

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 001-90799 Rev. *G

www.infineon.com 2024-03-06

AN90799

PSoC™ 4 interrupts

About this document

Scope and purpose

This application note explains the interrupt architecture in PSoC™ 4 and its configuration in ModusToolbox™
software environment and PSoC™ Creator. This document serves as a guide in developing interrupt-based

projects. Advanced interrupt concepts such as latency, vector selection, interrupt code optimization, and
debug techniques are also explained.

Intended audience

This document is intended for anyone using interrupts with the PSoC™ 4 family.

http://www.infineon.com/

Application note 2 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Introduction

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 4

2 PSoC™ 4 interrupt architecture .. 5

2.1 Interrupt sources ... 6

2.2 Level- and edge-triggered interrupts ... 8

3 ModusToolbox™ interrupt support .. 10

3.1 Enabling interrupt sources ... 11

3.2 Enabling interrupt sources using PDL .. 12

3.3 Configuring interrupts using PDL ... 12

3.3.1 Interrupt API functions ... 12

3.3.2 Critical section control functions .. 13

3.3.3 Setting up an interrupt .. 13

4 PSoC™ Creator interrupt support .. 15

4.1 Interrupt component configuration ... 15

4.1.1 Sticky bits ... 17

4.2 Interrupt priority configuration .. 18

4.3 Interrupt API functions .. 18

4.3.1 Critical section control functions .. 19

4.4 Writing interrupt service routine (ISR) .. 20

4.5 Using auto-generated ISR ... 21

4.5.1 Using extern keyword .. 22

4.6 Using the callback function .. 23

4.7 Creating a custom ISR ... 24

4.7.1 Significance of the keyword CY_ISR .. 25

5 ModusToolbox™ related code examples ... 26

6 PSoC™ Creator related code examples ... 28

7 Debugging tips .. 29

8 Advanced interrupt topics .. 30

8.1 Exceptions ... 30

8.1.1 ModusToolbox™ exceptions .. 30

8.1.2 PSoC™ Creator exceptions ... 30

8.2 Interrupt latency.. 31

8.3 Optimizing the interrupt code .. 32

8.4 PSoC™ Creator components internal interrupts .. 32

8.5 PSoC™ Creator forcing interrupt vector num ... 32

8.6 ModusToolbox™ SysTick timer ... 34

8.7 PSoC™ Creator SysTick timer .. 35

8.8 Nested interrupts .. 36

8.9 PSoC™ Creator GlobalSignal component ... 36

8.9.1 Combined port interrupt ... 36

8.10 Use of volatile for global variables ... 38

9 Summary ... 39

Appendix A - Interrupt sources and vector numbers .. 40

References .. 44

Application note 3 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Introduction

Revision history... 45

Disclaimer... 46

Application note 4 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Introduction

1 Introduction

Interrupts are an important part of any embedded application. An interrupt frees the CPU from having to
continuously poll for the occurrence of an event; it notifies the CPU only when that event occurs. In system-on-

chip (SoC) architectures such as PSoC™, interrupts are frequently used to communicate the status of on-chip
peripherals to the CPU.

PSoC™ 4 devices are supported in both the ModusToolbox™ software environment and PSoC™ Creator; this
document covers both IDEs. ModusToolbox™ supports only a limited number of devices. To check whether a
device is supported, start ModusToolbox™, choose New Application > PSoC™ 4 BSPs, and under PSoC™ 4 BSPs
is a list of supported PSoC™ 4 devices.

The document begins with an explanation of PSoC™ 4 interrupt architecture. If you want to learn about the

interrupt support in ModusToolbox™, skip to ModusToolbox™ interrupt support. For the PSoC™ Creator IDE,
skip to the PSoC™ Creator interrupt support. For sample code examples, see ModusToolbox™ related code
examples and PSoC™ Creator related code examples. If you are debugging an interrupt project, go to
Debugging tips, which provides guidance on finding and resolving interrupt issues.

This application note assumes that you are familiar with PSoC™, and the ModusToolbox™ or PSoC™ Creator
IDE. If you are new to PSoC™, you can find an introduction in the application note AN79953 - Getting started

with PSoC™ 4 MCU or visit the ModusToolbox™ software or PSoC™ Creator home page.

https://www.infineon.com/AN79953
https://www.infineon.com/AN79953
https://www.infineon.com/modustoolbox
https://www.infineon.com/psoccreator

Application note 5 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ 4 interrupt architecture

2 PSoC™ 4 interrupt architecture

Figure 1 shows a simplified block diagram of the interrupt architecture in PSoC™ 4.

Interrupt

sources {
Nested Vectored

Interrupt Controller

(NVIC)

Cortex – M0

Processor Core

IRQ[0]

IRQ[1]

IRQ[2]

-

IRQ[31]

Arm® Cortex® M0/M0+

Wakeup Interrupt

Controller (WIC)

To Power management system

-

-

-

Figure 1 PSoC™ 4 interrupt architecture

There are up to 32 interrupt lines – IRQ[0] to IRQ[31] – each with four priority levels, 0 to 3. Each interrupt line is
assigned an interrupt vector address. The CPU branches to this address after receiving an interrupt request,

where a special function called an interrupt service routine (ISR) is executed.

Interrupt signals are received by the nested vectored interrupt controller (NVIC). When an interrupt signal
becomes active, the NVIC sends the interrupt vector address to the processor core along with the interrupt
request signal. In return, the processor core sends an acknowledgment when the ISR is entered and exited. The

NVIC is responsible for enabling/disabling an interrupt based on the user configuration. It also resolves
interrupt priority when multiple requests occur at the same time, and supports nested interrupts to allow a

higher-priority interrupt to be serviced leaving a low-priority ISR.

The wakeup interrupt controller (WIC) block allows the device to wake up from low-power modes – Sleep, Deep

Sleep, and Hibernate – using interrupts. The WIC block remains active while the NVIC, processor core, and other
device peripherals are shut down. When an interrupt triggers, the WIC activates the power management

system, which restores the NVIC and the processor core along with other peripherals. The NVIC then takes over
and the processor core executes the ISR. There are several sources in the PSoC™ 4 device that can wake up the
device. For example, Figure 1 shows IRQ[0] and IRQ[1] routed to the WIC along with the NVIC. These are the
interrupt lines from GPIOs.

Note: Only sources that can wakeup the device from Sleep, Deep Sleep, or Hibernate are routed to the
WIC while all interrupt sources are routed to the NVIC.

PSoC™ 4 provides the following interrupt features:

• Configurable interrupt vector address: CPU execution can be directly branched to any ISR code when the

interrupt occurs.

• Flexible interrupt sources: In traditional microcontrollers, the interrupt source is hard-wired to each

interrupt line. PSoC™ gives you the flexibility to choose the interrupt source for each interrupt line. This
flexible architecture enables any digital signal to be configured as an interrupt source.

Application note 6 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ 4 interrupt architecture

2.1 Interrupt sources

PSoC™ 4 interrupt sources are of two types:

1. Fixed-function interrupt sources: These are a predefined set of interrupt sources from on-chip peripherals.

2. Universal digital block (UDB) interrupt sources (available in PSoC™ 4200, 4200 Bluetooth® low-energy (LE),

4200DS, 4200M, and 4200L product lines): UDBs are building blocks for different digital functions such as
timer, PWM, UART, SPI, and many more. A UDB consists of programmable logic (PLDs), datapath, and
flexible routing. In contrast to fixed-function interrupt sources, any digital signal generated in a UDB can

trigger an interrupt. The signals are routed to the interrupt controller through a routing fabric called the

digital system interconnect (DSI). See the PSoC™ 4 reference manual for more information.

Note: ModusToolbox™ does not currently support UDBs.

Table 1 shows the interrupt sources. Interrupt sources mentioned in the table are available in all PSoC™ 4 parts

unless noted otherwise. For details on each interrupt source, see the PSoC™ Creator Component datasheets or
peripheral driver library (PDL) listed in Table 1. Appendix A shows the complete list of interrupt sources
depending on the device.

Note: PSoC™ 4 PDL is currently in Alpha and not all peripherals are supported.

Table 1 PSoC™ 4 interrupt sources

ModusToolbox™

PDL

PSoC™
Creator

component

datasheets

Details

GPIOs GPIOs Each port consists of eight pins. Each pin can generate an interrupt, but

the vector address is common for all pins in a port. Firmware must

identify the pin that caused the interrupt.

PSoC™ 4 enables an interrupt trigger on the rising edge, falling edge, or

both edges of the GPIO signal. This interrupt can wake the device from

Sleep, Deep Sleep, and Hibernate modes.

Low Power

Comparator

(LPCOMP)

Low Power

Comparator

(LPCOMP)

Like GPIOs, an interrupt can be triggered on the rising edge, falling edge,

or both edges of the comparator output signal. The LPCOMP can also
wake the device from Sleep, Deep Sleep, and Hibernate modes. LPCOMP

is not available in PSoC™ 4000.

WDT WDT The watchdog timer (WDT) is a timer that can reset the device or
generate an interrupt. PSoC™ 4000, 4000S, 4100S, 4100S Plus, and

4100PS devices have a 16-bit free-running WDT, whereas other PSoC™ 4
parts have two 16-bit WDTs and one 32-bit WDT. The WDT can wake the

device from Sleep and Deep Sleep modes.

SCB SCB PSoC™ 4 has up to five serial communication blocks (SCB), which can be
configured as I2C, SPI, or UART. The exact number of SCB blocks depends

on the device family.

I2C The following events generate an interrupt: arbitration lost,
slave address match, start/stop detect, bus error, byte/word
transfer complete, TX FIFO not full, TX/RX FIFO empty, RX FIFO
not empty, RX FIFO overrun, and RX FIFO full. The slave address

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__gpio.html
https://www.infineon.com/dgdl/Infineon-General_Purpose_I_O_Pin_(PDL_GPIO)_and_Fast_GPIO_Pin_(PDL_FGPIO)_1.0-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb5ed542c64
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__lpcomp.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__lpcomp.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__lpcomp.html
https://www.infineon.com/dgdl/Infineon-Component_PSoC4_Low_Power_Comparator_V2.20-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea54a282689
https://www.infineon.com/dgdl/Infineon-Component_PSoC4_Low_Power_Comparator_V2.20-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea54a282689
https://www.infineon.com/dgdl/Infineon-Component_PSoC4_Low_Power_Comparator_V2.20-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea54a282689
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__wdt.html
https://www.infineon.com/dgdl/Infineon-Component_Global_Signal_Reference_(GSRef)_V2.1-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e82e4971458
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__scb.html
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_SCB_V4.0-Software%20Module%20Datasheets-v04_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9e08dd238f

Application note 7 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ 4 interrupt architecture

ModusToolbox™

PDL

PSoC™
Creator
component

datasheets

Details

match event can wake the device from Sleep and Deep Sleep

modes.

SPI The following events generate an interrupt: transfer done, idle,
TX FIFO not full, TX/RX FIFO empty, byte/Word transfer
complete, RX FIFO is not empty, attempt to write to a full RX

FIFO, and RX FIFO full.

UART The following events generate an interrupt: transmission done,

UART TX received a NACK in SmartCard mode, UART arbitration
lost in LIN or SmartCard mode, frame error, parity error, LIN
baud rate detection complete, and LIN successful break
detection. It can also wake up the device from low-power

modes1.

SysTick SysTick SysTick is a 24-bit timer built into the Arm® Cortex®-M0/Cortex® M0+
processor. It is generally used by real-time operating systems (RTOS) as a

tick timer. However, it can be used as a general-purpose timer. See the
ModusToolbox™ SysTick timer and PSoC™ Creator SysTick timer section

for more information.

SAR ADC SAR ADC The successive approximation register analog-to-digital converter (SAR
ADC) can generate interrupts on end of conversion, data overflow, scan

collision, data saturation, and data over-range events.

CAPSENSE™

(CSD)

CAPSENSE™

(CSD)

CSD, used for touch applications, generates an interrupt when the sensor

scan is complete.

Timer, Counter,
and Pulse Width
Modulator

(TCPWM)

Timer,
Counter and
Pulse Width

Modulator

(TCPWM)

The TCPWM block can be configured to work as a 16-bit timer, counter,
or PWM. It can generate interrupts on terminal count, input capture

signal, or a “compare true” event.

CAN with

Flexible Data-

Rate (CAN FD)

Controller

Area Network

(CAN)

PSoC™ 4200M and PSoC™ 4200L devices have two CAN blocks. PSoC™

4100S Plus device has one CAN block. The CAN block can generate

interrupts on events such as message received, message sent, and
various error events. See the CAN chapter of the reference manual for

more information.

Direct Memory

Access
Controller

(DMAC)

Direct

Memory

Access (DMA)

PSoC™ 4100M/4200M, PSoC™ 4200L, PSoC™ 4100S Plus, and PSoC™

4100PS devices have DMA to transfer data between peripherals. An

interrupt can be generated when the data transfer is completed.

Not currently
supported in

ModusToolbox™

Universal
Digital Block

(UDB)

UDB implementations such as timer, PWM, counter, UART, and so on can
generate interrupts on different events similar to their fixed-function

1 There are pin limitations; not all ports have dedicated interrupts. If the UART selected pins do not have dedicated port interrupt, it

cannot wake up the device. See the "Interrupts" chapter in device Architecture reference manual to learn about ports that have

dedicated interrupts.

https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__arm__system__timer.html
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_CyBoot_V5.0-Software+Module+Datasheets-v06_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9e1d482396
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__sar.html
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Sequencing_SAR_(ADC_SAR_Seq)_V2.60-Software%20Module%20Datasheets-v02_06-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9c03b122ad
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__csd.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__csd.html
https://www.infineon.com/dgdl/Infineon-Component_CapSense_CSD_P4_V2.60-Software%20Module%20Datasheets-v02_06-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb4889e2be1
https://www.infineon.com/dgdl/Infineon-Component_CapSense_CSD_P4_V2.60-Software%20Module%20Datasheets-v02_06-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb4889e2be1
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__tcpwm.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__tcpwm.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__tcpwm.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__tcpwm.html
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Timer_Counter_and_PWM_V2.10-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea535902682
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Timer_Counter_and_PWM_V2.10-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea535902682
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Timer_Counter_and_PWM_V2.10-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea535902682
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Timer_Counter_and_PWM_V2.10-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea535902682
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_Timer_Counter_and_PWM_V2.10-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea535902682
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__canfd.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__canfd.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__canfd.html
https://www.infineon.com/dgdl/Infineon-Component_Controller_Area_Network_V3.0-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea8bd0b27c1
https://www.infineon.com/dgdl/Infineon-Component_Controller_Area_Network_V3.0-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea8bd0b27c1
https://www.infineon.com/dgdl/Infineon-Component_Controller_Area_Network_V3.0-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea8bd0b27c1
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__dmac.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__dmac.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__dmac.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__dmac.html
https://www.infineon.com/dgdl/Infineon-PSoC_4_Direct_Memory_Access_(DMA)_Channel-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb0fbc12ab1
https://www.infineon.com/dgdl/Infineon-PSoC_4_Direct_Memory_Access_(DMA)_Channel-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb0fbc12ab1
https://www.infineon.com/dgdl/Infineon-PSoC_4_Direct_Memory_Access_(DMA)_Channel-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb0fbc12ab1
https://www.infineon.com/dgdl/Infineon-Universal_Digital_Block_(UDB)_Editor_Guide-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb07eca2a90
https://www.infineon.com/dgdl/Infineon-Universal_Digital_Block_(UDB)_Editor_Guide-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb07eca2a90
https://www.infineon.com/dgdl/Infineon-Universal_Digital_Block_(UDB)_Editor_Guide-Software%20Module%20Datasheets-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eb07eca2a90

Application note 8 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ 4 interrupt architecture

ModusToolbox™

PDL

PSoC™
Creator
component

datasheets

Details

counterparts. UDBs are available in PSoC™ 4200, 4200 BLE, 4200DS,

4200M, and 4200L product lines.

USB Full-Speed

device (USBFS)

Full Speed

USB (USBFS)

PSoC™ 4200L has USB with start-of-frame interrupt and interrupt on

completion of the communication over data endpoints.

In Progress CTB/CTBm Provides continuous time analog functionality. It generates interrupts on

event such as comparator triggers.

In Progress WCO

WDT/WCO

PSoC™ 41000S and PSoC™ 4100S Plus have timers that can be clocked by

WCO. These timers can generate interrupts.

2.2 Level- and edge-triggered interrupts

PSoC™ 4 supports level and edge triggering for interrupts. Figure 2 shows the logic to select the trigger type.

This logic is present for each interrupt line supported by NVIC. Note that the fixed-function interrupt can only
be configured to level, but for the DSI sources, which include the UDB, the interrupt can be rising-edge

triggered as well as level-triggered. The rising-edge detect block generates a pulse at every rising edge of the
DSI interrupt signal. See the timing diagrams (Figure 3 and Figure 4) to know how the NVIC responds to level-
and edge-configured interrupts.

Currently, ModusToolbox™ does not support digital signal interconnect (DSI) or universal digital blocks (UDBs),
this means that the only interrupts supported are fixed-function interrupts. PSoC™ Creator does support both

fixed function interrupts and UDB based interrupts.

DSI Interrupt

Source

Fixed Function Interrupt Source

Rising

Edge

Detect

0

1

IRQn

(n = 0 to 31)
Level

To NVIC

UDB_INT_ CFG

register

0

1

CPUSS_INTR_ SELECT

register

(irq_out[n])

Level

Figure 2 Level trigger and edge trigger

int[x]

CPU

Execution

State
main

ISR ISR
main

ISR
main

int[x] is still high

Figure 3 Level-triggered interrupts

https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__usbfs__dev__drv.html
https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__usbfs__dev__drv.html
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-3-5-components/full-speed-usb-usbfs/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-3-5-components/full-speed-usb-usbfs/
https://www.infineon.com/dgdl/Infineon-Component_Voltage_Comparator_PSoC_4_V1.20-Software%20Module%20Datasheets-v01_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ea9689a27ed
https://www.infineon.com/dgdl/Infineon-Component_Global_Signal_Reference_(GSRef)_V2.1-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e82e4971458
https://www.infineon.com/dgdl/Infineon-Component_Global_Signal_Reference_(GSRef)_V2.1-Software%20Module%20Datasheets-v02_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e82e4971458

Application note 9 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ 4 interrupt architecture

int[x]

CPU

Execution

State
main

ISR
main

ISR
main

ISR

Figure 4 Edge-triggered interrupts

Note: The GPIO interrupt logic has additional circuitry to support interrupts on the rising edge, falling

edge, and both edges. See the PSoC™ 4 reference manual for more information.

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all

Application note 10 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ interrupt support

3 ModusToolbox™ interrupt support

ModusToolbox™ software environment does not use Components as in PSoC™ Creator, but uses a Device
Configurator tool. The Device Configurator is used to enable and configure device peripherals such as clocks
and pins, as well as standard MCU peripherals that do not require their own tool.

As there is currently no DSI or UDB support in ModusToolbox™, an interrupt can only be connected through a
dedicated route. To open the Device Configurator, go to the Quick Panel and select the Device Configurator, as

shown in Figure 5.

Figure 5 Device Configurator quick start

Application note 11 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ interrupt support

3.1 Enabling interrupt sources

As mentioned previously, all the interrupts are fixed function, and fixed function interrupts route directly to the

NVIC. A peripheral that has an interrupt source has options to enable that interrupt from inside the Device
Configurator. For example, the GPIO has a fixed function interrupt that can be configured as shown in Figure 6.

The interrupt source parameters vary based on the peripheral.

Peripheral
parameters
that configure
and enable
interrupt
source

Generated
Macro defining
the dedicated
interrupt
source for the
peripheral

Generated by
Interrupt
Trigger Type
parameter

Figure 6 TCPWM fixed function interrupt configuration

Currently the only interrupts that can be used in ModusToolbox™ are fixed-function interrupts, this means that

all interrupt types are level driven. Some peripherals have added hardware that can be configured so that an

interrupt can be triggered on a rising edge.

An interrupt source does need to be configured in the Device Configurator but can be configured in software

through the peripheral driver library (PDL). The peripheral that supplies the interrupt source includes API to
enable and disable interrupts. An example of this can be seen in Enabling interrupt sources using PDL.

Based on the configuration, ModusToolbox™ generates the ‘C’ code to achieve the desired configuration. The
code generated can be viewed in the Code Preview pane; it is added to relevant cycfg_xxx.c/h files found under
<ApplicationName>/libs/TARGET_<TargetName>/COMPONENT_BSP_DESIGN_MODUS/GeneratedSource folder

in the ModusToolbox™ project workspace window. The generated code includes macros defining the interrupt
source numbers and any peripheral configuration that is necessary to set up and enable the interrupt source.

This simplifies the process of searching for the dedicated interrupt numbers in the device header file. The user
application only needs to enable the interrupt vector on the CPU and assign an interrupt handler function as

described in Setting up an interrupt.

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/index.html

Application note 12 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ interrupt support

3.2 Enabling interrupt sources using PDL

An interrupt source does not need to be enabled from the Device Configurator but can be enabled using the

peripheral driver library (PDL). The peripheral that supplies the interrupt source has API functions that allow
the interrupt source to be enabled/disabled, set/cleared, and allows the status to be read from the peripheral’s

hardware. An example using GPIO shows how to enable an interrupt source, see Figure 7. This can be done for
any peripheral that has a fixed function interrupt.

Figure 7 TCPWM enabling interrupt

3.3 Configuring interrupts using PDL

The peripheral driver library (PDL) is a software development kit (SDK) that enables firmware development for
PSoC™ 4 MCU devices. PDL API function calls are used to configure, initialize, enable, and use a peripheral

driver. One such driver is system interrupts (SysInt). SysInt provides structures and functions to configure and
enable interrupt functionality. PDL also supports the Interrupts and Exceptions (NVIC) functions used for

interrupt configuration.

3.3.1 Interrupt API functions

ModusToolbox™ generates an API –.c and .h files – for each peripheral in the project. These APIs include
functions to configure and use each peripheral. The following API functions are associated with an interrupt:

• Cy_SysInt_Init (const cy_stc_sysint_t *config, cy_israddress userIsr)

Initializes the referenced interrupt by setting the priority and the interrupt vector. Use the Cortex®

microcontroller system interface standard (CMSIS – Library is supplied by Cypress and is retrieved
automatically when required) core function NVIC_EnableIRQ(config.intrSrc) to enable the interrupt.

• Cy_SysInt_SetVector (IRQn_Type IRQn, cy_israddress userIsr)

Changes the ISR vector for the interrupt. This function relies on the assumption that the vector table is

relocated to __RAM_VECTOR_TABLE[RAM_VECTORS_SIZE] in SRAM. Otherwise, it returns the address of the

default ISR location in the flash vector table.

• Cy_SysInt_GetVector (IRQn_Type IRQn)

Gets the address of the current ISR vector for the interrupt. This function relies on the assumption that the
vector table is relocated to __RAM_VECTOR_TABLE[RAM_VECTORS_SIZE] in SRAM. Otherwise, it returns the

address of the default ISR location in the flash vector table.

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/index.html
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__sysint.html
https://www.keil.com/pack/doc/CMSIS/Core/html/group__NVIC__gr.html

Application note 13 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ interrupt support

3.3.2 Critical section control functions

ModusToolbox™ also provides a set of generic interrupt functions in the cy_syslib.h and cy_syslib.c files. The

important ones are Cy_SysLib_EnterCriticalSection and Cy_SysLib_ExitCriticalSection. These two functions are
used to avoid the corruption of firmware variables and hardware registers. Cy_SysLib_EnterCriticalSection

disables interrupts and returns an interrupt state value. Cy_SysLib_ExitCriticalSection restores the interrupt
state.

To see how this works, consider an example of writing to a timer control register:

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

The following sequence of operations occurs while executing the statement above:

1. The CPU reads the control register of the TCPWM and stores it in a temporary register.

2. The CPU executes a logical OR operation of the temporary register with its mask value.

3. The CPU loads the OR result back to the control register.

Between steps 1 and 2, an interrupt may occur, and its ISR may load a new value into the same control register.
After executing the ISR, when the CPU resumes executing step 2, it uses the stale control register value, which
was in the temporary register– this leads to data corruption.

To avoid this issue, add the following code:

uint32_t InterruptState;

InterruptState = Cy_SysLib_EnterCriticalSection();

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

Cy_SysLib_ExitCriticalSection(InterruptState);

The Cy_SysLib_EnterCriticalSection and Cy_SysLib_ExitCriticalSection functions solve the problem by disabling

interrupts while the control register is being written. Use these functions when a shared variable or register is
being written.

3.3.3 Setting up an interrupt

These steps use PDL and NVIC APIs to set up an interrupt to trigger on a signal from a peripheral.

1. Configure the peripheral to generate the interrupt. For example, for a GPIO, configure the drive mode (pull
up or pull down), interrupt signal generation on falling or rising edge, and unmask the interrupt. Refer to the
PDL API reference documentation for your peripheral for this information.

2. Configure the interrupt using the structure provided by the SysInt API.

The structure is defined in the PDL SysInt driver file cy_sysint.h, as shown in Code Listing 1.

Code Listing 1

/**

* Initialization configuration structure for a single interrupt channel

*/

typedef struct {

 IRQn_Type intrSrc; /**< Interrupt source */

 uint32_t intrPriority; /**< Interrupt priority number (Refer to

__NVIC_PRIO_BITS) */

} cy_stc_sysint_t;

Application note 14 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ interrupt support

a) Interrupt Source (intrSrc)

− These are the dedicated interrupt numbers as defined under the drivers header file (cy_sysint.h).

− Each number represents an interrupt that routes from a peripheral to the NVIC.

b) Interrupt Priority (intrPriority)

− Sets the priority of the interrupt. PSoC™ 4 supports priorities 0 to 3.

3. Call Cy_SysInt_Init(&SysInt_SW_cfg_1, ISR_1_handler).

Here, SysInt_SW_cfg_1 is the name of the configured structure from step 2. ISR_1_handler is the name of
the interrupt handler that executes when the interrupt triggers. This function applies the routing and
priority configuration of the interrupt but does not enable it.

4. Call NVIC_ClearPendingIRQ(SysInt_SW_cfg_1.intrSrc) to clear any pending interrupts.

5. Call NVIC_EnableIRQ(SysInt_SW_cfg_1.intrSrc) to enable the interrupt.

6. Call the __enable_irq() function to enable global interrupts. This is safe to perform as the first step, as
individual CPU interrupts have not been enabled yet. You can also perform this later, but interrupts are
disabled at startup until this is called.

Application note 15 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

4 PSoC™ Creator interrupt support

In PSoC™ Creator, properties of interrupts such as the level or edge trigger, vector address, and interrupt
priority must be configured using the PSoC™ Creator Interrupt Component. This Component is available under
the System tab in the Component Catalog window, as shown in Figure 8.

Each instance of the Interrupt Component uses one interrupt line out of the 32 lines that go to NVIC. In the
example shown in Figure 8, the end-of-conversion (eoc) signal from the SAR ADC is connected to the Interrupt

Component “isr_1.” The SAR ADC has an allotted vector line of the NVIC (see Appendix A). For example, in

PSoC™ 4200, IRQ14 is allotted for SAR ADC interrupt. Thus, the Interrupt Component “isr_1” wires the eoc signal
to the IRQ14 line through the MUX logic shown in Figure 2.

Figure 8 PSoC™ Creator interrupt component

4.1 Interrupt component configuration

Figure 9 shows the interrupt component configuration dialog. There are three options in the Component:
DERIVED, RISING_EDGE, and LEVEL.

Figure 9 Interrupt component configuration

This setting configures the multiplexers shown in Figure 2. The selection of a particular option depends on the

interrupt source (fixed-function or UDB/DSI) and the application requirements.

Fixed-function blocks: The interrupt line from the fixed-function block is always routed through the
“dedicated route” as shown by the red line in Figure 10. When configured to this path, the interrupt is level-
triggered and the vector number is determined based on the hardware block being used. The Interrupt

Application note 16 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

Component (isr_1) connected to the interrupt line can only be configured as level-triggered. Setting the
interrupt to RISING_EDGE trigger results in a build error. When configured to DERIVED, the tool selects Level

interrupt only.

In PSoC™ 4 devices with DSI, other output signals from the fixed-function block can be routed for interrupts.
This allows the RISING_EDGE option as shown by the blue line in Figure 10 for the “line” output of a PWM

Component. The Interrupt Component (isr_2) connected to the output of the PWM can be configured to Level

or RISING_EDGE. When the DERIVED option is selected, the tool selects the level trigger configuration. Level
trigger in such cases is usually not useful as it causes the ISR to be repeatedly executed as long as the signal is
HIGH, and so in most cases, RISING_EDGE is used.

DSI Interrupt

Source

Fixed Function Interrupt Source

Rising
Edge
Detect

0

1

IRQn

(n = 0 to 31)
Level

To NVIC

UDB_INT_ CFG

register

0

1

CPUSS_INTR_ SELECT

register

(irq_out[n])

TCPWM

(Fixed Function)

DSI

Level

Figure 10 Interrupt routing for fixed-function blocks

UDBs: For UDBs, the DSI is used to route the signal (from the interrupt line of the UDB Component or any

output) to the MUX logic as shown in Figure 11. Thus, both LEVEL and RISING_EDGE options are available for

any signal from the UDB. When the DERIVED option is selected in the Interrupt Component (isr_1 or isr_2), the

RISING_EDGE option is configured. This is in contrast to the case of the DSI signal routing for fixed-function
block outputs.

DSI Interrupt

Source

Fixed Function Interrupt Source

Rising
Edge
Detect

0

1

IRQn

(n = 0 to 31)
Level

To NVIC

UDB_INT_ CFG

register

0

1

CPUSS_INTR_ SELECT

register

(irq_out[n])

PWM

(UDB)

DSI

DSI Interrupt

Source

Fixed Function Interrupt Source

Rising
Edge
Detect

0

1

IRQn

(n = 0 to 31)
Level

To NVIC

UDB_INT_ CFG

register

0

1

CPUSS_INTR_ SELECT

register

(irq_out[n])

DSI

Figure 11 Interrupt routing for UDBs

Application note 17 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

Note: PSoC™ 4 Bluetooth® LE, PSoC™ 4200M, and PSoC™ 4200L parts have eight DSI channels with each
channel demultiplexed to 4 to spread across 32 (8x4) interrupt lines for the Arm Cortex®-M0/M0+

processor. Thus, the maximum number of DSI interrupts is limited to eight in a design.

Table 2 provides guidelines for setting the InterruptType parameter in the Interrupt Component.

Table 2 Interrupt component configuration

Interrupt

source

Signal Interrupt component configuration

Fixed-function Interrupt Select LEVEL or DERIVED. RISING_EDGE is not allowed.

Block output Select RISING_EDGE; otherwise, the interrupt is repeatedly triggered for

the duration of the logic HIGH signal state.

UDB function Interrupt Select RISING_EDGE or DERIVED.

Block output Select RISING_EDGE; selecting LEVEL causes the interrupt to be

repeatedly triggered for the duration of the logic HIGH signal state.

4.1.1 Sticky bits

An interrupt signal may be “sticky”, which means that the interrupt line remains active (HIGH) until it is read or

cleared. In this case, if the Interrupt Component is configured to RISING_EDGE, the ISR is executed once. If the
Interrupt Component is configured to LEVEL, the ISR is executed repeatedly. To handle this, clear the interrupt

source by using the API function provided by the Component. See the Component datasheet of the interrupt
source. You can also refer to the section, which provides an example using the timer interrupt.

Note that when the output lines of a fixed-function block or the UDB (for example, the “pwm” line of a PWM
Component as shown in Figure 12) are connected to the Interrupt Component instead of the) sectioninterrupt
line, there is no need to clear the interrupt. However, the ISR is repeatedly executed as long as the signal is

HIGH, if the interrupt Component is configured to LEVEL.

Figure 12 Sticky signal

Application note 18 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

4.2 Interrupt priority configuration

The design-wide resources window (project_name.cydwr) of the PSoC™ Creator project has an Interrupts tab,

which displays the Interrupt Component instance names, their priorities, and vector numbers, as Figure 13
shows. isr_1, isr_2, and isr_3 are the Interrupt components used in the design.

Figure 13 Interrupt tab in cydwr window

Use the cydwr window to change the priority of an interrupt. Note that 0 is the highest priority; and 3, the
lowest priority. The Cortex®-M0/M0+ CPU supports interrupt nesting; see Nested interrupts for details.

The interrupt vector number for each Interrupt Component is automatically assigned by PSoC™ Creator when
the project is built, but can be manually changed. See PSoC™ Creator forcing interrupt vector num for details.

Also, note that the vector number is shown with an offset in the .cydwr window. Vector number 0 corresponds
to exception number 16 in Cortex®-M0/Cortex® M0+. See Exceptions for an overview of Cortex®-M0/Cortex® M0+

exceptions.

4.3 Interrupt API functions

PSoC™ Creator generates an API –.c and .h files – for each Component in the project. These APIs include
functions to configure and use the hardware corresponding to the Component. The following API functions are

associated with an Interrupt Component:

• <instance_name> Start()and <instance_name>_Stop()

Start() enables the interrupt, sets its vector to the default ISR, and sets the interrupt priority.

Stop() disables the interrupt.

• <instance_name>_StartEx()

Similar to Start(); the only difference is that this function takes a vector address as an input, enabling

you to write a custom ISR rather than using the default ISR generated by the Component.

• <instance_name> Enable()and <instance_name>_Disable()

These functions are called internally by Start() and Stop() to enable and disable the interrupt. These

functions can be called to dynamically enable and disable an interrupt.

• <instance_name> SetVector()and <instance_name> SetPriority()

Application note 19 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

These functions are called internally by Start() and Stop() to set the interrupt vector address and the

interrupt priority. These functions can also be called to dynamically set the vector and the priority. Make

sure that the interrupt is disabled before calling these functions.

• <instance_name> SetPending()

Makes the interrupt pending without an interrupt request, that is, under firmware control.

• <instance_name> ClearPending()

Clears the pending status of the interrupt so that it is not serviced. This function does not have any effect on

the interrupt source signal; it only clears the pending status bit of the interrupt line in the NVIC.

See the Interrupt component datasheet for a detailed explanation of the API.

4.3.1 Critical section control functions

PSoC™ Creator also provides a set of generic interrupt functions in the CyLib.h and CyLib.c files. These files are
generated when the project is built. The important ones are CyEnterCriticalSection and

CyExitCriticalSection. These two functions are used to avoid the corruption of firmware variables and

hardware registers. CyEnterCriticalSection disables interrupts and returns an interrupt state value.

CyExitCriticalSection restores the interrupt state.

To see how this works, consider an example of writing to a timer control register:

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

The following sequence of operations occurs while executing the statement above:

1. The CPU reads the control register of the TCPWM and stores it in a temporary register.

2. The CPU executes a logical OR operation of the temporary register with its mask value.

3. The CPU loads the OR result back to the control register.

Between steps 1 and 2, an interrupt may occur, and its ISR may load a new value into the same control register.

After executing the ISR, when the CPU resumes executing step 2, it uses the stale control register value, which
was in the temporary register– this leads to data corruption.

To avoid this issue, add the following code:

InterruptState = CyEnterCriticalSection();

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

CyExitCriticalSection(InterruptState);

The CyEnterCriticalSection and CyExitCriticalSection functions solve the problem by

disabling interrupts while the control register is being written. Use these functions when a shared variable or

register is being written.

For details on these functions, see the System reference guide (also available under the PSoC™ Creator menu

Help > Documentation).

https://www.infineon.com/dgdl/Infineon-Component_Interrupt_V1.70-Software%20Module%20Datasheets-v01_71-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e7907a108e7
https://www.infineon.com/dgdl/Infineon-Component_PSoC_4_CyBoot_V5.0-Software+Module+Datasheets-v06_01-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9e1d482396

Application note 20 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

4.4 Writing interrupt service routine (ISR)

To understand how to write an ISR, consider a timer interrupt as an example. The Interrupt Component “isr_1”

is connected to the interrupt terminal of Timer_1, as shown in Figure 14.

After building the project, PSoC™ Creator generates the files associated with all the Components as shown in
Figure 15. isr_1.c and isr_1.h are the files generated for the Interrupt Component isr_1. These files provide the

API for configuring and using the Component, including the ISR.

Figure 14 Timer interrupt example

Figure 15 Files generated for interrupt components

There are two ways to write an ISR – using the PSoC™ Creator auto-generated ISR, and creating a custom ISR

function.

Application note 21 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

4.5 Using auto-generated ISR

The following is an ISR generated by default in isr_1.c. The ISR function name is in the format -

CY_ISR(<isr_name>_interrupt).

Code Listing 2

CY_ISR(isr_1_Interrupt)

{

 #ifdef isr_1_INTERRUPT_INTERRUPT_CALLBACK

 isr_1_Interrupt_InterruptCallback();

 #endif /* isr_1_INTERRUPT_INTERRUPT_CALLBACK */

 /* Place your Interrupt code here. */

 /* `#START isr_1_Interrupt` */

 /* `#END` */

}

Application note 22 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

There are two parts in this function: one to invoke a callback function and another a placeholder for the
handler code. The callback function is explained in the next section. You can write the handler code in this

auto-generated ISR between the #START and #END markers. Note that code written outside these markers is
deleted when the project files are re-generated.

To enable the interrupt, start the isr Component. Code Listing 3 is the main.c code to start the interrupt source,

that is, the timer and the Interrupt Component.

Code Listing 3

int main()

{

 /* Start the timer component */

 Timer_1_Start();

 /* Start the interrupt component */

 isr_1_Start();

 /* Enable global interrupt */

 CyGlobalIntEnable;

 for(;;)

 {

 /* Place your application code here. */

 }

}

Note that in addition to enabling the Interrupt Component, you must enable the global interrupt using the
CyGlobalIntEnable macro. Inside the ISR, clear the interrupts as explained in Sticky bits. In this example,

the Timer interrupt is cleared using the following API function:

 void Timer_1_ClearInterrupt(uint32 interruptMask)

The interruptMask parameter can be the Timer Component’s terminal count interrupt mask or

compare/capture count interrupt mask – see the Timer Component datasheet or the timer_1.h file. See other

Component datasheets to learn about the API and the interrupt mask that clears the interrupt from a particular

component.

4.5.1 Using extern keyword

Many times, in the auto-generated ISR, it is required to access variables and call functions defined in user

source files. But to use the variables and the function calls in the auto-generated ISR, it needs to be declared in

the isr_1 file. An “extern” keyword is used for variable declaration.

Look out for Code Listing 4 in the beginning of the file.

Code Listing 4

/***

* Place your includes, defines and code here

**/

/* `#START isr_1_intc` */

Application note 23 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

Code Listing 4

/* `#END` */

You can either declare the variables and functions between the #START and #END markers directly or just
include the header file containing the declarations. An example is shown with a variable and a function

declaration.

Code Listing 5

/***

* Place your includes, defines and code here

**/

/* `#START isr_1_intc` */

extern uint8 userVariable;

void userFunction(void);

/* `#END` */

4.6 Using the callback function

Instead of writing the handler code in the auto-generated ISR, you can invoke your own function from the ISR.

This helps to keep a separation between the user code and generated code.

The auto-generated ISR has a code with conditional compilation, controlled by macros, for invoking the

callback function.

Code Listing 6

CY_ISR(isr_1_Interrupt)

{

 #ifdef isr_1_INTERRUPT_INTERRUPT_CALLBACK

 isr_1_Interrupt_InterruptCallback();

 #endif /* isr_1_INTERRUPT_INTERRUPT_CALLBACK */

 /* Place your Interrupt code here. */

 /* `#START isr_1_Interrupt` */

 /* `#END` */

}

Application note 24 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

By default, the isr_1_INTERRUPT_INTERRUPT_CALLBACK macro is not defined, thereby disabling the

call to isr_1_Interrupt_InterruptCallback(). This is the callback function that you need to write in

the source file.

Enable the callback function. To do this, define isr_1_INTERRUPT_INTERRUPT_CALLBACK in the

cyapicallbacks.h file, which is located under “Header Files” of the project. Also, declare the callback function in
the same file as Code Listing 7.

Code Listing 7

#ifndef CYAPICALLBACKS_H

#define CYAPICALLBACKS_H

 /*Define your macro callbacks here */

 /*For more information, refer to the Writing Code topic in PSoC™Creator Help.*/

 #define isr_1_INTERRUPT_INTERRUPT_CALLBACK

 void isr_1_Interrupt_InterruptCallback(void);

#endif /* CYAPICALLBACKS_H */

Notice that the function call is enabled in the auto-generated ISR.

Write the callback function in your source file like any other function.

4.7 Creating a custom ISR

The ISR can also be written completely in your own source file instead of modifying the auto-generated code.
This method has a benefit of saving time in the function call which occurs in the case of callback function. To
make your own function, for example MyCustomISR, to be the ISR for an Interrupt Component isr_1, do the

following:

1. Declare the custom function using the CY_ISR_PROTO macro:

CY_ISR_PROTO(MyCustomISR);

2. Define the custom function using the CY_ISR macro:
CY_ISR(MyCustomISR)
{

 /* ISR code goes here */

}

3. In the startup code of your main.c file, add a call to the isr_1_StartEx() API function instead of

isr_1_Start(). The isr_1_StartEx() API function is similar to isr_1_Start()except that

isr_1_StartEx() has a parameter for your ISR function: isr_1_StartEx(MyCustomISR);

Application note 25 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator interrupt support

Code Listing 8

CY_ISR_PROTO(MyCustomISR);

/**

* Function Name: MyCustomISR

***/

CY_ISR(MyCustomISR)

{

 /* Add code here */

}

int main()

{

 /* Start the timer component */

 Timer_1_Start();

 /* Set the custom ISR */

 isr_1_StartEx(MyCustomISR);

 /* Enable global interrupt */

 CyGlobalIntEnable;

 for(;;)

 {

 /* Place your application code here. */

 }

}

4.7.1 Significance of the keyword CY_ISR

The interrupt source file defines the ISR function using the CY_ISR macro. This macro is defined in the auto-

generated cytypes.h file. It is used for compatibility and easy code porting to other PSoC™ device families such
as PSoC™ 3 or PSoC™ 5LP.

Similarly, the macro CY_ISR_PROTO declares an ISR function prototype. The declaration is in the header file

of the Interrupt Component. For example, the isr_1 Interrupt Component has the following function prototype
declaration in the header file isr_1.h:

CY_ISR_PROTO(isr_1_Interrupt);

https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/legacy-8-bit-16-bit-microcontroller/psoc-3/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/?term=PSoC%205LP&view=kwr&intc=searchkwr

Application note 26 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ related code examples

5 ModusToolbox™ related code examples

Table 3 provides the list of code examples that use the interrupt feature. For more code examples, visit Github.

Note: PSoC™ 4 PDL is currently in Alpha and many features are in progress.

Table 3 ModusToolbox™ interrupt code examples

Code Example Interrupt Source

CE230654 - PSoC™ 4: GPIO interrupt GPIO

CE230664 – PSoC™ 4: Periodic interrupt using TCPWM TCPWM

CE230603 - PSoC™ 4: I2C slave using callbacks I2C

CE231429 - PSoC™ 4: SCB UART transmit and receive with DMAv UART

CE230653 - PSoC™ 4: Watchdog timer interrupt and reset WDT

CE231432 - PSoC™ 4: Watchdog counter interrupts WDC

All ModusToolbox™ Code Examples

To see all currently released code examples select New Application in the ModusToolbox™ Quick Panel. A list

of board support packages (BSP) are available to choose from, see Figure 16. The BSP corresponds to the
specific device that is being used. When a BSP is selected, a list of code examples that correspond with that BSP
can be chosen, as shown in Figure 17.

Figure 16 BSP selection wizard

https://github.com/Infineon
https://github.com/Infineon/mtb-example-psoc4-gpio-interrupt
https://github.com/Infineon/mtb-example-psoc4-tcpwm-interrupt
https://github.com/Infineon/mtb-example-psoc4-i2c-slave-callback
https://github.com/Infineon/mtb-example-psoc4-uart-transmit-receive-dma
https://github.com/Infineon/mtb-example-psoc4-wdt
https://github.com/Infineon/mtb-example-psoc4-wdc

Application note 27 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

ModusToolbox™ related code examples

Figure 17 Code example selection

Application note 28 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

PSoC™ Creator related code examples

6 PSoC™ Creator related code examples

Table 4 provides the list of code examples that use the interrupt feature.

Table 4 Interrupt code examples

Code Example Interrupt Source

CE210558 – PSoC™ 4 GPIO interrupt GPIO

CE95915 – Implementing an RTC with PSoC™ 4100/PSoC™

4200 Devices

TCPWM

CE95333 – Low Power Comparator with PSoC™ 4 LPCOMP

CE95321 – Hibernate and Stop Power Modes with PSoC™ 4 LPCOMP, GPIO

CE95400 – Watchdog Timer Reset and Interrupt for PSoC™

41xx/42xx Devices

WDT

CE95275 – Sequencing SAR ADC and Die temperature sensor

with PSoC™ 4

SAR ADC

CE97089 – PSoC™ 4 ADC to Memory Buffer DMA Transfer DMA

CE210741 – UART Full Duplex and printf Support with PSoC™ UART

All PSoC™ Creator code examples

To see all currently released code examples select Find Code Example in the Start Page, see Figure 18. This

opens a code example selection menu that can be filtered by device or by Component.

Figure 18 Code example Quick Start

https://www.infineon.com/dgdl/Infineon-CE210558_PSoC_4_GPIO_Interrupt-Code%20Example-v03_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7e78224f53
https://www.infineon.com/dgdl/Infineon-CE195915-Code%20Example-v03_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7a5cce4e46
https://www.infineon.com/dgdl/Infineon-CE195915-Code%20Example-v03_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7a5cce4e46
https://www.infineon.com/dgdl/Infineon-CE95333_PSoC_4_Low-Power_Comparator-Code%20Example-v01_00-EN.zip?fileId=8ac78c8c8d2fe47b018d8dd6da32057d
https://www.infineon.com/dgdl/Infineon-CE95321-Code%20Example-v01_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7614c04d2e
https://www.infineon.com/dgdl/Infineon-CE95400_Watchdog_Timer_Reset_and_Interrupt_for_PSoC_41xx_42xx_Devices-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d79f2794df3
https://www.infineon.com/dgdl/Infineon-CE95400_Watchdog_Timer_Reset_and_Interrupt_for_PSoC_41xx_42xx_Devices-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d79f2794df3
https://www.infineon.com/dgdl/Infineon-CE95275-Code%20Example-v01_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d6c43c57434
https://www.infineon.com/dgdl/Infineon-CE95275-Code%20Example-v01_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d6c43c57434
https://www.infineon.com/dgdl/Infineon-CE97089-Code%20Example-v02_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7adf024eaf
https://www.infineon.com/dgdl/Infineon-CE210741-Code%20Example-v04_00-EN.zip?fileId=8ac78c8c7d0d8da4017d0e6ba33a010d

Application note 29 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Debugging tips

7 Debugging tips

This section provides tips on debugging interrupt projects. The following are some of the frequently
encountered cases:

1. Interrupt does not get triggered

− Ensure that the interrupt source and global interrupt are enabled.

− Check whether the vector is set to the correct ISR. See Writing interrupt service routine (ISR) or Setting up

an interrupt for more details on how to write and assign the handler for an interrupt source.

− Check whether there are other interrupt sources that are getting repeatedly triggered, thus consuming
the entire CPU bandwidth.

− Check whether the interrupt is getting triggered only once. This happens if the Interrupt Component is

configured to rising edge and the interrupt source is not cleared.

2. Interrupt is triggered repeatedly

This can happen in multiple cases:

− The interrupt line from the source Component is connected to the Interrupt Component configured to
level type. Clear the interrupt source to resolve this behavior.

− A digital output from the Component (not the interrupt line) is connected to the Interrupt Component

configured to level type. Configure the Interrupt Component to rising edge to get one interrupt per rising
edge.

See Sticky bits for more details.

3. Interrupt is triggered only once

The interrupt line from the source Component is connected to the Interrupt Component configured to rising

edge type. Clear the interrupt source to allow the interrupt to be triggered for every rising edge.

See Sticky bits for more details.

4. Execution of the interrupt service routine (ISR) is taking longer time than expected

This can happen if other high-priority interrupts are being triggered during the execution of the ISR.

Increase the priority of the interrupt relative to other interrupt sources.

PSoC™ 4 devices have an on-chip debug capability that uses the serial wire debug (SWD) interface. It allows you
to add breakpoints, evaluate and edit variables, view CPU registers, observe assembler instructions, and read

and write memory. The debug mode is useful for checking interrupts as given below:

• To check whether the interrupts are getting executed, add a breakpoint in one of the instructions of the ISR.

• Use the Call Stack window of the debugger to locate when an interrupt is getting executed. You can also use

it to check whether a high-priority interrupt occurred during the execution of a low-priority ISR.

• Use Breakpoint Hit Count to detect the number of times an interrupt is being triggered. This is particularly
useful to check if the interrupt signal has glitches causing the interrupt to trigger multiple times.

For more details on how to use the Debugger, see the “Using the Debugger” section in PSoC™ Creator help. To
access the document, press F1 or use the Help > Topics menu in PSoC™ Creator.

As an alternative to the debugger, you can also bit bang a pin to do the following:

• Check whether the CPU is entering the ISR.

• Measure the ISR execution time. This can be done by setting the pin in the beginning of the ISR and resetting
the pin at the end.

Application note 30 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

8 Advanced interrupt topics

8.1 Exceptions

Exceptions are events that cause the processor to suspend the currently executing code and branch to a
handler. Interrupts are a subset of exceptions. Besides interrupts, exceptions exist for operating system
applications and fault handling, as shown in Table 5.

Table 5 Exceptions in Arm® Cortex® M0

Exception Exception

number

Interrupt

priority

Description

Reset 1 –3 (Highest) Triggered on power-on-reset or external reset.

Hard fault 3 –1 Generated on fault conditions such as the detection of

undefined opcode.

SVCall (Supervisor

call)

11 Programmable Triggered on a supervisory call (execution of the SVC
instruction). It is normally used in operating system

applications.

PendSV (pendable

service call)

14 Programmable Similar to SVCall, but the branching to the handler is done

only after all high-priority tasks are completed.

SysTick 15 Programmable SysTick is a 24-bit down-counting timer present in Cortex®

M0/M0+. It generates periodic interrupts for use in

operating system applications.

IRQ0 to IRQ31 16–47 Programmable External (Pins) or internal peripheral interrupts.

8.1.1 ModusToolbox™ exceptions

Note that the exception numbers are defined by Arm®. In ModusToolbox™ software environment, interrupt

vector numbers are shown in the device header file (example: cy8c4024axi_s402.h). For example, interrupt

vector 0 is exception number 16 (IRQ0).

Reset is the highest-priority exception in the device followed by Hard Fault. These have a fixed priority, whereas

others have programmable priorities. ModusToolbox™ provides a default handler for all exceptions. For reset,
the default handler is Reset_Handler()in the startup_psocXXXX.c file. This function is executed first on

startup. For all other exceptions, the Defualt_Handler() function is the default handler provided in the

startup_psocXXXX.c file. However, vector addresses of exceptions that are used including interrupts (defined by

the PSoC™ Creator Components or by the user) are loaded into the vector table during program execution.

Unused exceptions still use the default handler.

8.1.2 PSoC™ Creator exceptions

Note that the exception numbers are defined by Arm®. In PSoC™ Creator interrupt vector numbers are shown in
the interrupt tab of the .cydwr window in the PSoC™ Creator project, include an exception offset. For example,
interrupt vector 0 is exception number 16 (IRQ0).

Reset is the highest-priority exception in the device followed by Hard Fault. These have a fixed priority, whereas
others have programmable priorities. PSoC™ Creator provides a default handler for all exceptions. For reset,
the default handler is Reset() in the Cm0Start.c file. This function is executed first on startup. For all other

exceptions, the IntDefaultHandler() function is the default handler provided in the Cm0Start.c file.

However, vector addresses of exceptions that are used including interrupts (defined by the PSoC™ Creator

Application note 31 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

Components or by the user) are loaded into the vector table during program execution. Unused exceptions still
use the default handler.

To identify the exception currently being handled, read the Interrupt Program Status Register (IPSR). This is
particularly useful when the default handler is under execution.

For more details on exceptions, see ARM® developer.

8.2 Interrupt latency

Interrupt latency is defined as the time delay between the assertion of an interrupt and the execution of the
first instruction in its ISR. The Arm® Cortex®-M0 or Arm® Cortex®-M0+ processor in PSoC™ 4 devices has a latency

of 16 and 15 CPU clock cycles (worst-case) respectively with additional CPU cycles because of the synchronizer

between peripherals and Cortex®-M0/ Cortex® M0+ interrupt lines. Table 6 provides the synchronizer CPU clock
cycle delays in different PSoC™ 4 families for DSI and fixed-function source interrupts.

Table 6 Synchronizer clock cycle delays for DSI and fixed-function source interrupts

Device DSI

Interrupt

Fixed-function interrupt

PSoC™ 4000 NA Depends on the peripheral:

SCB-I2C, GPIO, WDT: 3 CPU cycles

SPC, CSD, TCPWM: 0 CPU cycles

PSoC™ 4200 / PSoC™ 4100 0 CPU

cycles

3 CPU Cycles

PSoC™ 42x7 BLE / PSoC™

41x7 BLE

3 CPU

cycles

Depends on the peripheral:

SCB-I2C, GPIO, WDT, CTBm, LPCOMP, BLE, LVD: 3 CPU cycles

SPC, CSD, TCPWM, SAR: 0 CPU cycles

PSoC™ 4200M / PSoC™

4100M / PSoC™ 4200L

3 CPU

cycles

Depends on the peripheral:

SCB-I2C, GPIO, WDT, CTBm, LPCOMP, LVD: 3 CPU cycles

SPC, CSD, TCPWM, SAR, DMA, CAN, USB (only available in

PSoC™ 4200L): 0 CPU cycles

PSoC™ 4000S / PSoC™

4100S / PSoC™ 4100PS

NA Depends on the peripheral:

SCB, GPIO, WDT, CTBm/CTB, LPCOMP: 2 CPU cycles

CSD, TCPWM, SAR: 0 CPU cycles

PSoC™ 4100S Plus NA Depends on the peripheral:

SCB, GPIO, WDT, CTBm/CTB, LPCOMP: 2 CPU cycles

CSD, Crypto, CAN, SAR: 0 CPU cycles

During the 16-cycles latency in Cortex® M0 or 15-cycles latency in Cortex® M0+, the following actions take place:

1. The processor pushes the current Program Counter (PC), Link Register (LR), Program Status Register (PSR),

and some of the general-purpose registers to the stack.

2. The processor reads the vector address from the NVIC and updates it to the PC.

3. The processor updates the NVIC registers.

Thus, the latency differs from 16 cycles in Cortex® M0 and 15 cycles in Cortex® M0+ when an ISR is currently in
execution or about to begin. To make the process efficient, the Cortex®-M0/ Cortex® M0+ processor implements
the following two schemes:

http://infocenter.arm.com/help/index.jsp

Application note 32 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

1. Tail Chaining: If an interrupt is in the pending state while the processor is executing another interrupt
handler, unstacking is skipped when the execution ends for the first interrupt and the handler for the

pending interrupt is immediately executed. This saves the time of restoring the registers from the stack and
pushing the same registers again to stack. This is useful for reducing the latency of low-priority interrupts.

2. Late Arrival: If a higher-priority interrupt occurs during the stacking process of a lower-priority interrupt, the

processor jumps to the higher-priority interrupt handler instead of a lower-priority one. The processor reads

the vector address of the higher-priority interrupt at the end of the stacking process. Once the higher-
priority interrupt handler execution is completed, the vector address for the pending lower-priority
interrupt handler is fetched and executed. This reduces the latency for a higher-priority interrupt by

eliminating the delay caused by entering the lower-priority ISR and pushing the register values to the stack.

Note that the current instruction in execution when the interrupt is triggered causes an additional delay in the

execution of the ISR. In the case of a device wakeup from an interrupt, an additional delay is caused by the

voltage stabilization after the power-up sequence. See the device datasheet for specifications.

8.3 Optimizing the interrupt code

One of the important performance requirements in interrupt-based applications is the ISR code execution time.
In some applications, the critical code in the ISR must be executed within a particular time of receiving the

interrupt request. Also, interrupt execution should not take too much time and stall the main code execution or
other interrupts. To meet these requirements, use the following guidelines:

• Avoid calls to lengthy functions in the ISR. Functions such as Character LCD display routines take a long

time to execute, and thus block the execution of other low-priority interrupts.

The recommended technique is to move noncritical function calls to the main code and just set a flag

variable in the ISR. The main code periodically checks the flag and if set, clears it and calls the function.

• Assign proper priority to interrupts. In applications with multiple interrupts, give a higher priority to more

time-critical interrupts.

8.4 PSoC™ Creator components internal interrupts

Many PSoC™ Creator Components have an Interrupt Component internally as part of their implementation.
Examples include CAPSENSE™, SAR ADC, EZI2C, and Segment LCD.

Similar to Interrupt Components, internal ISRs in these Components provide a placeholder region for writing
user code. See the respective Component datasheets and associated code examples provided in PSoC™ Creator

to understand the interrupt usage in these Components. Interrupt usage can also be seen in the cydwr window
as shown in Figure 19.

8.5 PSoC™ Creator forcing interrupt vector num

PSoC™ Creator automatically assigns the vector numbers for Interrupt Components in a project. After building
the project, you can view the assigned vector numbers in the Interrupts tab of the cydwr window, as shown in
Figure 19. You can also select a particular vector number for an interrupt signal when it is routed through the
DSI. This section provides a step-by-step procedure to do this.

https://edit.infineon.com/cms/en/search.html?intc=searchkwr-return&_ga=2.13227895.1357508168.1686477175-1954945834.1669208470#!view=downloads&term=PSOC4&doc_group=Data%20Sheet

Application note 33 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

Figure 19 Interrupt vector numbers in cydwr Window

To override the vector numbers assigned by PSoC™ Creator and manually assign a vector number, a Control File
is used. Follow the steps given below:

1. Click the Components tab of the Workspace Explorer window.

2. Right-click the TopDesign Component and select Add Component Item…. The Add Component Item
dialog opens.

3. Scroll down to the Misc group, select Control File, and click Create New, as shown in Figure 20.

Figure 20 Adding the Control File

A TopDesign.ctl file is created and added to the Workspace Explorer window.

4. Double-click the TopDesign.ctl file to open it for editing. The attribute keyword is used in the control file to
specify the interrupt vector number for each Interrupt Component. The method of specifying the interrupt
vector number depends on whether you have placed the Interrupt Component on the example schematic or
the Interrupt Component is used internally in a PSoC™ Creator Component in the schematic. The two

methods are as follows:

a) For Interrupt Components that you have placed on the schematic, the syntax is:

attribute placement_force of instance_name : label is "Intr(0,

DesiredVectorNumber)";

Application note 34 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

Here, instance_name refers to the name of the Interrupt Component in the schematic and

DesiredVectorNumber is the vector number (0 to 31). For example, to assign vector 17 to the

Interrupt Component isr_1:

attribute placement_force of isr_1 : label is "Intr(0, 17)";

b) For Components that use interrupts internally such as EZI2C, the syntax is:

attribute placement_force of \top_instance_name : InternalInterruptName\: label

is "Intr(0, DesiredVectorNumber)";

Here, top_instance_name refers to the name of the Component that uses the interrupt internally.

InternalInterruptName refers to the name assigned for the internal interrupt in the Component.

This can be found from the Interrupts tab of the cydwr window, where the interrupt name is appended to

the top Component instance name. In Figure 19, SCB_IRQ is the internal interrupt name for the EZI2C
Component and the UART Component. The following statement assigns the vector for EZI2C Component
to 11.

attribute placement_force of \EZI2C_1:SCB_IRQ\ : label is "Intr(0,11)"

5. After assigning the interrupt vector numbers, click Save to save the changes made to the control file.

6. Clean and Build the example for the new interrupt vector assignments to take effect. The Interrupts tab in

the cydwr window now shows the modified interrupt vector number assignments.

8.6 ModusToolbox™ SysTick timer

SysTick is a 24-bit down-counting timer. Its interrupt is generally used for task switching in a real-time system.

It uses the Cortex®-M0/ Cortex® M0+ internal clock for counting. SysTick is configured using the APIs given
below:

1. Setting interrupt handler

Cy_SysInt_SetVector(SysTick_IRQn, SysTick_ISR);

SysTick_IRQN is the exception number for the SysTick interrupt, which is 15 for Cortex®–M0.

SysTick_ISR is the interrupt handler.

2. Configuring interrupt period

Cy_SysTick_Init(CY_SYSTICK_CLOCK_SOURCE_CLK_CPU,

CLOCK_FREQ/INTERRUPT_FREQ);

CLOCK_FREQ is the CPU clock frequency. INTERRUPT_FREQ is the derived interrupt rate from SysTick.

Application note 35 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

Code Listing 9 is the code snippet for SysTick timer usage.

Code Listing 9

/* clock and interrupt rates, in Hz */

#define CLOCK_FREQ 24000000u

#define INTERRUPT_FREQ 2u

void SysTick_ISR(void)

{

 /* Interrupt Handler */

}

int main()

{

 /* Point the Systick vector to the ISR */

 CyIntSetSysVector(SysTick_IRQn, SysTick_ISR);

 /* Set the number of ticks between interrupts */

 Cy_SysTick_Init(CY_SYSTICK_CLOCK_SOURCE_CLK_CPU, CLOCK_FREQ/INTERRUPT_FREQ);

 /* Enable Global Interrupts */

 __enable_irq();

 for(;;)

 {

 }

}

8.7 PSoC™ Creator SysTick timer

SysTick is a 24-bit down-counting timer. Its interrupt is generally used for task switching in a real-time system.

It uses the Cortex®-M0/Cortex® M0+ internal clock for counting. SysTick is configured using the APIs given
below:

1. Setting interrupt handler

CyIntSetSysVector(SYSTICK_VECTOR_NUMBER, SysTick_ISR);

SYSTICK_VECTOR_NUMBER is the exception number for the SysTick interrupt, which is 15 for Cortex®–M0.

SysTick_ISR is the interrupt handler.

2. Configuring interrupt period

(void)SysTick_Config(CLOCK_FREQ / INTERRUPT_FREQ);

CLOCK_FREQ is the CPU clock frequency. INTERRUPT_FREQ is the derived interrupt rate from SysTick.

Application note 36 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

The following is the code snippet for SysTick timer usage.

Code Listing 10

#define SYSTICK_INTERRUPT_VECTOR_NUMBER 15u /* Cortex®-M0/M0+ hard vector */

/* clock and interrupt rates, in Hz */

#define CLOCK_FREQ 24000000u

#define INTERRUPT_FREQ 2u

CY_ISR(SysTick_ISR)

{

 /* Interrupt Handler */

}

int main()

{

 /* Point the Systick vector to the ISR */

 CyIntSetSysVector(SYSTICK_INTERRUPT_VECTOR_NUMBER, SysTick_ISR);

 /* Set the number of ticks between interrupts */

 (void)SysTick_Config(CLOCK_FREQ / INTERRUPT_FREQ);

 /* Enable Global Interrupt */

 CyGlobalIntEnable;

 for(;;)

 {

 }

}

8.8 Nested interrupts

NVIC automatically handles nested interrupts without any software overhead. If a higher-priority interrupt is

asserted during the execution of a lower-priority interrupt handler, some of the general-purpose registers are
pushed to stack, the processor core reads the vector address from NVIC and jumps to the higher-priority
interrupt handler. After the execution is completed, the processor restores the register values and execution

resumes for the lower-priority interrupt.

8.9 PSoC™ Creator GlobalSignal component

The GlobalSignal Component helps access interrupt signals from various resources in the system. Some of the
interrupt signals accessed are watchdog timer interrupt, combined port interrupt, combined low-power

comparator interrupt, System Performance Controller Interface (SPCIF) timer (used in the case of flash write

operations), and so on. For details on available interrupt signals, see the Component datasheet. The combined
port interrupt is explained below.

8.9.1 Combined port interrupt

In most PSoC™ 4 devices, not all ports have a dedicated interrupt vector (see Table 7). In such a case, it is

recommended to use the combined port interrupt feature in the GlobalSignal component. The combined port
interrupt uses OR logic to combine port interrupt signals.

Application note 37 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

For example, if you want to generate an interrupt from a signal on pin P5[0], which doesn’t have a dedicated
interrupt, in the PSoC™ 4100PS device, do the following:

1. Place a digital input pin component and set it to P5[0].

2. Configure the pin interrupt. Ensure that dedicated interrupt is unchecked, see Figure 21.

Figure 21 Pin properties for combined interrupt

3. Place a GlobalSignal Component and set it to “Combined port interrupt (AllPortInt)”, see Figure 22.

Figure 22 Placing a GlobalSignal component

Connect an interrupt Component to the GlobalSignal Component, see Figure 23.

Figure 23 Connecting an interrupt component to GlobalSignal component

The ISR can now be written for the isr_1 Component. Note that if multiple port pins are enabled with interrupt,
you should check the GPIO_PRTx_INTR register to identify the port pin that triggered the interrupt. See the

Register Reference Manual of the device for details on the register.

Application note 38 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Advanced interrupt topics

8.10 Use of volatile for global variables

In interrupts, a common case is to use a variable as a flag that is set in the interrupt handler and polled in the

main loop. In such cases, the compiler may optimize out the variable by assuming that there is no code present
in the program flow to update the flag; this results in error during run time. To avoid this problem, always

declare the global variables that are accessed in both the ISR and the main loop as volatile.

Application note 39 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Summary

9 Summary

Interrupts are commonly used in embedded applications. For system-on-chip architectures such as PSoC™ 4,
interrupts play the critical role of communicating the status of on-chip peripherals to the CPU. This application
note has provided the information needed to understand the infrastructure available and create interrupt-

based projects.

P
S

o
C

™
 4

 in
te

rru
p

ts
 A

p
p

e
n

d
ix

 A
 - In

te
rru

p
t so

u
rce

s a
n

d
 v

e
cto

r n
u

m
b

e
rs

A
p

p
lica

tio
n

 n
o

te
40

001-9

079
9 R

ev. *G

2024-03-06

Appendix A - Interrupt sources and vector numbers

Table 7 lists the interrupt sources for the 32 interrupt vectors in PSoC™ 4.

Table 7 PSoC™ 4 interrupt sources (‘–‘ Indicates function not available)

Fixed function

interrupt source

DSI interrupt

source

(not for PSoC™
4000/4000S/

4100S/4100S

Plus/

PSoC™ 4100PS)

Interrupt vector

PSoC™

4000

PSoC™

4100/

4200

PSoC™

4 BLE

PSoC™

4 M

PSoC™ 4

L

PSoC™

4000S

PSoC™

4100S

PSoC™

4100S

Plus

PSoC™

4100PS

PSoC™

4100S

Plus

256k

PSoC™

4100S

Max

PSoC™

4200DS

PSoC™

4500S

PSoC™

4700S

GPIO Interrupt –

Port 0

DSI IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0 IRQ0

GPIO Interrupt –

Port 1

DSI IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1 IRQ1

GPIO Interrupt –

Port 2
DSI IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2 IRQ2

GPIO Interrupt –

Port 3
DSI IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3 IRQ3

GPIO Interrupt –

Port 4

DSI – IRQ4 IRQ4 IRQ4 IRQ4 – – – – – – – – –

GPIO Interrupt –

Port 5

DSI – – IRQ5 – – – – – – – – – – –

GPIO Interrupt –

Port 13 (USB

Wake up)

DSI – – – – IRQ5 – – – – – – – – –

GPIO Interrupt –

All Port*

DSI – – IRQ6 IRQ5 IRQ6 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4 IRQ4

– DSI – IRQ5 – – – – – – – – – – – –

– DSI – IRQ6 – – – – – – – – – – – –

– DSI – IRQ7 – – – – – – – – – – – –

LPCOMP (low-

power

comparator)

DSI – IRQ8 IRQ7 IRQ6 IRQ7 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5 IRQ5

WDT (Watchdog

timer)
DSI IRQ4 IRQ9 IRQ8 IRQ7 IRQ8 IRQ6 IRQ6 IRQ6 IRQ7 IRQ6 IRQ6 IRQ6 IRQ6 IRQ6

SCB0 (Serial

Communication

Block 0)

DSI IRQ5 IRQ10 IRQ9 IRQ8 IRQ9 IRQ7 IRQ7 IRQ7 IRQ8 IRQ7 IRQ7 IRQ7 IRQ7 IRQ7

P
S

o
C

™
 4

 in
te

rru
p

ts
 A

p
p

e
n

d
ix

 A
 - In

te
rru

p
t so

u
rce

s a
n

d
 v

e
cto

r n
u

m
b

e
rs

A
p

p
lica

tio
n

 n
o

te
41

001-9

079
9 R

ev. *G

2024-03-06

 Fixed function

interrupt source

DSI interrupt

source

(not for PSoC™

4000/4000S/
4100S/4100S

Plus/

PSoC™ 4100PS)

Interrupt vector

PSoC™

4000

PSoC™

4100/

4200

PSoC™

4 BLE

PSoC™

4 M

PSoC™ 4

L

PSoC™

4000S

PSoC™

4100S

PSoC™

4100S

Plus

PSoC™

4100PS

PSoC™

4100S

Plus

256k

PSoC™

4100S

Max

PSoC™

4200DS

PSoC™

4500S

PSoC™

4700S

SCB1 (Serial

Communication

Block 1)

DSI – IRQ11 IRQ10 IRQ9 IRQ10 IRQ8 IRQ8 IRQ8 IRQ9 IRQ8 IRQ8 IRQ8 IRQ8 IRQ8

SCB2 (Serial

Communication

Block 2)

DSI – – – IRQ10 IRQ11 – IRQ9 IRQ9 IRQ10 IRQ9 IRQ9 IRQ9 IRQ9 –

SCB3 (Serial

Communication

Block 3)

DSI – – – IRQ11 IRQ12 – – IRQ10 – IRQ10 IRQ10 – IRQ10 –

SCB3 (Serial

Communication

Block 4)

DSI – – – – – – – IRQ11 – IRQ11 IRQ11 – IRQ11 –

CTBm0

Interrupt (all

CTBm0s)

DSI – – IRQ11 IRQ12 IRQ13 – IRQ10 IRQ12 IRQ6 IRQ12 IRQ12 – IRQ12 –

CTBm1

Interrupt (all

CTBm1s)

DSI – – – – – – – – – IRQ13 – – IRQ13 –

Bluetooth LE

Subsystem

Interrupt

DSI – – IRQ12 – – – – – – – – – – –

DMA Interrupt DSI – – – IRQ13 IRQ14 – – IRQ14 IRQ12 IRQ15 IRQ14 IRQ10 IRQ15 –

SPCIF Interrupt DSI IRQ6 IRQ12 IRQ13 IRQ14 IRQ15 IRQ9 IRQ10 IRQ15 IRQ13 IRQ16 IRQ15 IRQ11 IRQ16 IRQ9

SRSS LVD

Interrupt

DSI – IRQ13 IRQ14 IRQ15 IRQ16 – – – – – – – – –

SAR 0

(Successive

Approximation

ADC)

DSI – IRQ14 IRQ15 IRQ16 IRQ17 – IRQ19 IRQ25 IRQ15 IRQ26 IRQ25 – IRQ26 –

SAR 1

(Successive

Approximation

ADC)

DSI – – – – – – – – – IRQ27 – – IRQ27 –

CSD0

(CAPSENSE™)
DSI IRQ7 IRQ15 IRQ16 IRQ17 IRQ18 IRQ10 IRQ13 IRQ16 IRQ14 IRQ17 IRQ16 – IRQ17 IRQ10

CSD1

(CAPSENSE™)
DSI – – – IRQ18 IRQ19 – – – – – IRQ29 – – –

P
S

o
C

™
 4

 in
te

rru
p

ts
 A

p
p

e
n

d
ix

 A
 - In

te
rru

p
t so

u
rce

s a
n

d
 v

e
cto

r n
u

m
b

e
rs

A
p

p
lica

tio
n

 n
o

te
42

001-9

079
9 R

ev. *G

2024-03-06

 Fixed function

interrupt source

DSI interrupt

source

(not for PSoC™

4000/4000S/
4100S/4100S

Plus/

PSoC™ 4100PS)

Interrupt vector

PSoC™

4000

PSoC™

4100/

4200

PSoC™

4 BLE

PSoC™

4 M

PSoC™ 4

L

PSoC™

4000S

PSoC™

4100S

PSoC™

4100S

Plus

PSoC™

4100PS

PSoC™

4100S

Plus

256k

PSoC™

4100S

Max

PSoC™

4200DS

PSoC™

4500S

PSoC™

4700S

VDAC Interrupt

(Both VDACs)
– – – – – – – – – IRQ16 – – – – –

TCPWM0

(Timer/Counter/

PWM 0)

DSI IRQ8 IRQ16 IRQ17 IRQ19 IRQ20 IRQ11 IRQ14 IRQ17 IRQ17 IRQ18 IRQ17 IRQ12 IRQ18 IRQ11

TCPWM1

(Timer/Counter/

PWM 1)

DSI – IRQ17 IRQ18 IRQ20 IRQ21 IRQ12 IRQ15 IRQ18 IRQ18 IRQ19 IRQ18 IRQ13 IRQ19 IRQ12

TCPWM2

(Timer/Counter/

PWM 2)

DSI – IRQ18 IRQ19 IRQ21 IRQ22 IRQ13 IRQ16 IRQ19 IRQ19 IRQ20 IRQ19 IRQ14 IRQ20 IRQ13

TCPWM3

(Timer/Counter/

PWM 3)

DSI – IRQ19 IRQ20 IRQ22 IRQ23 IRQ14 IRQ17 IRQ20 IRQ20 IRQ21 IRQ20 IRQ15 IRQ21 IRQ14

TCPWM4

(Timer/Counter/

PWM 4)

DSI – – – IRQ23 IRQ24 IRQ15 IRQ18 IRQ21 IRQ21 IRQ22 IRQ21 – IRQ22 IRQ15

TCPWM5

(Timer/Counter/

PWM 5)

DSI – – – IRQ24 IRQ25 – – IRQ22 IRQ22 IRQ23 IRQ22 – IRQ23 –

TCPWM6

(Timer/Counter/

PWM 6)

DSI – – – IRQ25 IRQ26 – – IRQ23 IRQ23 IRQ24 IRQ23 – IRQ24 –

TCPWM7

(Timer/Counter/

PWM 7)

DSI – – – IRQ26 IRQ27 – – IRQ24 IRQ24 IRQ25 IRQ24 – IRQ25 –

CAN0 Interrupt DSI – – – IRQ27 IRQ28 – – IRQ26 – – IRQ26 – – –

CAN1 Interrupt DSI – – – IRQ28 IRQ29 – – – – – IRQ27 – – –

USB Start of

Frame
DSI – – – – IRQ30 – – – – – – – – –

USB EP1-EP8

Data
DSI – – – – IRQ31 – – – – – – – – –

Crypto Interrupt – – – – – – – – IRQ27 – – IRQ28 – – –

WCO/WDT

Interrupt

– – – – – – – – IRQ13 IRQ11 IRQ14 IRQ13 – IRQ14 –

EXCO Interrupt – – – – – – – – – – IRQ28 IRQ30 – IRQ28 –

I2S – – – – – – – – – – – IRQ31 – – –

P
S

o
C

™
 4

 in
te

rru
p

ts
 A

p
p

e
n

d
ix

 A
 - In

te
rru

p
t so

u
rce

s a
n

d
 v

e
cto

r n
u

m
b

e
rs

A
p

p
lica

tio
n

 n
o

te
43

001-9

079
9 R

ev. *G

2024-03-06

 Fixed function

interrupt source

DSI interrupt

source

(not for PSoC™

4000/4000S/
4100S/4100S

Plus/

PSoC™ 4100PS)

Interrupt vector

PSoC™

4000

PSoC™

4100/

4200

PSoC™

4 BLE

PSoC™

4 M

PSoC™ 4

L

PSoC™

4000S

PSoC™

4100S

PSoC™

4100S

Plus

PSoC™

4100PS

PSoC™

4100S

Plus

256k

PSoC™

4100S

Max

PSoC™

4200DS

PSoC™

4500S

PSoC™

4700S

– DSI – IRQ20 IRQ21 IRQ29 – – – – – IRQ29 – IRQ16 IRQ29 –

– DSI – IRQ21 IRQ22 IRQ30 – – – – – IRQ30 – IRQ17 IRQ30 –

– DSI – IRQ22 IRQ23 IRQ31 – – – – – IRQ31 – IRQ18 IRQ31 –

– DSI – IRQ23 IRQ24 – – – – – – – – IRQ19 – –

– DSI – IRQ24 IRQ25 – – – – – – – – IRQ20 – –

– DSI – IRQ25 IRQ26 – – – – – – – – IRQ21 – –

– DSI – IRQ26 IRQ27 – – – – – – – – IRQ22 – –

– DSI – IRQ27 IRQ28 – – – – – – – – IRQ23 – –

– DSI – IRQ28 IRQ29 – – – – – – – – IRQ24 – –

– DSI – IRQ29 IRQ30 – – – – – – – – IRQ25 – –

– DSI – IRQ30 IRQ31 – – – – – – – – IRQ26 – –

– DSI – IRQ31 – – – – – – – – – IRQ27 – –

– DSI – – – – – – – – – – – IRQ28 – –

– DSI – – – – – – – – – – – IRQ29 – –

– DSI – – – – – – – – – – – IRQ30 – –

– DSI – – – – – – – – – – – IRQ31 – –

Application note 44 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

References

References

The wealth of information available on the Infineon webpage can help you select the right PSoC™ device and,

additionally, integrate the device into your designs efficiently and effectively. The following is an abbreviated

list for PSoC™ 4:

• Overview: PSoC™ portfolio

• Product selectors: PSoC™ 4. In addition, PSoC™ Creator includes a device selection tool.

• Datasheets describe and provide electrical specifications for each family.

• Application notes cover a broad range of topics, from basic to advanced level, and include the following:

− AN88619: PSoC™ 4 MCU hardware design considerations

− AN73854: PSoC™ Creator - Introduction to bootloaders

− AN89610: PSoC™ Arm® Cortex® code optimization

− AN86233: PSoC™ 4 low-power modes and power reduction techniques

− AN57821: PSoC™ 3, PSoC™ 4, and PSoC™ 5LP mixed-signal circuit board layout considerations

− AN89056: PSoC™ 4 - IEC 60730 class B and IEC 61508 SIL safety software library

− AN64846: Getting started with CAPSENSE™

− AN85951: PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

• Code examples demonstrate product features and usage.

• Reference manuals provide detailed descriptions of the architecture and registers in each PSoC™ 4 device

family.

• PSoC™ 4 programming specification provides the information necessary to program PSoC™ 4 nonvolatile

memory.

• Development tools:

− CY8CKIT-040, CY8CKIT-042, CY8CKIT-044, CY8CKIT-046, CY8CKIT-042-BLE-A, CY8CKIT-045S, and CY8CKIT-

041S-MAX PSoC™ 4 pioneer kits are easy-to-use and inexpensive development platforms. These include

connectors for Arduino-compatible shields and Digilent Pmod daughter cards.

− CY8CKIT-043, CY8CKIT-145-40XX, CY8CKIT-147, and CY8CKIT-149 are very low-cost prototyping platforms
for sampling PSoC™ 4 devices.

− CY8CKIT-040T is a low-cost evaluation kit showing the low power CAPSENSE™, low power wake on touch
and liquid tolerant features of the PSoC™ 4000T device.

− The MiniProg3 (CY8CKIT-002) or MiniProg4 (CY8CKIT-005) kit provides an interface for flash programming

and debug.

− Integrated development environment (IDE): There are two development platforms that can be used for
application development with PSoC™ 4 – ModusToolbox™ software and PSoC™ Creator.

− PSoC™ 4 CAD libraries provide footprint and schematic support for common tools. IBIS models are also

available.

• Training videos are available in infineon website on a wide range of topics including the PSoC™ MCUs.

• Infineon community enables connection with fellow PSoC™ developers around the world, 24 hours a day, 7

days a week, and hosts a dedicated PSoC™ 4 MCU community.

Other resources:

• ModusToolbox™ software

• ModusToolbox™ software help on GitHub

https://www.infineon.com/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Data%20Sheet
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Application%20Notes
https://www.infineon.com/AN88619
https://www.infineon.com/AN73854
https://www.infineon.com/AN89610
https://www.infineon.com/AN86233
https://www.infineon.com/AN57821
https://www.infineon.com/AN89056
https://www.infineon.com/AN64846
https://www.infineon.com/AN85951
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://edit.infineon.com/cms/en/search.html?intc=searchkwr-return&_ga=2.17882233.1357508168.1686477175-1954945834.1669208470%23!view%3Ddownloads&term=PSOC4&doc_group=Additional%20Technical%20Information
https://www.infineon.com/dgdl/Infineon-CY8C4xxx_CYBLxxxx_Programming_Specifications-Programming%20Specifications-v07_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66dca2562f
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/?tab=%7E%27development_tools&!designsupport
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-040
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-044
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-046
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042-ble-a/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-045s
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-041s-max
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-041s-max
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-043
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-145-40xx
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-147
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-149
http://www.infineon.com/CY8CKIT-040T
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002
https://www.infineon.com/cy8ckit-005
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=PCB%20Design%20Data
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Simulation%20Models
https://media.infineon.com/
https://media.infineon.com/search/psoc
https://community.infineon.com/
https://community.infineon.com/t5/PSoC-4/bd-p/psoc4
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://github.com/Infineon/modustoolbox-software

Application note 45 001-90799 Rev. *G

 2024-03-06

PSoC™ 4 interrupts

Revision history

Revision history

Document

Revision

Date Description of changes

** 2014-05-22 New Application note

*A 2015-05-14

Updated for PSoC™ 4 Bluetooth® LE and PSoC™ 4 M

Added section on Writing interrupt handlers

Added details on interrupts latency

Provided links for PSoC™ Creator code examples

Updated projects with PSoC™ Creator 3.2

Updated Appendix B with development kits

Added information on CyEnterCriticalSection and CyExitCriticalSection APIs

Updated template

*B 2016-02-02

Updated for PSoC™ 4200L.

Added Exceptions and Debugging tips.

Updated Introduction, PSoC™ 4 interrupt architecture and Interrupt priority

configuration.

Removed projects from the application note and moved to code examples

CE210557 and CE210558.

*C 2017-04-19 Updated logo and copyright

*D 2017-12-13

Updated for PSoC™ 4000S, 4100S, PSoC™ 4100S Plus, and PSoC™ Analog

Coprocessor.

Updated Table 1, Table 3, Table 5, and Table 6.

*E 2018-09-14

Updated for PSoC™ 4100PS.

Added Using extern keyword, Using the callback function, PSoC™ Creator

GlobalSignal component and Use of volatile for global variables.

Updated Using auto-generated ISR.

*F 2021-03-23

Updated to Infineon template

Updated document to support ModusToolbox™ software environment and PDL

Created new sections:

3 ModusToolbox™ interrupt support

3.1 Enabling interrupt sources

3.2 Enabling interrupt sources using PDL

3.3 Configuring interrupts using PDL

3.3.1 Interrupt API functions

3.3.2 Critical section control functions

3.3.3 Setting up an interrupt

5 ModusToolbox™ related code examples

8.1.1 ModusToolbox™ exceptions

8.6 ModusToolbox™ SysTick timer

Updated Appendix A for new PSoC™ 4 devices

*G 2024-03-06
Fixed broken links.

Updated References section.

https://www.infineon.com/dgdl/Infineon-CE210558_PSoC_4_GPIO_Interrupt-Code%20Example-v03_00-EN.zip?fileId=8ac78c8c7cdc391c017d0d7e78224f53

 Important notice Warnings

Edition 2024-03-06

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

001-90799 Rev. *G

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 PSoC™ 4 interrupt architecture
	2.1 Interrupt sources
	2.2 Level- and edge-triggered interrupts

	3 ModusToolbox™ interrupt support
	3.1 Enabling interrupt sources
	3.2 Enabling interrupt sources using PDL
	3.3 Configuring interrupts using PDL
	3.3.1 Interrupt API functions
	3.3.2 Critical section control functions
	3.3.3 Setting up an interrupt

	4 PSoC™ Creator interrupt support
	4.1 Interrupt component configuration
	4.1.1 Sticky bits

	4.2 Interrupt priority configuration
	4.3 Interrupt API functions
	4.3.1 Critical section control functions

	4.4 Writing interrupt service routine (ISR)
	4.5 Using auto-generated ISR
	4.5.1 Using extern keyword

	4.6 Using the callback function
	4.7 Creating a custom ISR
	4.7.1 Significance of the keyword CY_ISR

	5 ModusToolbox™ related code examples
	6 PSoC™ Creator related code examples
	7 Debugging tips
	8 Advanced interrupt topics
	8.1 Exceptions
	8.1.1 ModusToolbox™ exceptions
	8.1.2 PSoC™ Creator exceptions

	8.2 Interrupt latency
	8.3 Optimizing the interrupt code
	8.4 PSoC™ Creator components internal interrupts
	8.5 PSoC™ Creator forcing interrupt vector num
	8.6 ModusToolbox™ SysTick timer
	8.7 PSoC™ Creator SysTick timer
	8.8 Nested interrupts
	8.9 PSoC™ Creator GlobalSignal component
	8.9.1 Combined port interrupt

	8.10 Use of volatile for global variables

	9 Summary
	Appendix A - Interrupt sources and vector numbers
	References
	Revision history
	Disclaimer

