal points – in this case 0xFF represents one decimal point. Thus, the measured temperature value
is 24.0 ºC (0xF0 is 240, and one decimal point gives 24.0).

To learn more about the CySmart Central Emulation Tool, refer to CySmart User Guide.

http://www.cypress.com/
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
http://www.cypress.com/?rID=102635

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 29

6.2 CySmart Mobile App

Cypress provides a mobile app to validate BLE applications. This app supports various standard and custom profiles.
It also provides a user interface to be able to view the GATT database.

You can download the CySmart app from the Apple App Store for iOS devices and through the Google Play Store for
Android devices. The source code for these apps is also available at Cypress website.

▪ Apple App Store: Click here.

▪ Google Play Store: Click here.

To verify the Health Thermometer application using the CySmart mobile app, follow the steps below:

8. Open the CySmart app on your device, as shown in Figure 37.

Note: The screenshots are for the CySmart Android app. The look and feel of the CySmart iOS app may differ
slightly.

Figure 37. BLE Configuration

9. If Bluetooth is enabled, the mobile device scans for BLE devices and lists them on the screen; otherwise, it prompts
the user to enable Bluetooth and then searches for the BLE devices. Figure 38 shows the BLE devices in vicinity.

Figure 38. Device List

10. Connect to the device “MyThermometer” by clicking on the device name, as shown in Figure 38.

http://www.cypress.com/
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=928939093&mt=8
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 30

11. Once the connection is established, the app will automatically discover all the attributes and display the discovered
services in the carousel format, as shown in Figure 39.

Figure 39. Home Page

12. Select the Health Thermometer Service. It reports the current temperature and the Sensor Location, as shown in
Figure 40.

Figure 40. Health Thermometer Service

13. To go back to the home screen of the CySmart app, click on the back button of the screen.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 31

14. Select the “Device Information” Service. It shows the device information configured as a part of the project, as
shown in Figure 41.

Figure 41. Device Information Service

6.3 Summary

In this application note, we looked at how to use the PSoC Creator BLE Component to design a BLE Health
Thermometer application using the standard BLE profile. We then verified this application using the CySmart Central
Emulation Tool and CySmart mobile app provided by Cypress.

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 32

7 Related Documents

Application Notes

AN91267 – Getting Started with PSoC 4 BLE
This application note helps you explore the PSoC 4 BLE architecture and
development tools and shows how easily you can create a BLE design using
PSoC Creator™, the development tool for PSoC 4 BLE.

AN91162 – Creating a BLE Custom Profile
Describes the methodology for developing a Bluetooth® Low Energy (BLE)
application with PSoC 4 BLE or PRoC BLE devices using a custom BLE profile.

AN92584 – Designing for Low Power and Estimating
Battery Life for BLE Applications

Describes low-power applications design with PSoC 4 BLE devices. It also guides
you on how to compute the current consumption and battery life for a BLE
application and provides tips and tricks to minimize the current consumption to
increase battery life.

AN66477 – PSoC® 3, PSoC 4, and PSoC 5LP -
Temperature Measurement with a Thermistor

Describes how to measure temperature with a thermistor using PSoC® 3, PSoC
4, or PSoC 5LP. This application note describes the PSoC Creator™ Thermistor
Calculator Component, which simplifies the math-intensive resistance-to-
temperature conversion.

AN210781 – Getting Started with PSoC 6 MCU with
Bluetooth Low Energy (BLE) Connectivity

Describes PSoC 6 MCU with BLE Connectivity devices and how to build your first
PSoC Creator project

AN215656 – PSoC 6 MCU: Dual-CPU System
Design

Describes the dual-CPU architecture in PSoC 6 MCU, and shows how to build a
simple dual-CPU design

AN219434 – Importing PSoC Creator Code into an
IDE for a PSoC 6 MCU Project

Describes how to import the code generated by PSoC Creator into your preferred
IDE

PSoC Creator Component Datasheets

Pins Supports connection of hardware resources to physical pins

Timer Counter (TCPWM) Supports fixed-function Timer/Counter implementation

Clock Supports local clock generation

Interrupt Supports generating interrupts from hardware signals

Device Documentation

PSoC® 4: PSoC 4200_BLE Family Datasheet Programmable System-on-Chip (PSoC®)

PSoC 6 MCU: PSoC 63 with BLE Datasheet

PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

PSoC 6 MCU: PSoC 62 Datasheet

PSoC 6 MCU: PSoC 62 Architecture Technical Reference Manual

Development Kit Documentation

CY8CKIT-042-BLE Bluetooth Low Energy Pioneer Kit Guide

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

CY8CKIT-062-WiFi-BT PSoC 6 WiFi-BT Pioneer Kit

CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit

CY8CPROTO-063 BLE PSoC 6 BLE Prototyping Kit

Tool Documentation

PSoC Creator Look in the downloads tab for Quick Start and User Guides

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble
http://www.cypress.com/documentation/application-notes/an91162-creating-ble-custom-profile
http://www.cypress.com/documentation/application-notes/an92584-designing-low-power-and-estimating-battery-life-ble
http://www.cypress.com/documentation/application-notes/an66477-psoc-3-psoc-4-and-psoc-5lp-temperature-measurement
http://www.cypress.com/AN210781
http://www.cypress.com/an215656
http://www.cypress.com/an219434
http://www.cypress.com/go/comp_GPIO_PDL
http://www.cypress.com/go/comp_TCPWM_Counter_PDL
http://www.cypress.com/go/comp_SysClk_PDL
http://www.cypress.com/go/comp_SysInt_PDL
http://www.cypress.com/file/416486/download
http://www.cypress.com/ds218787
http://www.cypress.com/trm218176
http://www.cypress.com/documentation/datasheets/psoc-6-mcu-psoc-62-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/technical-reference-manuals/psoc-6-mcu-psoc-62-architecture-technical-reference-manual
http://www.cypress.com/file/229211/download
http://www.cypress.com/CY8CKIT-062-BLE
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/CY8CPROTO-063-BLE

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 33

Appendix A. Code examples

PSoC Creator’s “Find Code Example” browser can be used to find and download code examples related to BLE.

The following table provide summary of the BLE code example that can be found using above.

Code Example Purpose GAP role

BLE Find Me

This example project demonstrates the Find Me Profile operation of the BLE
Component. The Find Me Target utilizes the Find Me Profile with one instance
of Immediate Alert Service to display the alerts if the Client has configured the
device for alerting.

Peripheral

BLE Device Information Service

This code example demonstrates how to configure and use BLE Component
APIs and an application layer callback. The Device Information Service is used
as an example to demonstrate how to configure the BLE service characteristics
in the BLE Component.

Peripheral

BLE 4.2 Data Length Security Privacy
This example project demonstrates the BLE 4.2 data length extension,
Authenticated LE Secure Connections (SC) pairing with encryption, and link
layer Privacy (LL Privacy).

Peripheral

BLE Alert Notification Profile

This example project demonstrates the Alert Notification Client operation of the
BLE Component. The Alert Notification Client utilizes the BLE Alert Notification
Profile with one instance of Alert Notification Service to receive information
about “Email”, “Missed call” and “SMS/MMS” alerts from Alert Notification
Server.

Peripheral

BLE Apple Notification Client

This example project demonstrates the BLE Apple Notification Client application
workflow. The application uses the BLE Apple Notification Center Service in
GATT Client mode to communicate with a BLE Apple Notification Center Server
(iPhone, iPod, etc.).

Peripheral

BLE Battery Level
This project demonstrates measurements of the battery voltage using PSoC 4
BLE’s internal ADC and notifies the BLE central device of any change in the
battery voltage using BLE Battery Alert Service.

Peripheral

BLE Blood Pressure Sensor
This example project demonstrates the BLE Blood Pressure Sensor application
workflow. The Blood Pressure Sensor application utilizes the BLE Blood
Pressure profile to report blood pressure measurement records to the Client.

Peripheral

BLE Continuous Glucose Monitoring
Sensor

This example project demonstrates the BLE Continuous Glucose Monitoring
Sensor application workflow. The application uses the BLE Continuous Glucose
Monitoring Profile to report CGM Measurement records to the Client by the
Continuous Glucose Monitoring Service and to manage bonding by the Bond
Management Service.

Peripheral

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 34

Code Example Purpose GAP role

BLE Cycling Sensor

This example demonstrates the Cycling Speed and Cadence Service (CSCS)
and Cycling Power Service (CPS). Cycling Speed and Cadence simulates a
cycling activity and reports the simulated cycling speed and cadence data to a
BLE central device using CSCS. Cycling Power simulates cycling power data
and reports the simulated data to a BLE central device using CPS.

Peripheral

BLE Environmental Sensing Profile

This example project demonstrates the Environmental Sensing Profile operation
of the BLE Component. The Environmental Sensor utilizes the Environmental
Sensing Profile with one instance of Environmental Sensing and Device
Information Services to simulate wind speed measuring.

Peripheral

BLE Glucose Meter

This example project demonstrates the BLE Glucose Meter application
workflow. The Glucose Meter application uses the BLE Glucose Profile to report
glucose measurement records to the client. Also, the Glucose Meter application
uses the Battery Service to notify the battery level and the Device Information
Service.

Peripheral

BLE Heart Rate Collector
This example project demonstrates the BLE Heart Rate Collector workflow. The
project receives Heart Rate data from any BLE enabled Heart Rate Sensor and
indicates that data on any terminal software via UART.

Central

BLE Heart Rate Sensor
This example project demonstrates the BLE Heart Rate Sensor workflow. The
project simulates Heart Rate data and performs communication with BLE
enabled central/client device.

Peripheral

BLE HID Keyboard
This project demonstrates keyboard pressing in the boot and protocol mode.
The example also demonstrates handling a suspend event from the central
device and entering the low power mode when suspended.

Peripheral

BLE HID Mouse

This project demonstrates the mouse movement and button click HID reports in
the boot and protocol mode. The example also demonstrates handling the
suspend event from the central device and enters the low power mode when
suspended.

Peripheral

BLE IPSP Router and Node

This example project demonstrates the Internet Protocol Support Profile
operation of the BLE Component. This example demonstrates how to setup an
IPv6 communication infrastructure between two devices over a BLE transport
using L2CAP channel. The example consists of two projects: IPSP Router (GAP
Central) and IPSP Node (GAP Peripheral). Router sends generated packets
with different content to Node in the loop and validates them with the afterwards
received data packet. Node simply wraps received data coming from Router,
back to the Router.

Central and
Peripheral

BLE Navigation
This example project demonstrates the Location and Navigation Pod application
workflow. The application uses a BLE Location and Navigation Profile to report
location and navigation information to the client.

Peripheral

BLE OTA External Memory
Bootloadable and Bootloader

This example project demonstrates an OTA firmware update using the BLE
Bootloader Service. By default, this is a regular bootloadable project that
contains the BLE component with the Device Information Service. Once the
bootloader mode is enabled, this example project is ready for receiving a new
image of the bootloadable project and storing it to the external memory.

Peripheral

BLE OTA Fixed Stack Bootloader and
Bootloadable

This example project shows how to use the custom linker scripts to share a
block of memory between the bootloader and bootloadable projects. It
demonstrates how the bootloader can place the API functions so that the
bootloadable can also call them. The purpose of the Bootloader project is to
replace a bootloadable image on the device with an image sent OTA by the
Bluetooth protocol.

Peripheral

BLE OTA Upgradable Stack HID
Keyboard

This example project shows how to implement an upgradable Application
project (HID keyboard) and upgradable Stack project with the BLE Stack. In
addition, the Application project uses the BLE Stack from the Stack project.

Peripheral

BLE Upgradable Stack Example
Launcher

This example project shows how to implement an upgradable Application
project (HID keyboard) and upgradable Stack project with the BLE Stack. In
addition, the Application project uses the BLE Stack from the Stack project.

Peripheral

BLE Upgradable Stack Example Stack
This example project shows how to implement an upgradable Application
project (HID keyboard) and upgradable Stack project with the BLE Stack. In
addition, the Application project uses the BLE Stack from the Stack project.

Peripheral

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 35

Code Example Purpose GAP role

BLE Phone Alert
This example project demonstrates the BLE Phone Alert Handler application
workflow. The Phone Alert Handler application uses the BLE Phone Alert Status
Profile to monitor and control Alert State and Ringer Setting of the Server.

Peripheral

BLE Proximity

This example project demonstrates the Proximity operation of the BLE
Component. The Proximity Reporter utilizes the BLE Proximity Profile with one
instance of Link Loss Service and one instance of Tx Power Service to display
alerts on the device if connection with Client has been lost.

Peripheral

BLE Running Speed Cadence

This example project demonstrates the Running Speed and Cadence Sensor
operation of the BLE Component. The device simulates running/walking data
measurements and sends it over the BLE Running Speed and Cadence
Service.

Peripheral

BLE Temperature Measurement

This example project demonstrates the Health Thermometer Profile operation of
the BLE Component. The device simulates thermometer readings and sends it
over the BLE Health Thermometer Service. It also measures a battery level
value and sends it over the BLE Battery Service.

Peripheral

BLE Time Sync

This example project demonstrates the Time profile operation of the BLE
Component. The Time Sync example utilizes the BLE Time Profile (configured
for GAP peripheral role as Time Client) with one instance of Current Time
Service to demonstrate capability of time synchronization from the external
Time Server.

Peripheral

BLE Weight Scale

This example project demonstrates the Weight Scale Profile operation of the
BLE Component. The Weight Scale Sensor utilizes one instance of Weight
Scale, Body Composition, User Data and Device Information Services to
simulate weight measurements for up to four registered users.

Peripheral

BLE Wireless Power Transmitter and
Receiver

This example project demonstrates the Wireless Power Transfer Profile
operation of the BLE Component. This example demonstrates communication
between Power Receiver Unit (PRU) and Power Transmitter Unit (PTU) in the
Wireless Power Transfer systems. PTU central device supports time
multiplexing connection with up to 8 PRU peripheral devices. PRU simulates
power receiver data and reports the simulated data to a PTU using the Wireless
Power Transfer Service (WPTS). The example consists of two projects:
Wireless Power Transmitter (GATT Client) and Wireless Power Receiver (GATT
Server).

Central and
Peripheral

CE11181 - BLE HTTP Proxy Code
Examples with PSoC 4 BLE

HTTP Proxy Server and HTTP Proxy Client projects are used in a pair to
demonstrate the BLE HTTP Proxy Service (HPS) operation. HTTP Proxy Server
utilizes one instance of HTTP Proxy Service to simulate HTTP Server on the
BLE device. HTTP Proxy Server can also operate with other devices that
implement the HTTP Proxy Client Role.

Central and
Peripheral

CE211245 - Bluetooth Low Energy
(BLE) Indoor Positioning

This example project demonstrates how to create an indoor navigation system
using the BLE broadcasting mode that can be configured over GATT
connection. This project configures the BLE Pioneer Kit as a time-multiplexed
broadcaster and a connectable Indoor Positioning Service (IPS) server.

Peripheral

CE217613 - Bluetooth Low Energy
(BLE) Automation IO

BLE example project that demonstrates how use BLE Component’s Automation
IO profile feature and related APIs. This project configures the BLE Pioneer Kit
as an Automation Input Output server (AOIS) with two instances of Digital
characteristic, two instances of Analog characteristic and Aggregate
characteristic.

Peripheral

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 36

Document History

Document Title: AN91184 – PSoC® 4 BLE – Designing BLE Applications

Document Number: 001-91184

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4635526 PMAD 03/25/2015 New Application Note.

*A 4767014 UDYG 05/15/2015 Updated to PSoC Creator 3.2 and BLE Component v2.0.

*B 4784134 UDYG 06/02/2015 Updated images for CySmart PC Tool and CySmart mobile app.

Updated template

*C 4911541 UDYG 09/10/2015 Fixed broken links

*D 5137953 UDYG 02/15/2016 Updated to PSoC Creator 3.3 SP1 and BLE Component v2.30.

*E 5834974 AESATMP8 07/27/2017 Updated logo and Copyright.

*F 6164690 AJYA 12/12/2018 Updated to PSoC Creator 4.2

Added list of code examples

Updated template

http://www.cypress.com/

 PSoC® 4 BLE – Designing BLE Applications

www.cypress.com Document Number: 001-91184 Rev. *F 37

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 PSoC Resources
	3 PSoC Creator
	4 Standard Services Versus Custom Services
	4.1 BLE Health Thermometer

	5 PSoC Creator Project: Health Thermometer
	5.1 Configure the Component
	5.2 Configure the Firmware
	5.2.1 System Initialization
	5.2.2 Event Handler
	5.2.3 System Normal Operation
	5.2.4 System Low-Power Operation
	5.2.5 Sensor Simulation

	5.3 Hardware Configuration
	5.4 Build and Program the Device

	6 Application Testing
	6.1 CySmart Central Emulation Tool
	6.2 CySmart Mobile App
	6.3 Summary

	7 Related Documents
	Appendix A. Code examples
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

