
CAPSENSE™ Design Guide
AN90071 - CY8CMBR3xxx

WHITEPAPER

Edition: v1.0
Date: 08/2023

www.infineon.com

2
08/2023

Table of contents

1 Introduction 5
1.1 Abstract 5
1.2 Introduction 5
1.3 CY8CMBR3xxx Family Feature Overview 6
1.4 CY8CMBR3xxx Family Feature Comparison 8
1.5 CY8CMBR3xxx CAPSENSE™ System Overview 9
1.6 CAPSENSE™ Design Flow 10

2 CAPSENSE™ Technology 12
2.1 CAPSENSE™ Fundamentals 12
2.2 Capacitive Touch-Sensing Method in CY8CMBR3xxx 14
2.3 CAPSENSE™ Tuning 15
2.4 SmartSense Auto-Tuning 15
2.5 Sensor Types 16
2.5.1 Buttons (Zero-Dimensional) 16
2.5.2 Sliders (One-Dimensional) 17
2.5.3 Proximity (Three-Dimensional) 18
2.6 Liquid Tolerance 19
2.6.1 Shield Electrode 20
2.6.2 Guard Sensor 21

3 CAPSENSE™ Schematic Design 22
3.1 Schematic Design Considerations 22
3.1.1 Selecting the Special Output Pins 22
3.1.2 Selecting the Sensor Pin 23
3.1.3 Selecting the Slider Pins 24
3.1.4 Selecting the GPOs 25
3.2 Schematic Checklist 26
3.3 Sample Schematics 27
3.3.1 Touch Buttons in Mobile Phones 27
3.3.2 Touch Buttons in Home Appliances 29
3.3.3 Proximity Sensing 31

4 CAPSENSE™ Layout Guidelines 33
4.1 Design Toolbox 33
4.1.1 General Layout Guidelines 33
4.1.2 Layout Estimator 37
4.1.3 CP, Power Consumption, and Response Time Calculator 38
4.1.3.1 Estimating the CP Value 38
4.1.3.2 Estimating the Average Current 39
4.1.3.3 Estimating the Response Time 40
4.1.4 Validating the Design 41
4.2 Layout Guidelines for Proximity Sensor 43
4.2.1 Sensor Design Guidelines 43
4.2.2 Effect of Metal Objects on Proximity Distance 45
4.3 Layout Guidelines for Liquid Tolerance 46
4.3.1 Shield Electrode Construction 46
4.3.2 Guard Sensor 47
4.4 Sample Layouts 48
4.4.1 Touch Buttons on FPC 48
4.4.2 Touch Buttons on FR4 PCB 49
4.4.3 Proximity Sensor on FPC 50
4.4.4 CAPSENSE™ Design on FR4 and FPC 51

3
08/2023

5 Configuring CY8CMBR3xxx 52
5.1 Configurations in CY8CMBR3xxx 52
5.1.1 Sensor Configuration 52
5.1.1.1 Sensitivity Control 52
5.1.1.2 Proximity Resolution 52
5.1.1.3 Slider Resolution 53
5.1.1.4 Electromagnetic Compatibility (EMC) 53
5.1.1.5 Flanking Sensor Suppression (FSS) 53
5.1.1.6 Firmware filters 54
5.1.1.6.1 Median Filter 54
5.1.1.6.2 Infinite Impulse Response (IIR) filter 55
5.1.1.6.3 Advance Low-Pass (ALP) Filter 55
5.1.1.7 Automatic Threshold 55
5.1.1.8 Sensor Auto-Reset Time 55
5.1.1.9 Debounce 56
5.1.1.10 System Diagnostics 56
5.1.1.11 Shield and Guard Sensor 57
5.1.2 GPO Configuration 57
5.1.2.1 GPO Drive Mode 57
5.1.2.2 GPO Logic Level 57
5.1.2.3 PWM Output on GPO 58
5.1.2.4 GPO Host Control 58
5.1.2.5 Host Interrupt 58
5.1.2.6 Toggle 59
5.1.2.7 LED ON Time 59
5.1.2.8 Analog Voltage Output 60
5.1.3 Buzzer Configuration 61
5.1.3.1 Buzzer Output 61
5.1.3.2 Buzzer ON Time 61
5.1.4 Device Configuration 62
 5.1.4.1 Supply Voltage 62
5.1.4.2 I2C Address 62
5.1.4.3 Scan Period 62
5.1.4.4 State Timeout 62
5.1.4.5 Wake-on-Approach 62
5.2 Configuring CY8CMBR3xxx 64
5.2.1 Configuring CY8CMBR3xxx Using EZ-Click 64
5.2.1.1 Hardware Connection 64
5.2.1.2 EZ-Click 65
5.2.2 Configuring CY8CMBR3xxx Using a Third-Party Programmer 67
5.2.3 Configuring CY8CMBR3xxx Using Host APIs 67
5.2.3.1 Host APIs Overview 67
5.2.3.2 Host API Description and Usage 67
5.2.3.2.1 High-Level APIs 67
5.2.3.2.2 Low-Level APIs 69
5.2.3.3 Host API File Structure 70
5.2.3.4 Macros 70
5.2.3.5 Demo Project and its Usage 71
5.2.4 Configuring CY8CMBR3xxx Using Bridge Control Panel 73
5.2.4.1 Procedure to Configure CY8CMBR3xxx Using Bridge Control Panel 74
5.2.4.2 Procedure to Calculate the CRC16-CCITT Using Host APIs 79

4
08/2023

6 CAPSENSE™ Performance Tuning 82
6.1 General Considerations 82
6.1.1 Signal, Noise, and SNR 82
6.1.1.1 Noise Counts Measurement 82
6.1.1.2 Signal Measurement 83
6.2 Tuning the Buttons, Sliders, and Guard Sensor 84
6.2.1 Method to Ensure Minimum SNR 84
6.2.2 Button Threshold Parameters 85
6.2.2.1 Finger Threshold 85
6.2.2.2 Hysteresis 86
6.2.2.3 Noise Threshold 86
6.2.2.4 Negative Noise Threshold 86
6.2.2.5 Low-Baseline Reset 86
6.2.3 Setting the Thresholds for the Button, Slider, and Guard Sensors 87
6.3 Tuning a Proximity Sensor 90
6.3.1 Method to Ensure Minimum SNR 90
6.3.2 Advanced Low-Pass (ALP) Filter 92
6.3.2.1 ALP Filter Parameters 92
6.3.2.1.1 K-Value 92
6.3.2.1.2 Proximity Positive Threshold 92
6.3.2.1.3 Proximity Negative Threshold 92
6.3.2.2 ALP Filter Tuning 92
6.3.3 Proximity Sensor Threshold Parameters 95
6.3.3.1 Proximity Threshold 96
6.3.3.2 Proximity Touch Threshold 96
6.3.3.3 Proximity Hysteresis 96
6.3.3.4 Proximity Noise Threshold 96
6.3.3.5 Proximity Negative Noise Threshold 96
6.3.3.6 Proximity Low-Baseline Reset 96
6.3.4 Setting Proximity Sensor Threshold Parameters 96

7 Low-Power Design Considerations 98
7.1 CY8CMBR3xxx Operating Modes 98
7.1.1 Active Mode 99
 7.1.2 Look-for-Touch Mode 100
7.1.3 Look-for-Proximity Mode 100
7.1.4 Deep Sleep Mode 100
7.1.5 Configuration Mode 100
7.2 Factors Affecting Power Consumption 100
7.3 System Design Recommendations for Low Power Consumption 101

8 Resources 102
8.1 Website 102
8.2 Datasheet 102
8.3 Registers Technical Reference Manual 102
8.4 Design Toolbox 102
8.5 EZ-Click™ 2.0 102
8.6 Development Kit 102
8.7 Design Support 102

9 Appendix 103
9.1 High-Level APIs 103
9.2 Low-Level APIs 109

Glossary 111
Revision History 117

5
08/2023

1 Introduction

1.1 Abstract
This guide shows how to design capacitive touch-sensing applications with the CY8CMBR3xxx CAPSENSE™ controller
family. The CY8CMBR3xxx CAPSENSE™ controller family offers unprecedented signal-to-noise ratio (SNR), best-in-class
liquid tolerance, and a wide variety of sensors such as buttons, sliders, and proximity sensors. This guide explains the
CY8CMBR3xxx CAPSENSE™ design flow, design tools, design considerations, and performance tuning.

1.2 Introduction
Capacitive touch sensors are user-interface devices that use the capacitance of the human body to detect the presence
of a finger on, or near, a sensor. Capacitive sensors are aesthetically superior, easy-to-use, and have long lifetimes.
Cypress CAPSENSE™ solutions bring elegant, reliable, and easy-to-use capacitive touch-sensing functionality to your
product. Cypress CAPSENSE™ solutions have replaced more than four billion mechanical buttons.

The CY8CMBR3xxx CAPSENSE™ Express™ controllers enable advanced, yet easy-to-implement, user interface solutions
using capacitive touch sensing. This register-configurable family, which supports up to 16 capacitive sensing inputs,
eliminates time-consuming firmware development and tuning process from design cycles. These controllers are ideal
for implementing capacitive buttons, sliders, and proximity sensing solutions with minimal development-cycle time.
The CY8CMBR3xxx controller enables the development of robust liquid-tolerant CAPSENSE™ applications by eliminat-
ing false touches due to mist, moisture, liquid droplets, or streaming liquid.

The CY8CMBR3xxx CAPSENSE™ Design Guide explains how to implement capacitive touch sensing functionality using
the CY8CMBR3xxx family of CAPSENSE™ controllers. This guide assumes that you are familiar with Cypress’ CAPSENSE™
technology. If you are new to CAPSENSE™ technology, refer to the Getting Started with CAPSENSE™ guide to understand
its basics.

This design guide helps you understand:
 ‒ Features of the CY8CMBR3xxx CAPSENSE™ controller family
 ‒ CAPSENSE™ technology used in the CY8CMBR3xxx family
 ‒ Schematic and layout design considerations
 ‒ How to configure the CY8CMBR3xxx family
 ‒ Performance tuning
 ‒ Low-power design considerations

https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

6
08/2023

1.3 CY8CMBR3xxx Family Feature Overview
The CY8CMBR3xxx family is a high-performance, low-power CAPSENSE™ Express controller that enables advanced, yet
easy-to-implement, user interface solutions using capacitive touch sensing.

The CY8CMBR3xxx family features include:
 ‒ Register-configurable CAPSENSE™ Express controller

 ‒ Configurable through the I2C interface
 ‒ No firmware development or device programming required
 ‒ Supports up to 16 capacitive sensing inputs
 ‒ Supports up to eight general purpose outputs (GPOs)
 ‒ GPOs are either linked to the CAPSENSE™ sensors or controlled by the host processor
 ‒ GPOs support direct LED drive

 ‒ SmartSense™ Auto-Tuning
 ‒ CAPSENSE™ algorithm that continuously compensates for system, manufacturing, and environmental changes
 ‒ Automatically configures capacitive button parameters for optimal performance
 ‒ Eliminates the need for manual system tuning
 ‒ Wide parasitic capacitance (CP) range (5-45 pF)
 ‒ Allows user to set thresholds manually if required

 ‒ Advanced features
 ‒ Wake-on-approach

 – Wakes the system from a low-power mode to active mode on a proximity event.
 ‒ Liquid-tolerance

 ‒ Enables capacitive buttons to work properly in the presence of liquid droplets, liquid stream, or mist
 ‒ PWM output on GPO pins
 ‒ User-configurable LED brightness during sensor ON/OFF state
 ‒ Flanking Sensor Suppression (FSS)

 ‒ Distinguishes between touches from closely spaced buttons
 ‒ Firmware filters to improve SNR
 ‒ Buzzer signal output for audible touch feedback
 ‒ Analog voltage output using external resistor bridge
 ‒ Host interrupt output to alert the host of any change in sensor status
 ‒ System-diagnostics data through the I2C interface

 ‒ Simplifies production line testing and system debug

 ‒ Noise immunity
 ‒ Pseudo-Random Sequence (PRS) clock source to minimize electromagnetic interference
 ‒ Electro Magnetic Compatibility (EMC) feature provides superior noise immunity against external radiated
and conducted noise

 ‒ System diagnostics that can detect:
 ‒ Sensor shorted to VDD and Ground
 ‒ Sensor-to-Sensor shorts
 ‒ Sensor shorted to Shield
 ‒ Improper value of modulating capacitor (CMOD)
 ‒ Parasitic capacitance (CP) of the sensors that is out of range

7
08/2023

 ‒ I2C interface
 ‒ Supports up to 400-kHz speed
 ‒ Wake-on-hardware address match
 ‒ No clock stretching

 ‒ Wide operating voltage range
 ‒ 1.71-V to 5.5-V operation

 ‒ Low power consumption

 ‒ Supports different modes of operation to reduce the power consumption of the device
 ‒ Average current consumption of 22 µA per sensor at 120-ms scan period
 ‒ Deep sleep current with I2C ON : 2.5 µA

 ‒ Industrial temperature range: –40 °C to +85 °C

 ‒ Package options
 ‒ 8-pin SOIC (150 mil)
 ‒ 16-pin SOIC (150 mil)
 ‒ 16-pin QFN (3 × 3 × 0.6 mm)
 ‒ 24-pin QFN (4 × 4 × 0.6 mm)

8
08/2023

1.4 CY8CMBR3xxx Family Feature Comparison
Table 1-1 compares the features supported by different controllers of the CY8CMBR3xxx family. These controllers are
differentiated based on the number of sensors and features supported. Use this table to select the appropriate device
that meets your design requirements.

Table 1-1 Comparison of CY8CMBR3xxx Controllers
Notes:# Feature MBR3116 MBR3106S MBR3110 MBR3108 MBR3102 MBR3002

1 Maximum number of buttons 16 11 10 8 2 2

2 Maximum number of slider segments x 10 x x x x

3 Maximum number of proximity sensors 2 2 2 2 2 x

4 Shield electrode x

5 Guard Sensor x x x

6 Wake-on-approach x

7 Liquid tolerance x x

8 Max. number of GPOs/LED drive outputs 8 0 5 4 2

9 LED brightness control x x

10 I2C Interface x

11 Buzzer drive output x x

12 Host interrupt output x x

13 FSS x

14 Median & IIR filter

15 Advanced-Low-Pass Filter x x

16 Electro Magnetic Compatibility (EMC) x

17 Sensitivity control x

18 Auto finger threshold

19 Flexible finger x

20 LED ON time x x

21 Toggle Mode x x

22 System diagnostics

23 Sensor auto-reset

Notes:
 ‒ The CY8CMBR3102 controller does not support the GUARD sensor and hence it provides liquid tolerance only
for liquid droplets and not for liquid flow.

 ‒ The sensor auto-reset for CY8CMBR3002 is fixed to 20 s and is not configurable.

9
08/2023

1.5 CY8CMBR3xxx CAPSENSE™ System Overview
Figure 1-1 shows the typical system-level block diagram of a CAPSENSE™ application with the CY8CMBR3xxx
CAPSENSE™ controller. The CY8CMBR3xxx controller acts as a slave device that detects finger touches on the user
interface panel and reports the touch status to the host processor. The CY8CMBR3xxx controller sends an interrupt
pulse to the host processor whenever the sensor status changes, so that the host can read the sensor status through the
I2C interface. The CY8CMBR3xxx controller provides touch feedback by driving GPOs and dedicated buzzer output.
The EZ-Click™ tool is used to configure and debug the CY8CMBR3xxx controller using the I2C interface..

Figure 1-1 Block Diagram of a CAPSENSE™ System With CY8CMBR3xxx Controller

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

10
08/2023

1.6 CAPSENSE™ Design Flow
Figure 1-2 shows the typical flow of a product design cycle with capacitive sensing using the CY8CMBR3xxx
controller. Table 1-2 lists the supporting documentation and ecosystem for designing the CAPSENSE™ application with
the CY8CMBR3xxx controller.
The CY8CMBR3xxx family is a high-performance, low-power CAPSENSE™ Express controller that enables advanced, yet
easy-to-implement, user interface solutions using capacitive touch sensing.

1. Evaluate CY8CMBR3xxx
Features Using MBR3 Kit

2. Understand CAPSENSE™
Technology

3. Specify System Requirements
and Characteristics

4. Study Feasibility
and Select Part

5. Design CAPSENSE™
Schematic

6. Design CAPSENSE™ Layout
and Mechanical Structure

7. Configure CAPSENSE™
Controller

8. Preproduction Build
(Prototype)

9. Design Validation: Test and
Evaluate System Functionality
and CAPSENSE™ Performance

10. Production

No

Yes
= Topics covered in this document
= Topics covered in an other
= Not covered in any document; user

should define the process based on
application document

Meets
Specifications?

Figure 1-2 Typical CAPSENSE™ Product Design Flow

11
08/2023

Table 1-2 Supporting Documentation and Ecosystem

Steps in the Flowchart Supporting Cypress Documentation

Name Chapter

1. Evaluate Features of
 CY8CMBR3xxx Using MBR3 Kit

CY3280-MBR3 Evaluation Kit User Guide NA

2. Understand CAPSENSE™
 Technology

Getting Started With CAPSENSE™
CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)

Chapter 2

3. Specify System Requirements
and Characteristic

Not covered in any document; user should define the
process based on application

NA

4. Feasibility Study: Part Selection CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)
 CY8CMBR3xxx Datasheet

Chapter 1

5. Design CAPSENSE™ Schematic CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)

Chapter 3

6. Design CAPSENSE™ Layout and
Mechanical Structure

CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)

Chapter 4

7. Configure CAPSENSE™
Controller

CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)

Chapter 5

8. Preproduction Build (Prototype) Not covered in any document; user should define the
process based on the application

NA

9. Design Validation CY8CMBR3xxx CAPSENSE™ Design Guide
(This document)

Chapter 6

10. Production Not covered in any document; user should define the
process based on the application

NA

https://www.infineon.com/cms/en/product/evaluation-boards/cy3280-mbr3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK38
https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

12
08/2023

2 CAPSENSE™ Technology
The capacitive touch sensing technology enables measurement of the change in the capacitance between a plate
(the sensor) and its environment to detect the presence of a finger on or near a touch surface.

2.1 CAPSENSE™ Fundamentals
A typical CAPSENSE™ sensor consists of a copper pad etched on the surface of a Printed Circuit Board (PCB).
A nonconductive overlay serves as the touch surface for the sensor, as Figure 2-1 shows.

Figure 2-1 Capacitive Touch Sensor

PCB traces and vias connect the sensor pads to the CAPSENSE™ input pins of the CY8CMBR3xxx controller. As Figure 2-2
shows, the total amount of capacitance on each of the sensor pins is modeled as the equivalent lumped capacitor with
values of CX1, CX2, through CXn. The CAPSENSE™ circuitry within the CY8CMBR3xxx controller converts these capaci-
tance values into equivalent digital counts. These digital counts are then processed by the controller to detect touches.

Figure 2-2 CAPSENSE™ Implementation in the CY8CMBR3xxx Device

Note: The CY8CMBR3xxx controller requires an external capacitor CMOD, which is connected between the CMOD pin
and ground.

13
08/2023

The capacitance of the sensor in the absence of a touch is called the parasitic capacitance, CP. Parasitic capacitance
results from the electric field between the sensor (including the sensor pad, traces, and vias) and other conductors in
the system such as the ground planes, traces, any metal in the product’s chassis or enclosure, and so on. The sensor
pin and internal capacitances of the CY8CMBR3xxx controller also contribute to the parasitic capacitance. However,
these internal capacitances are typically very small compared to the sensor capacitance. Figure 2-3 shows how a CY-
8CMBR3xxx sensor pin is connected to a sensor pad with traces and vias. Typically, a ground hatch surrounds the sensor
pad to isolate it from other sensors and traces. Although this diagram shows some field lines around the sensor pad, the
actual electric field distribution is complex.

Figure 2-3 Parasitic Capacitance

When a finger is present on the overlay, the conductive nature and large mass of the human body forms a grounded,
conductive plane parallel to the sensor pad, as Figure 2-4 shows.

Figure 2-4 Section of Typical CAPSENSE™ PCB With the Sensor Being Activated by a Finger

This arrangement forms a parallel plate capacitor. The capacitance between the sensor pad and the finger is:
 ε0 εr A

dCF = Equation 1
Where: ε0 = Free space permittivity
 εr = Dielectric constant (relative permittivity) of the overlay
 A = Area of finger and sensor pad overlap
 d = Overlay thickness
CF is known as the finger capacitance. The parasitic capacitance CP and finger capacitance CF are parallel to each other
because both represent the capacitances between the sensor pin and ground. Therefore, the total capacitance CX of the
sensor, when the finger is present on the sensor, is the sum of CP and CF.
CX = CP + CF Equation 2
In the absence of touch, CX is equal to CP.

14
08/2023

The CY8CMBR3xxx controller converts the capacitance CX into equivalent digital counts called raw counts. Because a
finger touch increases the total capacitance of the sensor pin, an increase in the raw counts indicates a finger touch.
As the parasitic capacitance CP increases, the ratio of CF to CP decreases – the per unit change in capacitance corre-
sponding to a finger touch decreases. Therefore, as CP increases, touch detection becomes more difficult.
In general, CP is an order of magnitude greater than CF. CP usually ranges from 10-20 pF, but in extreme cases it can be as
high as 45 pF. CF usually ranges from 100-400 fF.

2.2 Capacitive Touch-Sensing Method in CY8CMBR3xxx
The CY8CMBR3xxx controller uses a capacitive touch-sensing method - CAPSENSE™ Sigma Delta PLUS (CSD PLUS) - to
convert the changes in capacitance to digital counts. The CSD PLUS touch-sensing method delivers an SNR that ensures
touch accuracy even in extremely noisy environments.
The CSD PLUS sensing method in the CY8CMBR3xxx device incorporates CX into a switched capacitor circuit, as Figure
2-5 shows. The sensor (CX) is alternatively connected to GND and the Analog MUX (AMUX) bus by the non-overlapping
switches Sw1 and Sw2. Sw1 and Sw2 are driven by the Precharge Clock to bleed a current (ISENSOR) from the AMUX
bus. The magnitude of ISENSOR is directly proportional to the magnitude of CX. The sigma-delta converter samples
the AMUX bus voltage and generates a modulating bit stream that controls the constant current source, IDAC. The IDAC
charges AMUX such that the average AMUX bus voltage is maintained at VREF. The sensor bleeds off the current ISEN-
SOR from the modulating capacitor (CMOD), which, in combination with Rbus, forms a low-pass filter that attenuates
precharge-switching transients at the sigma-delta converter input.

Figure 2-5 CSD PLUS Block Diagram

15
08/2023

To maintain the AMUX bus voltage at VREF, the sigma-delta converter matches the IDAC output current to ISENSOR by
controlling the bit stream duty cycle. The sigma-delta converter stores the bit stream over the duration of a sensor scan,
and the accumulated result is a digital raw count output, which is directly proportional to CX. This raw count is inter-
preted by high-level algorithms to resolve the sensor state. Figure 2-6 plots the CSD PLUS raw counts from a number of
consecutive scans during which the sensor is touched and then released by a finger.
As explained in CAPSENSE™ Fundamentals, the finger touch causes CX to increase by CF, which in turn causes raw
counts to increase proportionally. By comparing the shift in the raw count level from the steady state to a predeter-
mined threshold, the high-level algorithms can determine whether the sensor is in an ON (Touch) or OFF (No Touch)
state. To learn more about raw counts, finger threshold, and signal-to-noise ratio (SNR), refer to the Getting Started with
CAPSENSE™ guide.

Figure 2-6 Raw Counts during Finger Touch

2.3 CAPSENSE™ Tuning
Optimal CAPSENSE™ system performance depends on the board layout, sensor dimensions, overlay material, and
 application requirements. These factors are discussed in CAPSENSE™ Layout Guidelines. In addition to these factors,
the CSD PLUS sensing method requires a few hardware and software parameters to be set for robust operation. The
process of setting the optimum value for these parameters is called manual tuning. Manual tuning is a laborious and
time consuming process. Cypress’ SmartSense Auto-Tuning algorithm eliminates the manual tuning process by auto-
matically setting all of the hardware and software parameters.

2.4 SmartSense Auto-Tuning
Tuning the touch-sensing user interface is critical for proper system operation and a pleasant user experience.
The typical design flow involves tuning the sensor interface in the initial design phase, during system integration, and
finally production fine-tuning before the production ramp. Tuning is an iterative process and can be time-consuming.
SmartSense Auto-Tuning is a CAPSENSE™ algorithm that automatically configures capacitive button parameters for
optimum performance. It continuously compensates for system, manufacturing, and environmental changes, and
simplifies the user interface development cycle. It is easy to use and reduces design cycle time by eliminating manual
tuning during the prototype and manufacturing stages. SmartSense Auto-Tuning tunes each CAPSENSE™ button
automatically at power up and maintains optimum button performance during runtime. SmartSense Auto-Tuning
adapts for manufacturing variations in PCBs and overlays. It automatically tunes out noise from various sources such
as LCD inverters, AC lines, and switch-mode power supplies. Refer to the Getting Started with CAPSENSE™ guide to
understand how the SmartSense algorithm works.

https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

16
08/2023

2.5 Sensor Types
CY8CMBR3xxx supports three types of capacitive sensors - buttons, sliders, and proximity sensors, as Figure 2-7 shows.

Figure 2-7 Types of Capacitive Sensors Supported in CY8CMBR3xxx

2.5.1 Buttons (Zero-Dimensional)
CAPSENSE™ buttons replace mechanical buttons in a wide variety of applications such as home appliances, medical
devices, lighting controls, and many other products. It is the simplest type of CAPSENSE™ sensor, consisting of a single
sensor. A CAPSENSE™ button gives one of two possible output states: active (finger is present) or inactive (finger is not
present). These two states are also called ON and OFF states respectively. A simple CAPSENSE™ button consists of a
circular copper pad. It connects to a pin marked for CAPSENSE™ button functionality on the CY8CMBR3xxx controller
as shown in Figure 2-8. In CY8CMBR3xxx, a CSx pin indicates that a button sensor can be connected to it. The button is
surrounded by grounded copper hatch to isolate it from other buttons and traces. A circular gap separates the button
pad and the ground hatch. See the General Layout Guidelines section for layout recommendations.

Figure 2-8 Simple CAPSENSE™ Buttons

17
08/2023

2.5.2 Sliders (One-Dimensional)
Sliders are used when the required output is in the form of a gradual increment or decrement. Examples include
lighting control (dimmer), volume control, graphic equalizer, and speed control. A slider consists of a one-dimensional
array of capacitive sensors called segments, which are placed adjacent to one another. Touching one segment also
results in partial activation of adjacent segments. The firmware processes the raw counts from the touched segment
and nearby segments to calculate the position of the geometric center of the finger touch, which is known as the
centroid position.
The actual resolution of the calculated centroid position is much higher than the number of segments in a slider.
For example, a slider with five segments can resolve at least 100 physical finger positions. This high resolution gives
smooth transitions of the centroid position as the finger glides across a slider. In a linear slider, the segments are
arranged inline, as Figure 2-9 shows.
Each slider segment connects to a pin marked for slider functionality on the CY8CMBR3106S controller. In
CY8CMBR3106S, a SLDxx pin indicates that a slider segment can be connected to it. A zigzag pattern (double
chevron) is recommended for slider segments. This layout ensures that when a segment is touched, the adjacent
segments are also partially touched, which helps in the calculation of the centroid position.
See the General Layout Guidelines section for layout recommendations.

Figure 2-9 Linear Slider

18
08/2023

Figure 2-10 Radial Slider

2.5.3 Proximity (Three-Dimensional)
Proximity sensors detect the presence of a hand in the three-dimensional space around the sensor. However, the actual
output of the proximity sensor is an ON/OFF state similar to a CAPSENSE™ button. Proximity sensing can detect a hand
at a distance of several centimeters to tens of centimeters depending on the sensor size and construction. Each proxim-
ity sensor connects to a pin marked for proximity sensing functionality on the CY8CMBR3xxx controller. In the CY8CM-
BR3xxx controller, a PSx pin indicates that a proximity sensor can be connected to it. Proximity sensing requires electric
fields that are projected to much larger distances than buttons and sliders, requiring a large sensor area. The proximity
sensor can either be a trace on the PCB or a simple wire loop, as Figure 2-11 shows. See the Layout Guidelines for Prox-
imity Sensor section for more details.

Figure 2-11 Proximity Sensor

19
08/2023

2.6 Liquid Tolerance
In a CAPSENSE™ design, false sensing of touch may happen due to the presence of a film of liquid or droplets on the
touch surface. Home appliances, automotive applications, and industrial applications are examples of systems that
must perform in environments that include water, ice, and humidity changes. For such applications, a shield electrode
and guard sensor can provide robust touch sensing.
If your application requires tolerance to liquid droplets and moisture, use a shield electrode in your design. If
your application also requires tolerance to liquid flow on the touch surface, use a guard sensor together with a
shield electrode. The inactive sensors are connected to ground even when the SHIELD is enabled. Therefore, it is
recommended to place the button sensors far apart such that liquid droplets present on one sensor do not cause false
triggering of neighboring sensors.

Note: Liquid tolerance is not supported for slider sensors.

Figure 2-12 Shield Electrode (SH) and Guard Sensor (GUARD) Connected to CY8CMBR3xxx

20
08/2023

2.6.1 Shield Electrode
Shield electrodes protect CAPSENSE™ button sensors from detecting false touches caused by liquid drops. When liquid
drops are present on the overlay surface, the coupling between the shield electrode and the sensor pad is increased by
CWD, as Figure 2-13 shows.

Figure 2-13 Capacitance Measurement with Liquid Drop

 ‒ CWD – Capacitance between the liquid drop and shield electrode

The purpose of the shield electrode is to set up an electric field around the touch sensors that helps attenuate the
effects of liquid. The shield electrode works by mirroring the voltage of the touch sensor on the shield. Since the
shield electrode and sensors are driven with the same signals, the potential difference between them is zero and any
capacitance between the sensors and the shield electrode cannot cause a charge transfer. Therefore, any liquid film or
droplets that are present partially on both the sensor and shield area do not change the sensor capacitance, allowing
CAPSENSE™ to work in the presence of liquid film or droplets.

21
08/2023

2.6.2 Guard Sensor
A guard sensor is a copper trace that surrounds all the sensors on the PCB, as Figure 2-12 shows. It is used to detect
the presence of streaming liquid. When a liquid stream is present on the sensing surface, a large capacitance (CST) is
added to the system, as Figure 2-14 shows. This capacitance may be several times larger than CWD. Because of this, the
effect of the shield electrode is completely masked, resulting in the same or even higher raw counts measured by the
sensor than a finger touch. In this situation, when the guard sensor detects a liquid stream, it blocks other sensors from
triggering. Therefore, touch cannot be detected when streaming liquid is present.
In MBR3, the guard sensor (if enabled) is scanned only in Active and Look-for-Touch mode. Therefore, when the device
is in Look-for-Proximity mode, false proximity triggering can occur when a liquid stream is present.

Figure 2-14 Capacitance Measurement With Liquid Stream

 ‒ CWD - Capacitance between the liquid stream and shield electrode
 ‒ CST - Capacitance between the liquid stream and the system ground
 ‒ CWG - Capacitance between the liquid stream and the guard sensor

To make your design liquid-tolerant, follow these steps:
1. If your application requires tolerance to liquid droplets and moisture, choose a CY8CMBR3xxx controller that has the

shield feature. If your application also requires tolerance to liquid flow, choose a CY8CMBR3xxx controller that has
both shield and guard features. Refer to Table 1-1 to select the controller.

2. Follow the schematic and layout guidelines explained in the Layout Guidelines for Liquid Tolerance section to con-
struct the shield electrode and guard sensor.

3. Enable the shield and guard sensor features in EZ-Click as explained in the Shield and Guard Sensor configuration
section.

4. Tune the guard sensor as explained in the Tuning the Buttons, Sliders, and Guard Sensor section.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

22
08/2023

3 CAPSENSE™ Schematic Design

The CY8CMBR3xxx controller supports buttons, sliders, and proximity sensors on dedicated pins. Also, the number
of buttons, sliders, and proximity sensors supported is fixed in this controller. Selecting the sensor pins is the first
step in designing a CAPSENSE™ application. This chapter provides guidelines on selecting sensor pins for designing a
 CAPSENSE™ schematic.

3.1 Schematic Design Considerations
Designing a schematic with CY8CMBR3xxx involves the following steps:
 1. Special output pin selection
 2. Sensor pin selection
 3. GPO pin selection
 4. Power and ground connections
 5. I2C lines connection
This chapter explains how to select the special output, sensor, and GPO pins. Refer to the CY8CMBR3xxx datasheet for
information on power, ground, and I2C lines connection.

3.1.1 Selecting the Special Output Pins
The shield electrode, guard sensor, buzzer, and host interrupt pins are called special output pins (SPOs). These features
are multiplexed with sensor pins and are supported only on dedicated pins. Therefore, it is important to select these
special output pins before connecting sensor pins.
For example, consider a CAPSENSE™ design which requires seven buttons, buzzer output, and the liquid-tolerance fea-
ture. As listed in Table 1-1, the CY8CMBR3116 and CY8CMBR3110 controller fit the design requirement. For illustration
purpose, CY8CMBR3110 is selected. The first step in the schematic design is to select the Buzzer (BUZ), Shield (SH), and
Guard (GUARD) pins because these pins are multiplexed with the sensor and GPO pins, as Figure 3-1 shows. Refer to the
“Pinouts” section in the CY8CMBR3xxx datasheet to know the multiple features supported on the same pin. After the
special output pins are selected, select the button sensors CS0, CS1, CS3, CS5, CS6, CS7, and CS8, as Figure 3-2 shows.

Figure 3-1 Multiple Features Supported on a Single Pin

https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

23
08/2023

Figure 3-2 Special Output (SPO) Pin Selection

3.1.2 Selecting the Sensor Pin
While selecting the sensor pins, do not select the pins (CSx, SLDx, PSx, or GUARD) that are next to or in between the GPO
pins. Selecting a sensor pin next to a GPO pin might result in cross-talk. If the sensor trace and GPO trace run parallel
to each other, then the GPO switching may cause the sensor next to GPO pin to false trigger. Refer to the “PCB Layout
Guidelines” section in Getting Started with CAPSENSE™ guide for guidelines to avoid crosstalk.
For example, Figure 3-3 (a) shows a schematic in which the sensor CS9 is in between GPO0 and GPO2 pin. In this case,
if the CS9 trace runs parallel to the GPO0 or GPO2 trace, switching of GPO0 or GPO2 might cause the sensor CS9 to
false-trigger. This false trigger can be avoided by choosing a sensor pin CS3, which is not next to a GPO pin as shown in
Figure 3-3 (b) or by ensuring that the sensor trace and GPO trace do not run in parallel,.
If your design requires a proximity sensor, select the proximity sensor pins (PSx) before selecting the button (CSx) pins
because the proximity sensors are supported only on two pins.
To increase noise immunity, connect a 560-Ω series resistor to the sensor pins. If any CAPSENSE™ pin is not used, it
is recommended to configure it as sensor pin and connect it to ground. Refer to the Sensor Configuration section for
details on how to configure a pin as CAPSENSE™ input.

Figure 3-3 Sensor Pin Selection Guidelines

https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

24
08/2023

3.1.3 Selecting the Slider Pins
To select the slider pins, refer to Table 3-1

Table 3-1 Slider Pin Selection Guidelines

Number of Segments Recommendation

Less than or equal to five Select the pins from the SLD1x group. SLD10 should be the first slider segment
and SLD14 should be the fifth segment.

More than five Select all the five pins from the SLD1x group for first five slider segments and
then select the pins from the SLD2x group for the remaining segments. SLD10
should be the first segment of the slider, SLD20 should be the sixth segment,
and SLD24 should be the tenth segment.

1 Pin#18, that is, CS15/SLD24 in CY8CMBR3106S, should be left floating when it is not used. This I/O functions as a reset (AXRES) pin during boot-up.
Make certain that this pin is not grounded during power-up for the device to boot up properly. After boot-up, this I/O functions as indicated by the pin
name.

Figure 3-4 shows an example of a schematic designed for a slider with seven segments. In this schematic, the slider seg-
ments SLD0 to SLD4 use the pins from the SLD1x group of the controller and the SLD5 and SLD6 segments use the pins
from the SLD2x group. The remaining pins in the SLD2x group (SLD22, SLD23, and SLD24) can be configured as buttons.
If unused, they should be configured as buttons and connected to ground 1.

Figure 3-4 Slider Pins Selection

25
08/2023

3.1.4 Selecting the GPOs
If the GPOs are controlled by the host controller, any available GPOs can be used to provide touch feedback. It is
recommended to select GPOs in the order GPO7 to GPO0. For example, if your design requires eight buttons and five
GPOs, select CS0-CS7 for buttons and GPO7-GPO3 for GPOs. This avoids selecting a sensor pin, which is next to a GPO
pin, as Figure 3-5 shows.

Figure 3-5 Selecting GPO Pins When GPO Host Control Is Enabled

If GPO Host Control is disabled, then each sensor from CS0-CS7 will be mapped to GPO0 to GPO7 respectively. In this
case, select the GPOs corresponding to the selected sensor. For example, when GPO host control is disabled and CS0,
CS1, and CS2 are selected as buttons, select GPO0, GPO1, and GPO2 as GPO pins to drive LEDs.
The CY8CMBR3xxx controller supports both sourcing and sinking configuration for driving LEDs on GPO pins. Since the
sinking capability of GPO is much higher than the sourcing capability, it is recommended to connect the LED in sinking
configuration. Refer to the DC I/O port specifications in the CY8CMBR3xxx datasheet for maximum sourcing and sinking
current limits.
To limit the current, add a series resistor of appropriate value depending on the supply voltage. If your design requires a
sinking current of more than the maximum limit, connect an external transistor to the GPO pin and configure the GPO in
the strong drive mode using EZ-Click.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

26
08/2023

3.2 Schematic Checklist
Use the checklist in Table 3-2 to verify your schematic design.

Table 3-2 Schematic Design Checklist

2 VDD: This is the primary supply to the chip and can be powered from 1.8 V ±5% or 1.8 to 5.5 V
3 VCC: This is the internal regulator output, which powers the core and capacitive sensing circuits
4 VDDIO: This is the supply input for I2C SDA, I2C SCL, and HI lines in CY8CMBR3108. The signal levels of these I/Os are
referenced with respect to VDDIO. For more details on power supply information refer to CY8CMBR3xxx Datasheet
5 SDA – Serial Data (SDA) line is used to send data between the I2C master and the I2C slave
6 SCL - Serial Clock (SCL) line is used to synchronize the I2C slave with the I2C master
7 Refer to the Pinouts section in the CY8CMBR3xxx Datasheet for details on the pin connection when not used

No. Category Recommendations/Remarks

1. Decoupling capacitor on the VDD2 pin Connect a 1-µF and 0.1-µF capacitor in parallel

2. Decoupling capacitor on the VCC3 pin Connect a 0.1 µF capacitor if VDD > 1.8 V
If VDD is 1.71 V to 1.89 V, short this pin to VDD

3. Decoupling capacitor on the VDDIO4 pin Connect a 1 µF and 0.1 µF capacitor in parallel

3. CMOD Connect a 2.2 nF, 5 V, X7R or NPO capacitor

4. Series resistor on CSx, PSx, SLDx,
GUARD, and SH pins

Connect a 560-Ω resistor in series with the pin

5. Series resistor on I2C lines Connect a 330-Ω resistor in series with the SDA5 and SCL6 lines

6. Pull-up on I2C lines Select an appropriate value depending on the I2C interface voltage

7. Pull-up on the HI line Select an appropriate value depending on the interface voltage

8. Unused CAPSENSE™ pins7 (CSx, PSx,
SLDx, and GUARD)

Refer to the Pinouts section in the CY8CMBR3xxx Datasheet for
 details on the pin connection when the pin is not used.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

27
08/2023

3.3 Sample Schematics

3.3.1 Touch Buttons in Mobile Phones
Touch buttons are used in mobile phones for quick access to various applications. A typical mobile phone has up to four
touch buttons and requires LED backlighting.
The schematic shown in Figure 3-6 is an example of how to implement touch buttons in mobile phones.

In Figure 3-6, the CY8CMBR3108 controller is configured in the following manner:
 ‒ CS0-CS3: CAPSENSE™ buttons

 ‒ L All CAPSENSE™ pins must have a 560-Ω series resistance (placed close to the chip) for improved noise immunity.
 ‒ GPO0-GPO3: To external LEDs

 ‒ LEDs are connected in sinking mode because the CY8MBR3xxx controller has high sink current capability.
 ‒ Series resistances are connected to limit the GPO current to be with IIL limits.

 ‒ CMOD pin: 2.2 nF to ground
 ‒ VCC pin: 0.1 µF to ground.

 ‒ Supply voltage is 3.3 V and therefore, the VCC pin is not shorted to the VDD pin.
 ‒ VDD pin: To external supply voltage

 ‒ 1 µF and 0.1 µF decoupling capacitor connected to VDD pin.
 ‒ VDDIO pin: To supply voltage, which is ≤ VDD

 ‒ L VDDIO powers I2C and HI lines.
 ‒ I2C_SCL and I2C_SDA pins: 330 ohms to the I2C header
 ‒ HI pin: To host

 ‒ To prompt the host to initiate an I2C transaction for reading the changed sensor status.

28
08/2023

Figure 3-6 Schematic for Touch Buttons in Mobile Phone

Notes:
 ‒ Place capacitors C1, C2, C3, C4, C5, C6, and 560-Ω series resistors as close as possible to the CAPSENSE™ IC
 ‒ I2C lines (SDA and SDL) and HI requires external pull-up resistors on the host side.

29
08/2023

3.3.2 Touch Buttons in Home Appliances
Touch buttons are used in home appliances to replace mechanical buttons. The key requirements in these applications
are liquid-tolerant CAPSENSE™ buttons and audio feedback.
The schematic shown in Figure 3-7 is an example of implementing touch buttons in an induction cooktop.

In Figure 3-7, the CY8CMBR3110 controller is configured in the following manner:
 ‒ CS0, CS1, CS3, CS5, CS6, CS7, CS8: CAPSENSE™ buttons

 ‒ All CAPSENSE™ pins must have a 560-0 series resistance (placed close to the chip) for improved noise
 ‒ immunity.
 ‒ SH: Shield pin

 ‒ The shield pin must have a 560-0 series resistance (placed close to the chip) for improved noise immunity.
 ‒ GUARD: Guard sensor

 ‒ The guard sensor must have a 560-0 series resistance (placed close to the chip) for improved noise immunity.
 ‒ BUZZER: To connect 1-pin buzzer
 ‒ CMOD pin: 2.2 nF to ground
 ‒ VCC pin: 0.1 µF to ground (Device)

 ‒ Supply voltage is 5 V and therefore, the VCC pin is not shorted to the VDD pin.
 ‒ VDD pin: To external supply voltage

 ‒ 1 µF and 0.1 µF decoupling capacitor connected to the VDD pin.
 ‒ I2C_SCL and I2C_SDA pins: 330 0 to the I2C header.

Table 3-3 Bill of Materials

No. Qty. Reference Description Manufacturer Manufacturer Part No.

1 2 C1, C4, C5 CAP CER 0.1 µF 10 V 10%
X5R 0402

Taiyo Yuden LMK105BJ104KV-F

2 1 C2, C6 CAP CER 1 µF 10 V 10%
X5R 0402

TDK Corporation C1005X5R1A105K050BB

3 1 C3 CAP CER 2200 pF 50 V 5%
X7R 0402

Murata GRM155R71H222JA01J

4 2 R1, R2 RES 330 Ω 1/10 W 5% 0402
SMD

Panasonic Electronic
Components

ERJ-2GEJ331X

5 4 R3, R4, R5, R10 RES 560 Ω 1/16 W 5% 0402
SMD

Yageo Corporation RC0402JR-07560RL

6 4 R6, R7, R8, R9 RES 1 k0 1/10 W 5% 0402
SMD

Panasonic Electronic
Components

ERJ-2GEJ102X

7 1 U1 CY8CM-
BR3108-LQXI-16QFN

Cypress Semiconductor CY8CMBR3108-LQXI -16QFN

8 4 D3, D2, D1, D4 LED CHIP ANGAN HER RA
0603

Avago Technologies US
Inc.

516-2277-1-ND

30
08/2023

Figure 3-7 Schematic for Touch Buttons in Induction Cooker

Notes:
 ‒ Place the capacitors C1, C2, C3, C4, and 560-0 series resistors as close as possible to CAPSENSE™ IC
 ‒ The LEDs shown in this schematic are driven by the host controller based on the sensor status.
 ‒ I2C lines (SDA and SDL) require external pull-up resistors on the host side.

31
08/2023

3.3.3 Proximity Sensing
Proximity sensing is used in mobile phones/tablets to turn OFF the display/disable keypad when the user is in a call and
the phone is close to the ear. Proximity sensing is also used in mobile phones/tablets for Specific Absorption Rate (SAR)
regulation.
The schematic shown in Figure 3-8 is an example of implementing proximity sensing in mobile phones/tablets.

In Figure 3-8, the CY8CMBR3102 controller is configured in the following manner:

 ‒ PS0: Proximity Sensor
 ‒ All proximity sensor pins must have a 560 C) series resistance (placed close to the chip) for improved noise immuni-
ty.

 ‒ GPO0: To Host
 ‒ GPO is used to indicate proximity sensor status to host controller

 ‒ CMOD pin: 2.2 nF to ground
 ‒ VCC pin: Shorted to the VDD pin for 1.71 to 1.89 V operation
 ‒ VDD pin: To external supply voltage

 ‒ 1 µF and 0.1 µF decoupling capacitor connected to the VDD pin.
 ‒ I2C_SCL and I2C_SDA pins: 330 C) to the I2C.

Table 3-4 Bill of Materials

No. Qty. Reference Description Manufacturer Manufacturer Part No.

1 2 R1, R4 RES 330 C) 1/10 W 5%
0603 SMD

Yageo Corporation RC0603JR-07330RL

2 9 R3, R6, R2, R5, R7,
R8, R9, R10, R11

RES 560 C) 1/10 W 5%
0603 SMD

Yageo Corporation RC0603JR-07560RL

3 1 C1, C4 CAP CER 0.1 µF 10 V 10%
X5R 0603

AVX Corporation 0603ZD104KAT2A

4 1 C2 CAP CER 1 µF 10 V 10%
X5R 0603

TDK Corporation C1608X5R1A105K080AC

5 1 C3 CAP CER 2200 pF 50 V 5%
NP0 0603

Murata GRM1885C1H222JA01D

6 1 U1 CY8CMBR3110-SX2I-16SO-
IC

Cypress CY8CMBR3110-SX2I-16SOIC

7 1 LS1 Buzzer Piezo 4 kHz 12.2
mm PC MNT

TDK Corporation (VA) PS1240P02BT

8 7 D1, D2, D3, D4, D5,
D6, D7, D8

LED Red Clear 1206 REAR
MNT SMD

Stanley Electric Co BR1111R-TR

9 7 R12, R13, R14,
R15, R16, R17, R18

RES 1.0 kC) 1/10 W 5%
0603 SMD

Yageo RC0603JR-071KL

10 1 J1 CONN HDR 100" SNGL
PCB 5POS

Sullins Connector
Solutions

SWR25X-NRTC-S05-ST-BA

11 1 J2 CONN HEADER .100" DUAL
STR 80POS

Sullins Connector
Solutions

PRPC040DAAN-RC

32
08/2023

Figure 3-8 Schematic for Proximity-Sensing Application

Notes:
 ‒ Place the capacitors C1, C2, C3, and a 560-Ω series resistor as close as possible to the CAPSENSE™ IC
 ‒ I2C lines (SDA and SCL) and the Host_INT pin require a pull-up resistor on the host side

Table 3-5 Bill of Materials

No. Qty. Reference Description Manufacturer Manufacturer Part No.

1 1 C1 CAP CER 2200 pF 50 V 5% X7R 0402 Murata GRM155R71H222JA01J

2 1 C2 CAP CER 1 µF 10 V 10% X5R 0402 TDK Corporation C1005X5R1A105K050BB

3 1 C3 CAP CER 0.1 µF 10 V 10% X5R 0402 Taiyo Yuden LMK105BJ104KV-F

4 1 R3 RES 560 Ω 1/16 W 5% 0402 SMD Yageo Corporation RC0402JR-07560RL

5 2 R1, R2 RES 330 Ω 1/10 W 5% 0402 SMD Panasonic Electronic
Components

ERJ-2GEJ331X

6 1 U1 CY8CMBR3102-SX1I-8SOIC Cypress Semiconductor CY8CMBR3102-SX1I-8SOIC

33
08/2023

4 CAPSENSE™ Layout Guidelines
In a typical CAPSENSE™ application, capacitive sensors are constructed with traces on a FR4/FR2 or flexible printed
circuit (FPC). Designing the CAPSENSE™ layout is an important step in the design phase and following the CAPSENSE™
layout best practices will help your design achieve higher noise immunity, lower parasitic capacitance (CP), and higher
SNR.

The following factors should be considered while designing the CAPSENSE™ layout:
 ‒ Parasitic capacitance (CP): A high sensor CP makes it more difficult to sense small changes in sensor capacitance and
thereby reduces sensitivity. The CAPSENSE™ layout should be such that the CP of the sensor is kept to the minimum.

 ‒ Trace length: Longer trace lengths add to the sensor CP and reduce the sensor sensitivity. Also, a long trace acts like an
antenna and reduces the noise immunity of the sensor.

 ‒ Sensor dimensions: The sensor dimensions depend on the overlay thickness. A thicker overlay requires larger sensor
dimensions.

 ‒ Power consumption: The power consumption of the sensor depends on the CP of the sensor. Higher sensor CP increas-
es the scan time of the sensor, and results in higher overall power consumption. To achieve lower power consump-
tion, reduce the sensor CP.

To achieve lower CP, higher SNR, and lower power consumption, follow the layout best practices.
The CY8CMBR3xxx Design Toolbox helps in achieving these goals.

4.1 Design Toolbox
The CY8CMBR3xxx Design Toolbox is a spreadsheet that provides general layout guidelines, estimation of sensor
dimensions, parasitic capacitance estimation, average current consumption, and response time of sensors.
The design toolbox can be accessed from EZ-Click. The latest version of the design toolbox can be downloaded from
CY8CMBR3xxx Design Toolbox.

This toolbox has four different sections:
1. General Layout Guidelines
2. Layout Estimator
3. CP, Power Consumption, and Response Time Calculator
4. Design Validation

4.1.1 General Layout Guidelines
This sheet provides recommendations on the sensor shape, minimum and maximum sensor dimensions, placement of
the sensor, and routing traces on the PCB or FPC. Follow these guidelines for designing the CAPSENSE™ layout.
Table 4-1 summarizes the layout guidelines for designing a CAPSENSE™ application. For a detailed review of these
guidelines, see the Getting Started with CAPSENSE™ guide.

https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

34
08/2023

Cate-
gory

Details Min Max Recommendations/Remarks

1

Button

Button Parasitic
Capacitance (CP)

5 pF 45 pF Lower the guard sensor CP, higher
the sensitivity and lower the power
consumption

2 Button shape NA NA Rectangular PCB trace with curved
edges and should surround all the
button sensor

3 Button size 2 mm 2 mm

4 Button-button spacing Equal to button
ground clearance

NA 8 mm

5 Button-ground clearance 0.5 mm 2 mm Equal to overlay thickness, but within
min/max limits

6

Slider

Slider segment Parasitic
Capacitance (CP)

5 pF 45 pF Lower the slider segment CP, higher
the sensitivity and lower the power
 consumption

7 Slider Segment Shape
(Linear Slider)

NA NA Zigzag pattern (double chevron)

8 Width of Slider Segment 2 mm8 8 mm 8 mm9

9 Height of the Slider
segment

7 mm 15 mm 12 mm

10 Clearance between 0.5 mm 2 mm 0.5 mm

11 Air gap between the
hatch fill and the slider

0.5 mm 2 mm Equal to overlay thickness, but within
the min/max limits

12

Proxi -
mity
Sen-
sor

Proximity sensor Para-
sitic Capacitance (CP)

8 pF 45 pF Lower the proximity sensor CP, higher
the proximity detection range

13 Proximity sensor shape NA NA Circular or rectangular (curved edges)
loop on PCB for large area
Circular or rectangular solid fill for
small area. It is recommended to have
a ground loop surrounding the prox-
imity sensor.

14 Proximity sensor trace
width

1.5 mm 1.5 mm

15 Clearance between
proximity loop and

1 mm 1 mm

16 Ground loop trace width 1.5 mm 1.5 mm

8 The recommended minimum slider segment width depends on the overlay thickness and the overlay material used. Refer to section “Slider Design” in
Getting Started with CAPSENSE™ design guide for information on the minimum slider segment width for a given overlay thickness and overlay material.

9 The recommended slider-segment width is based on an average human finger diameter of 9 mm. Refer to the section “Slider-Segment Shape, Width,
and Air Gap” in Getting Started with CAPSENSE™ design guide for more details.

Table 4-1 Layout Recommendations

35
08/2023

Ground/
Shield

Cate-
gory

Details Min Max Recommendations/Remarks

17

Proximity sensor loop
diameter

As described in
Recommendation
Column

As described
in Recommen-
dation Column

Loop diameter should at least be
equal to required proximity distance if
ALP filter is
disabled. If ALP filter is enabled, loop
diameter should be at least equal to
half of required proximity distance.
Any ground metal/plane near the
proximity loop sensor will decrease
the proximity distance.

18

Guard

Guard sensor Parasitic
Capacitance (CP)

5 pF 45 pF Lower the guard sensor CP, higher
the sensitivity and lower the power
consumption

19 Guard sensor shape NA NA Rectangular PCB trace with curved
edges and should surround all the
button sensor

20 Guard sensor thickness 2 mm 2 mm

21 Ground /Shield flood-
top layer

As described in
Recommen dation
Column

As described in
Recommenda-
tion Column

Hatched pattern 0.17 mm (7 mil) trace
and 1.143 mm (45 mil) grid
(25% filling)

22 Ground/Shield flood -
bottom layer

As described in
Recommen dation
Column

As described in
Recommenda-
tion Column

Hatched pattern 0.17 mm (7 mil)
trace and 1.778 mm (70 mil) grid (17%
filling).
For CAPSENSE™ designs on FPC there
should not be any ground fill in the
bottom layer.

23

Rout-
ing

Placement of
components in two layer
PCB

NA NA ‒ Top layer: Sensors
 ‒ Bottom layer: Device, other
 components, and traces.

24 Placement of
components in four layer
PCB

NA NA ‒ Top layer: Sensors
 ‒ Second layer: CAPSENSE™ traces
and VDD. Avoid VDD traces below
sensors

 ‒ Third layer: Hatched ground
 ‒ Bottom layer: Device, other compo-
nents and non-CAPSENSE™ traces

25 Trace length from sensor
pad to device pin

520 mm 520 mm is for FR4 PCB, with a button
diameter of 5 mm. For a different de-
sign, refer to Layout Estimator sheet.
 Shorter the trace lower will be the
sensor Cp.

Ground/
Shield

36
08/2023

Cate-
gory

Details Min Max Recommendations/Remarks

26

Rout-
ing

Trace width (FR4/FR2/
FPC)

0.17 mm 0.20 mm 0.17 mm (7 mil)

27 Trace routing NA NA Traces should be routed on the non
sensor side. If any non-CAPSENSE™
trace crosses the CAPSENSE™ trace,
ensure that the intersection is orthog-
onal.

28 Via position for the
sensors

NA NA Via should be placed near the edge
of the button to reduce trace length,
thereby increasing the sensitivity

29 Via hole size for sensor
traces

 10 mil

30 Number of via on sensor
trace

1 2 1

31 CAPSENSE™ series 10 mm Place CAPSENSE™ series resistors
close to the device for noise suppres-
sion. CAPSENSE™ resistors have higher
priority than LED resistors. Place them
first.

32 Distance between any
CAPSENSE™ trace to
ground flood

0.254 mm (10 mil) 0.508 mm
(20 mil)

0.508 mm (20 mil)

33 Device placement NA NA Mount the device on the layer oppo-
site to the sensor. The CAPSENSE™
trace length between the device and
sensors should be minimum (see trace
length above)

34 LED backlighting NA NA Cut a hole in the sensor pad and use
rear mountable LEDs.

35 Board thickness As described in
Recommendation
Column

As described in
Recommenda-
tion Column

Standard board thickness for CAP-
SENSE™ FR4 based designs is 1.6 mm

36

Over-
lay

Overlay thickness As per design
requirement

5 mm Use layout Estimator sheet to decide
overlay. Given maximum limit is for
plastic overlay

37 Overlay material NA NA Should be non-conductive material
(glass, ABS plastic, Formica, wood,
and so on). No air gap should be there
between the PCB and overlay. Use
adhesive to stick the PCB and overlay.

38 Overlay adhesives NA NA Adhesive should benonconductive
and dielectrically homogenous. 467MP
and 468MP adhesives made by 3M are
recommended.

37
08/2023

4.1.2 Layout Estimator
The Layout Estimator sheet provides recommendations for minimum sensor size and maximum trace length based on
the end-system requirements and industrial design, as Figure 4-1 shows.

This sheet takes the following parameters as inputs:
 ‒ Overlay thickness: Enter the overlay thickness that will be used in your design. CY8CMBR3xxx supports up to 5 mm
thick plastic overlay for a button sensor and up to 2 mm plastic overlay for slider sensor.

 ‒ Overlay dielectric constant: Enter the overlay dielectric constant. Refer to Table C in the sheet to know the dielectric
constant of several materials. Materials with high dielectric constant results in higher sensitivity of sensors.

 ‒ Capacitance of trace per inch: Enter the capacitance of trace per inch by referring to Table C in this sheet. FR4 PCB
adds less CP when compared to FPC.

 ‒ Button sensitivity: This parameter decides the button diameter and maximum overlay thickness. Selecting 400 fF
tunes the system for lowest sensitivity and selecting 100 fF tunes the system for highest sensitivity.

 ‒ Slider sensitivity: If your design has a slider, then enter the sensitivity of the slider. Thicker overlays require lower
values of sensitivity.

 ‒ Noise condition: The noise condition is a factor in deciding the sensor dimension. If your design is required to operate
in a high-noise environment, then select “High”. If the noise condition is not known, select “Medium”.

 ‒ Proximity sensor type: If your design requires a proximity sensor, then select the proximity sensor type.
 ‒ Proximity distance required: Select the required proximity distance. Valid range is 1-30 cm.
 ‒ ALP filter: If your design requires a higher proximity distance with smaller loop size, then select “Enabled” otherwise,
select “Disabled”. When the Advanced Low-Pass (ALP) filter is enabled, the response time of the proximity sensor
increases.

Based on the inputs entered, the toolbox estimates the following:
 ‒ Minimum button diameter required to achieve 5:1 SNR: If the button diameter required to achieve 5:1 SNR is greater
than 15 mm, the toolbox shows a warning to reduce the overlay thickness or increase the sensitivity of the sensor. For
the CY8CMBR3002 CAPSENSE™ controller, the sensitivity parameter is fixed at 100 fF. To avoid the sensor being over-
sensitive, you need to start with the button diameter equal to the recommended minimum. If touch is not detected,
increase the button diameter until the touch response is optimum. If the button diameter is too large, it might result
in hover effect and turn on even before the finger touches the sensor.

 ‒ Minimum slider dimension required to achieve 5:1 SNR: The toolbox shows a warning when the required slider dimen-
sions are out of range. In such cases, reduce the overlay thickness or decrease the sensitivity of the sensor.

 ‒ Maximum allowed trace length in the design for button and slider sensors.
 ‒ Clearance between slider segments and the button-to-ground clearance.
 ‒ Minimum proximity loop diameter required to achieve required proximity distance with 5:1 SNR.

38
08/2023

Figure 4-1 Layout Estimator

4.1.3 CP, Power Consumption, and Response Time Calculator
After the board layout has been completed, the CP, average current consumption and response time of your design can
be estimated using the CP, Power Consumption, and Response Time Calculator sheet.

4.1.3.1 Estimating the CP Value
Follow these steps to estimate the CP of the sensor:
1. In Table A, select the part number from the drop down list.
2. If the part number selected is “CY8C3106S” and sliders are required in the design, enter the number of sliders and

number of segments in each slider group.
3. In Table B, select the type of the sensor from the “Sensor Type” column. For a pin that is not connected to any sensor

or not applicable for the selected part number, select NC (no connection). Refer to the CY8CMBR3xxx datasheet for
the pin details.

4. Enter the sensor dimensions for the selected sensor. The “Slider Length” column is applicable only for slider seg-
ments.
If the entered sensor dimension exceeds the maximum range, the toolbox alerts to reduce the sensor dimension.
Refer to the General Layout Guidelines to find the minimum and maximum sensor dimensions.

5. Enter the trace length of each sensor in the “Trace Length” column.
6. When all these parameters are entered, the toolbox estimates the sensor CP value and displays it in the “Parasitic

capacitance (CP) of sensors” column. If the estimated CP value is more than 45 pF, then decrease the trace length until
the CP value is less than 45 pF. Reducing the sensor dimension is not recommended if its value is within the maximum
limit.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

39
08/2023

Figure 4-2 Estimating the CP of Sensors

4.1.3.2 Estimating the Average Current
After the sensor dimensions are entered as shown in the Estimating the CP Value section, use the following steps to
estimate the average current consumption of the controller:

1. In Table B, select the sensitivity of each sensor from the “Sensitivity” column. The higher the value of sensitivity, the
lower the current consumption.

2. In Table C, select the scan period. The higher the scan period value, the lower the average current consumption.
3. Select the State Timeout period. The lower the timeout period value, lower the power consumption. Select this value

based on your design requirements.
4. If EMC is enabled, select “Enabled”; otherwise select “Disabled”.
5. Select the Buzzer ON Time value if the buzzer is enabled; otherwise select 0. When the buzzer is enabled, the average

current consumption increases with the increase in the Buzzer ON Time value.
6. If PWM is enabled on the GPOs, select “Enabled”; otherwise select “Disabled”.
7. Enter the average number of touches in an hour and the duration of each sensor touch. This value depends on how

frequently the user touches the sensors.
8. When all these parameters are entered, the toolbox displays the estimated average current consumption per hour, as

Figure 4-3 shows.

40
08/2023

Figure 4-3 Average Current Consumption Estimation

4.1.3.3 Estimating the Response Time
The response time of the sensors depends on the values entered in Table B and Table C. To estimate the response time
of buttons and sliders, enter the parameters in Table B and Table C as explained in section 4.1.3.1 and section 4.1.3.2
respectively.
Follow these steps to estimate the response time of buttons and sliders:
1. In Table D, select the Debounce parameter value.
2. If infinite impulse response (IIR) and median filter are enabled, select “Enabled” in their respective cells; otherwise

select “Disabled”.
3. When these parameters are entered, the toolbox displays the first touch and consecutive touch response times for

buttons and sliders respectively, as Figure 4-4 shows.

To estimate the response time of the proximity sensor and device timing parameters, follow these steps:
1. To estimate the response time of the proximity sensor in different operating modes, select the operating state of the

controller. Refer to the CY8CMBR3xxx Operating Modes section for details on each operating mode.
2. If the Advanced Low-Pass (ALP) filter is enabled, then select “Enabled”; otherwise select “Disabled”.
3. Select the Debounce parameter value.
4. When these parameters are entered, the toolbox displays the response time for proximity detection and proximity

release, as Figure 4-4 shows.
5. To estimate the LED duration minimum and maximum values, select the LED duration value.

41
08/2023

Figure 4-4 Response Time Estimation

4.1.4 Validating the Design
After the prototype board is built and tested, use the design validation sheet to verify the design. To use the design val-
idation sheet, you mustenter the parameters in Table-B of the CP, Power Consumption, and Response Time Calculator
sheet.
The “Design Validation” sheet validates only the design of buttons and slider sensors; it does not validate or provide
recommendations for proximity sensor design because the design of proximity sensors depends on various external
factors.

To validate your design, follow these steps:
1. Use EZ-Click to measure the raw counts, noise, and CP value for buttons and sliders.
2. Enter the raw counts, noise, and CP value in Table C for each sensor, as Figure 4-5 shows.
3. Based on these parameters, the toolbox provides recommended sensor dimension. If the sensor dimension entered

in Table-B of the CP, Power Consumption, and Response Time Calculator sheet is greater than or equal to the
recommended sensor dimension, the design is shown as “Pass”; otherwise it is shown as “Fail”.

If the design passes, the prototype stage is complete and the design is production-ready.

Note: If the design has a proximity sensor, the toolbox will not provide any recommendation for the proximity sensor
and will not validate the entire design.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

42
08/2023

If the design fails, follow these steps:
1. Reduce the sensitivity parameter value in Table B.
2. If the design still fails, reduce the overlay thickness in Table A, as Figure 4-6 shows.
3. If the design still fails after reducing the sensitivity value and reducing overlay thickness, enter the new sensor

dimensions in Table B, based on the recommended values from Table C, as Figure 4-7 shows.

Note: The layout has to be re-designed based on the recommended values from Table C.

Figure 4-5 Design Validation - Sensor Dimension Recommendation Table

Figure 4-6 Design Validation – Actual Design Values Table

43
08/2023

Figure 4-7 Design Validation – Actual Sensor Dimensions Table

4.2 Layout Guidelines for Proximity Sensor
A capacitive proximity sensor senses nearby conductive objects without any physical contact. A proximity sensor differs
from a button sensor in two different aspects: sensor construction and sensor sensitivity. Proximity sensor construction
should be such that the electric field lines are projected to a maximum distance to achieve higher proximity distance.
The proximity distance depends on the sensor’s electrical field propagation (electrical field strength). A longer propaga-
tion distance provides a longer detection range.

4.2.1 Sensor Design Guidelines
Proximity sensor construction depends on the intended application and the required proximity range. Applications
such as face proximity detection in mobile phones and Specific Absorption Rate (SAR) regulation in tablets require
proximity distance of up to 3 cm. To achieve this proximity distance, a sensor with solid fill and small area is sufficient.
For applications such as photo frames, monitors, and keyboards, which require higher proximity distance, use a large
sensor loop covering the circumference of the device to achieve higher proximity distance.

A proximity sensor can be constructed using the following:
 ‒ Copper trace on a PCB or FPC: A long PCB trace can be used as a proximity sensor. The trace can be a straight line, or
it can surround the perimeter of a system’s user interface, as Figure 4-8 shows. Proximity sensor construction using
PCB trace is appropriate for mass production, but it is not as sensitive as a wire sensor. It is recommended to have
a ground loop around the proximity sensor to reduce the noise and provide immunity against ESD events. There is
a trade-off between proximity range and noise immunity, ESD performance. For proximity sensor and ground loop
layout recommendations, refer to the General Layout Guidelines sheet of the design toolbox.

44
08/2023

Figure 4-8 Proximity Sensor Construction on PCB/FPC

 ‒ Wire: A single length of wire works well as a proximity sensor. Because detecting a hand relies on the capacitance
change from electric field changes, any stray capacitance or objects affecting the electrical field around the wire will
affect the range of the proximity sensor. Using a wire sensor is not an optimal solution for mass production because of
manufacturing cost and complexity.

To increase the proximity range, follow these guidelines:
 ‒ Increase the proximity sensor loop size: The proximity distance increases with increase in the proximity sensor area,
as Figure 4-9 shows.

 ‒ Set the proximity resolution to maximum value: The proximity distance increases with increase in the proximity sen-
sor resolution.

 ‒ Enable the Advanced Low-Pass (ALP) filter: The ALP filter attenuates the noise in proximity sensor raw counts and
increases the proximity distance, as Figure 4-9 shows.

 ‒ Shield the proximity sensor from any nearby metal objects: Metal objects placed close to the proximity sensor reduce
the sensitivity and decrease the proximity distance. Use a shield electrode to eliminate the effect of metal objects and
increase the proximity distance.increase the proximity distance.

Figure 4-9 Relationship between Proximity Loop Size and Proximity Distance

45
08/2023

Notes:
 ‒ The proximity distance shown in Figure 4-9 is measured under ideal conditions. The distance might reduce in practical
applications depending on the operating environment.

 ‒ The proximity distance shown in Figure 4-9 is measured with the ground loop surrounding the proximity sensor.
The clearance between the proximity loop and ground loop is kept to 1 mm.

4.2.2 Effect of Metal Objects on Proximity Distance
The proximity detection range reduces drastically if there is a metal surface near to the sensor. Most home appliances
and automotive applications have a metal frame or case, so achieving a higher proximity range in these applications is
very challenging.

The following factors cause the proximity detection range to reduce drastically when conductive objects are placed
close to the sensor:

 ‒ The parasitic capacitance of the sensor increases. Larger stray capacitance often requires reducing the sensor
 operation frequency, causing the proximity distance to decrease.

 ‒ A grounded metal plane catches a part of the sensor electric field and reduces the capacitance added by the palm.

The influence of a nearby metal surface on a proximity sensor is decreased by placing a shield electrode between the
proximity sensor and the metal object, as Figure 4-12 shows.

Figure 4-10 Electrical Field Propagation for a Single Sensor Configuration without a Metal Object

Figure 4-11 Electrical Field Propagation for a Single Sensor Configuration with a Solid Metal Object

46
08/2023

Figure 4-12 Using a Shield Electrode to Decrease the Metal Object’s Influence

4.3 Layout Guidelines for Liquid Tolerance
Presence of liquid droplets or continuous liquid flow on the overlay can cause capacitive touch sensors to falsely trig-
ger. Using a shield electrode eliminates the false touches caused by the liquid droplets on the sensor. Similarly, using
a guard sensor eliminates the false touches due to a continuous flow of liquid. Refer to the Liquid Tolerance section to
understand the working of shield and guard sensors.

4.3.1 Shield Electrode Construction
Keep in mind the following guidelines to design a liquid-tolerant capacitive sensing application:

 ‒ Use a hatch ground of 0.17 mm (7 mil) trace and 1.143 mm (45 mil grid) in the top layer of the PCB and drive this hatch
pattern with shield signal (SH pin).

 ‒ Surround the sensor pads and exposed traces (for single-layer PCB) with the shield electrode.

Keep the shield electrode spread within 1 cm from the sensor. Spreading the shield electrode beyond 1 cm has
negligible effect on system performance and might increase radiated emissions. If the board area is very large,
the area outside the 1-cm shield electrode should be left empty, as Figure 4-13 shows. In some applications,
there might not be sufficient area available on the PCB for shield electrode implementation. In such cases, the
shield electrode can spread less than 1 cm; the minimum area for shield electrode can be the area remaining on
the board after implementing the sensor.

47
08/2023

Figure 4-13 Shield Electrode Pattern

Follow these guidelines to implement the shield electrode in two-layer and four-layer PCBs:
Two-Layer PCB:

 ‒ Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the driv-
en-shield signal.

 ‒ Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to the driv-
en-shield signal.

Four-Layer PCB:
 ‒ Top layer: Hatch fill with 7-mil trace and 45-mil grid (25 percent fill). Hatch fill should be connected to the driv-
en-shield signal.

 ‒ Layer-2: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to the driven-shield
signal.

 ‒ Layer-3: VDD Plane
 ‒ Bottom layer: Hatch fill with 7-mil trace and 70-mil grid (17 percent fill). Hatch fill should be connected to ground.

The recommended air gap between the sensor and the shield electrode is 1 mm.

4.3.2 Guard Sensor
The guard sensor is a copper trace that surrounds all sensors, as Figure 4-14 shows. Ensure that the shield electrode
pattern surrounds the guard sensor, exposed traces, and spreads no further than 1 cm from these features. The guard
sensor should be in the shape of a rectangle with curved edges. The recommended thickness of a guard sensor is 2 mm,
and the maximum distance between the guard trace and the shield hatch is 1 mm.

48
08/2023

Figure 4-14 PCB Layout With Shield Electrode and Guard Sensor

4.4 Sample Layouts

4.4.1 Touch Buttons on FPC
Figure 4-15 and Figure 4-16 show the top and bottom layer of a layout designed for implementing touch buttons on
FPC. For the schematic of this design, see Figure 3-6.

The following layout best practices are followed in this layout:
1. CP of the sensor is minimized by pouring ground only in the top layer.
2. The trace length of the sensors is minimized by placing the chip close to the sensors.
3. VDD, LED and I2C lines are isolated from sensor traces.
4. The clearance (for LED backlighting) at the center of sensor is kept to a minimum value to achieve maximum

sensitivity.

Figure 4-15 Touch Buttons on FPC – Top Layer

49
08/2023

Figure 4-16 Touch Buttons on FPC – Button Layer

4.4.2 Touch Buttons on FR4 PCB
Figure 4-17 and Figure 4-18 show the top and bottom layer of a layout designed for implementing liquid tolerant touch
buttons on FR4 PCB. For the schematic of this design, see Figure 3-7.

The following layout best practices are followed in this layout:
1. The shield and guard sensor layout is constructed as explained in the Layout Guidelines for Liquid Tolerance section.
2. The trace length of the sensors is minimized by placing the chip close to the sensors.
3. VDD, LED and I2C lines are isolated from sensor traces.
4. The clearance (for LED backlighting) at the center of sensor is kept to a minimum value to achieve maximum

sensitivity.

Figure 4-17 Liquid-Tolerant Touch Buttons on FR4 PCB – Top Layer

50
08/2023

Figure 4-18 Liquid-Tolerant Touch Buttons on FR4 PCB – Bottom Layer

4.4.3 Proximity Sensor on FPC
Figure 4-19 and Figure 4-20 show the top and bottom layer of a layout designed for implementing a proximity sensor on
FPC. For the schematic of this design, see Figure 3-8.

The following layout best practices are followed in this layout:
1. The proximity sensor loop is surrounded by a ground loop for improved noise immunity and ESD performance.
2. CP of the sensor is minimized by using a loop sensor.
3. The proximity sensor is surrounded by a ground ring to minimize the noise. This also helps in providing immunity

against ESD events.
4. The trace length of the sensor is minimized by placing the chip close to the sensor.
5. VDD and I2C lines are isolated from sensor traces.

Figure 4-19 Proximity Sensor on FPC –Top Layer

51
08/2023

Figure 4-20 Proximity Sensor on FPC – Bottom Layer

4.4.4 CAPSENSE™ Design on FR4 and FPC
Figure 4-21 shows a CAPSENSE™ design in which the CAPSENSE™ sensors are implemented on an FPC and the
 CAPSENSE™ controller is placed on an FR4 PCB. The CAPSENSE™ sensors are connected to the controller using a FPC
connector.

Figure 4-21 CAPSENSE™ Design on an FR4 and FPC

Follow these guidelines for a CAPSENSE™ design where the sensor is on an FPC and the CAPSENSE™ controller is on an
FR4 PCB:
1. In the FPC, to minimize the sensor parasitic capacitance, you should have a hatch fill only in the top layer. The hatch

fill can be connected to either ground or driven shield signal. The recommended hatch fill in the top layer is 7-mil
trace and 45-mil grid.

2. In the FPC connector, to minimize the noise coupling to the CAPSENSE™ system via sensor trace, reduce the sensor
trace length and place a ground trace in parallel to the sensor trace, as Figure 4-21 shows.

3. In the FR4 PCB, you can place the CAPSENSE™ controller in the top layer and have a grounded hatch fill in the
 noccupied area. The recommended hatch fill in the top layer is 7-mil trace and 45-mil grid. In the bottom layer, you
can have a hatch ground of 7-mil trace and 70-mil grid.

52
08/2023

5 Configuring CY8CMBR3xxx

CY8CMBR3xxx is an I2C-configurable CAPSENSE™ controller. This controller provides various features and can be easily
configured using EZ-Click, which is a simple, intuitive, graphical user interface tool. All the controllers in the CY8CM-
BR3xxx family, except the CY8CMBR3002, can be configured using EZ-Click. The CY8CMBR3002 controller is a fixed-func-
tion device and cannot be configured. The following section explains the various configurations supported in the
CY8CMBR3xxx family and how to configure them.

5.1 Configurations in CY8CMBR3xxx
The configurations supported in CY8CMBR3xxx controller can be divided into the following four categories:
1. Sensor configuration
2. GPO configuration
3. Buzzer configuration
4. Global device configuration

5.1.1 Sensor Configuration

5.1.1.1 Sensitivity Control
The sensitivity parameter is used to increase or decrease the strength of the sensor signal (difference count). A lower
value of sensitivity (100 fF) setting leads to a stronger signal from the sensor, but increases the response time and aver-
age power consumption. The different sensitivity settings available are 100 fF, 200 fF, 300 fF, and 400 fF. The sensitivity
parameter can be configured for each button sensor, guard sensor, and slider group. The sensitivity parameter is not
applicable to
proximity sensors.

The following factors affect the sensor sensitivity:
1. Overlay thickness: Thicker overlay requires lower value of sensitivity setting.
2. System noise: As system noise increases, sensitivity needs to be lower to avoid false trigger of sensors.
3. Form factor of the design: A relatively large sensor size requires higher value of sensitivity. Sensors with smaller size

require lower value of sensitivity.
4. Power consumption: Power consumption increases for lower values of sensitivity setting. For low power consump-

tion, the sensitivity parameter should be high.
 Power consumption decreases in the order 100 fF > 200 fF > 300 fF > 400 fF.

The sensitivity parameter can be set in the “CAPSENSE™ sensor Configuration” tab in EZ-Click.
Refer to the CAPSENSE™ Performance Tuning section to understand how to set the sensitivity parameter.
This parameter is fixed at 100 fF for the CY8CMBR3002 CAPSENSE™ controller and cannot be configured.

5.1.1.2 Proximity Resolution
The proximity distance depends on the proximity resolution parameter. Higher proximity resolution results in higher
proximity distance. The resolution parameter should be specified for each proximity sensor. This parameter can
range from 12 to 16 bits. The proximity resolution parameter can be set in the “CapSense sensor Configuration” tab
in EZ-Click.
Refer to the CAPSENSE™ Performance Tuning section for details on how to set this parameter. This parameter is not
applicable to the CY8CMBR3002 CAPSENSE™ controller.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

53
08/2023

5.1.1.3 Slider Resolution
The resolution of the slider indicates the number of unique positions that the controller can resolve. A slider with higher
resolution can resolve more number of positions. This parameter is valid only for the CY8CMBR3106S controller.
CY8CMBR3106S supports up to two sliders: the SLD1x group and SLD2x group. The resolution parameter for each slider
group should be specified. However, if both the sliders are combined in to one single slider, specify only one resolution.
The value of this parameter can range from 1 to 254. The slider resolution parameter can be set in the “CAPSENSE™
sensor Configuration” tab in EZ-Click.

5.1.1.4 Electromagnetic Compatibility (EMC)
The EMC feature determines the device’s immunity to external, radiated, and conducted noise such as audio-frequen-
cy noise from power amplifiers, radio-frequency noise from wireless transmitters, ESD, and power-line surges. For a
system in a high-noise environment, enable the EMC feature. Power consumption and response time increase when the
EMC feature is enabled.
For designs based on CY8CMBR3106S, EMC feature is applicable only for sensors CS0/PS0, CS1/PS1 and CS2 to CS5. All
the slider segments and buttons from CS11-CS15 work without EMC.
For designs based on CY8CMBR3116, EMC feature is applicable only for sensors CS0/PS0, CS1/PS1 and CS2 to CS9.

Disable the EMC feature in the following cases:
 ‒ If any button from CS10 to CS15 is enabled in CY8CMBR3116 controller.
 ‒ If filters are enabled(In designs based on CY8CMBR3106S only)
 ‒ If your design will operate in a low-noise environment
 ‒ If the buzzer is enabled

You can enable the EMC feature in the “Global Configuration” tab in EZ-Click. The EMC feature is always disabled in the
CY8CMBR3002 CAPSENSE™ controller.

5.1.1.5 Flanking Sensor Suppression (FSS)
The FSS feature distinguishes among sensor touches from closely-spaced buttons, thus eliminating false touches.
It ensures that the system recognizes only the first button touched when multiple sensors are touched. FSS ensures
that only one button is reported as ON at any time, as Figure 5-2 shows. If a finger contacts multiple buttons, only the
first one to sense a TOUCH state will be reported as ON. If more than one button is touched at the same time, that is, if
multiple buttons are touched simultaneously, then the sensor with the lower number is reported as ON.
The FSS feature is only applicable to buttons, and can be enabled or disabled for each button in “CAPSENSE™ sensor
Configuration” tab in EZ-Click. The FSS feature is not applicable to the CY8CMBR3002 CAPSENSE™ controller.

Figure 5-1 FSS When Only One Button Is Touched

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

54
08/2023

Figure 5-2 FSS When Multiple Buttons are Touched With One Button ON Previously

5.1.1.6 Firmware filters
To reduce the noise in sensor raw counts, the CY8CMBR3xxx controller supports the following filters:

 ‒ Median Filter
 ‒ IIR Filter
 ‒ Advanced Low-Pass (ALP) Filter

The Median and IIR filter is applicable only to buttons, sliders, and the guard sensor. The ALP filter is applicable only to
proximity sensors.

For designs based on CY8CMBR3106S, note the following considerations:
 ‒ ALP filter is not supported
 ‒ If EMC feature is enabled, disable the Median and IIR filter

5.1.1.6.1 Median Filter
The median filter is a nonlinear filter that computes the median value from a buffer of size N. This filter removes the
spike noise from the sensor raw counts. The median filter implemented in the CY8CMBR3xxx controller is a third-order
moving median filter. Refer to the CAPSENSE™ Performance Tuning section to know when to enable this filter.
If the median filter is enabled, it is recommended to disable the Automatic Threshold feature and specify the
Finger Threshold parameter manually. The median filter is always enabled in the CY8CMBR3002 CAPSENSE™ controller.

5.1.1.6.2 Infinite Impulse Response (IIR) filter
The IIR filter produces a step response similar to RC filters. This filter attenuates high-frequency white noise from sensor
raw counts. Refer to the CAPSENSE™ Performance Tuning section to know when to enable this filter. The IIR filter is
always enabled in the CY8CMBR3002 CAPSENSE™ controller.
When both the median and IIR filter are enabled, the median filter is applied first on the raw counts, followed by the IIR
filter.

5.1.1.6.3 Advance Low-Pass (ALP) Filter
The ALP filter is used in attenuating the noise in proximity sensor raw counts. To achieve higher proximity distance, the
proximity sensor requires higher resolution; however, a higher resolution setting results in increased noise in the raw
counts. To attenuate this high noise and achieve an SNR greater than 5:1, enable the ALP filter.
Refer to the Tuning a Proximity Sensor section to know when to enable the ALP filter and how to tune it when it is
 enabled. This feature is not applicable for the CY8CMBR3106S and CY8CMBR3002 CAPSENSE™ controllers.

55
08/2023

5.1.1.7 Automatic Threshold
The automatic threshold feature dynamically sets all the threshold parameters for button sensors, depending on the
noise in the environment. For a variable-noise environment, enable this feature. This feature is applicable only to but-
ton sensors. This feature is always enabled in the CY8CMBR3002 CAPSENSE™ controller.
Consider the following on the automatic threshold feature:

 ‒ If the EMC feature is enabled, the automatic threshold feature will be disabled. In this case, manually set the finger
threshold parameter.

 ‒ If this feature is disabled, set only the finger threshold parameter. All other threshold parameters are automatically set
based on the finger threshold parameter.

 ‒ If the median filter is enabled, disable the automatic threshold feature and manually set the finger threshold para-
meter.

5.1.1.8 Sensor Auto-Reset Time
The Sensor Auto-Reset time determines the maximum time a sensor is considered to be ON when the sensors are
activated. The sensor will be turned OFF after the auto-reset period, as Figure 5-3 shows. This feature prevents a sensor
from getting stuck ON in situations such as a metal object placed too close to it.
There are two sets of auto-reset parameters: auto-reset and proximity auto-reset. The auto-reset parameter is appli-
cable to buttons and sliders. The proximity auto-reset is applicable to proximity sensors. Auto-reset is not applicable
to guard sensors. The auto-reset period can be disabled, or set to 5 or 20 seconds. This parameter is set to 20 s in the
CY8CMBR3002 CAPSENSE™ controller.

Figure 5-3 Sensor Auto Reset

56
08/2023

5.1.1.9 Debounce
The debounce feature avoids false triggering of sensors due to noise spikes or system glitches by specifying the mini-
mum time a sensor has to be touched for a valid ON status.
The debounce value can vary depending on the sensor function. For example, the power button should have a long
debounce time to avoid inadvertently switching the system ON or OFF. Shorter debounce times speed up the device’s
response to a sensor touch or proximity events. The debounce parameter is applicable to all types of sensors, except
slider sensors, and can range from 1 to 15. Set this parameter depending on the response time requirement.
See the Estimating the Response Time section for more details. This parameter is set to 3 in the CY8CMBR3002 CAP-
SENSE™ controller.

5.1.1.10 System Diagnostics
System diagnostics is a built-in power-on self-test (BIST) mechanism. When enabled, it performs several tests at pow-
er-on reset (POR) or after software rest, which are useful in production testing. If any sensor is detected faulty, it will be
disabled and a 50-ms pulse will be sent out on the corresponding GPO (if GPO is enabled) during power-up, as Figure
5-4 shows. The System Diagnostics status is also updated in the register map so that the host can read the test results
through the I2C interface. Refer to the CY8CMBR3xxx Registers TRM for more details.

Figure 5-4 Example Showing CS0, CS1 Passing the BIST and CS2, CS3 Failing

The following tests are performed during power-up:
1. Sensor shorted to Ground: If any sensor is found to be shorted to ground, it is disabled.
2. Sensor shorted to VDD: If any sensor is found to be shorted to VDD, it is disabled.
3. Sensor-to-sensor short: If two or more sensors are found to be shorted to each other, all of these sensors are dis-
abled.
4. Improper value of CMOD: Recommended value of CMOD is 2.2 nF ±10%. If the value of CMOD is found to be less than 1

nF or greater than 4 nF, all sensors are disabled and 50 ms pulse is sent out on all GPOs.
5. Button CP > 45 pF: If the sensor CP is greater than 45 pF, then it is disabled. The CP estimated by CY8CMBR3xxx has an

error of ±2 pF. Therefore, the sensor may be disabled if its CP is in the range of 43-47 pF.
6. If shield is shorted to VDD, Ground, or a sensor, all sensors will be disabled and a 50 ms pulse will be sent out on all

the enabled GPOs.
7. If any slider segment fails the above tests, the entire slider will be disabled.

If system diagnostics is enabled, the boot-up time of the CY8CMBR3xxx controller increases. Refer to the System Specifi-
cations section in the CY8CMBR3xxx datasheet for more details.

Note: CY8CMBR3106S does not support GPOs; therefore, read the system diagnostics results from the register map
using I2C interface.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

57
08/2023

5.1.1.11 Shield and Guard Sensor
Shield and guard sensor are required for a liquid-tolerant CAPSENSE™ design. If your design has a shield electrode, se-
lect the “Enable shield” option in the “Global configuration” tab of EZ-Click. This selection allows the controller to drive
the shield signal on the SH pin.
If your design has guard sensors, select the “Enable guard sensor” option in the “Global configuration” tab of the EZ-
Click. This selection allows the controller to configure the pin as a guard sensor. See Table 1-1 to know the devices that
support the Shield and Guard sensor features.

5.1.2 GPO Configuration
The CY8CMBR3xxx controller supports up to eight GPOs to drive LEDs or to drive an external resistive network to form a
basic D/A converter. A GPO can output a PWM signal or a DC voltage level depending on the configuration. Since the
GPO pins are multiplexed with the CAPSENSE™ sensor pins, specify whether a CY8CMBR3xxx pin is a CAPSENSE™ pin or
a GPO pin in EZ-Click. The CY8CMBR3106S CAPSENSE™ controller does not support GPOs and, therefore, this feature is
not applicable to the device.

5.1.2.1 GPO Drive Mode
The GPOs in CY8CMBR3xxx support two drive modes: open-drain low and strong-drive mode. The open-drain low
mode is equivalent to a normally opened (n/o) switch. When the sensor is inactive, the corresponding GPO will be in
the HI-Z state; when it is active, the GPO is pulled LOW. This drive mode is useful for driving an external resistive net-
work to perform a D/A conversion. The strong-drive mode can be used for driving LEDs. The GPO drive mode for the
 CY8CMBR3002 CAPSENSE™ controller is fixed to open-drain low.
The GPO drive mode is global and applies to all the enabled GPOs.

5.1.2.2 GPO Logic Level
CY8CMBR3xxx allows the user to configure the logic level (Active HIGH or Active LOW) of the GPO pin. This feature pro-
vides flexibility in controlling the output voltage of GPOs based on the sensor status, as Table 5-1 shows. This feature
is global and applies to all the enabled GPO pins. The GPO logic level for the CY8CMBR3002 CAPSENSE™ controller is
“Active Low”.
If the drive mode is set to open-drain low drive mode then the Table 5-1 is applicable only when the pin is externally
pulled to VDD.

Table 5-1 GPO Logic Level

GPO Logic Level Sensor Status Output Voltage on GPO

Active HIGH ON VDD

OFF GND

Active LOW ON GND

OFF VDD

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

58
08/2023

5.1.2.3 PWM Output on GPO
CY8CMBR3xxx provides a PWM output on the GPO pins. The PWM signal is useful for controlling the brightness of LEDs.
To enable PWM output on GPOs, specify the active-state duty cycle and inactive-state duty cycle percentage in the
“Global configuration” tab in EZ-Click. An active duty cycle of 100% and inactive duty cycle of 0% results in a DC output
on the GPO. This feature is not applicable to the CY8CMBR3106S and CY8CMBR3002 CAPSENSE™ controllers.
The PWM output feature is global and applies to all enabled GPOs. The frequency of the PWM signal is 106.6 Hz. The
PWM duty cycle can be configured for each GPO with a step size of 6.67%.

5.1.2.4 GPO Host Control
In CY8CMBR3xxx, each GPO (GPO0-GPO7) is logically linked to the CAPSENSE™ pins (CS0-CS7). When a sensor is activat-
ed, the corresponding GPO will be automatically turned ON. However, if the host processor wants to control the GPO
pins, the GPO host control feature should be enabled. This feature allows the host processor to control the GPO pins by
writing to the GPO_OUTPUT_STATE register. Refer to CY8CMBR3xxx Registers TRM for more details. This feature is not
applicable to the CY8CMBR3106S and CY8CMBR3002 CAPSENSE™ controllers.
The delay between the host writing the command and the CY8CMBR3xxx controller responding to these commands is
equal to one Scan Period when the controller is operating in Look-for-Touch Mode and Look-for-Proximity Mode. If the
controller is operating in Active Mode, then the delay depends on the total scan time of all sensors.

Note In EZ-Click, even if a GPO is not enabled and if the corresponding GPOx/CSx pin is not configured as a CAPSENSE™
sensor, the GPO will be driven (turned ON/OFF) based on the corresponding sensor ON/OFF status. To disable a GPO
pin, you need to configure the pin as a CAPSENSE™ input in EZ-Click and connect the pin to ground.

5.1.2.5 Host Interrupt
The host interrupt feature generates an active low pulse signal with duration of 250 µs on the pin HI to the host
processor whenever the sensor status or slider position changes, as Figure 5-5 shows. To enable this feature specify the
Host Interrupt pin in the EZ-Click. The host interrupt pin has open-drain low-drive mode configuration and requires an
external pull-up resistor for proper operation. See Table 1-1 to know the list of devices that support this feature.

Figure 5-5 Host Interrupt Line when CSx Button is Touched

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

59
08/2023

5.1.2.6 Toggle
When the Toggle feature is enabled, the state of GPO pins changes on every rising edge of the button and proximity
sensor status. This feature implements the mechanical push button switch behavior in CAPSENSE™ controller. The
toggle
configuration is shown in Figure 5-6. The toggle feature can be enabled or disabled for each GPO pin. The toggle feature
is not applicable for the CY8CMBR3002 CAPSENSE™ controller.

Take into account the following considerations for using the toggle feature:
 ‒ The toggle and LED ON time features are mutually exclusive. If both the features are enabled, the toggle feature takes
higher priority and so the LED ON time feature will be disabled.

 ‒ If the toggle feature is enabled and any GPO is turned ON, the device will not enter the Look-for-Proximity Mode.
Disable the toggle feature if your design requires the wake-on-approach feature.

Figure 5-6 Example of Toggle Feature

5.1.2.7 LED ON Time
The LED ON time specifies the duration for which the GPO pin is driven LOW or HIGH after the corresponding sensor is
released, as shown in Figure 5-7. The LED ON time feature can be enabled or disabled on each GPO pin. LED ON time is
global for all GPOs and can range from 0 to 2000 ms, with a resolution of 20 ms. The LED ON time feature is not applica-
ble for the CY8CMBR3002 CAPSENSE™ controller.
The toggle and LED ON time features are mutually exclusive. If both features are enabled, the toggle feature takes the
higher priority and so the LED ON time feature will be disabled.

Figure 5-7 LED ON Time

60
08/2023

5.1.2.8 Analog Voltage Output
The analog voltage output feature uses a resistor network to indicate the sensor status as an analog voltage to the host,
as Figure 5-8 shows. In this configuration, the GPO drive mode should be set to open-drain LOW-drive mode. When the
sensor is touched, the corresponding GPO is driven to a logic LOW signal and a voltage divider is formed at VOUT. When
the sensor is released, the corresponding GPO is in HI-Z state and the voltage VOUT will be at VDD. The FSS feature can be
enabled so that only one button is reported ON at a time.

The analog voltage VOUT is given by:

VOUT = VDDxRn

 Equation 3
Where: R is the resistance between VDD and VOUT

Rn is the effective resistance between VOUT and Ground

Figure 5-8 Analog Voltage Output Using GPO and Resistor Network

R+Rn

61
08/2023

5.1.3 Buzzer Configuration

5.1.3.1 Buzzer Output
CY8CMBR3xxx supports a single-input Piezo-buzzer. The buzzer is driven by a PWM signal; its frequency is configurable.
To enable the buzzer, select the buzzer pin in EZ-Click. This feature is not applicable for the CY8CMBR3102 and
CY8CMBR3002 CAPSENSE™ controllers.
The CY8CMBR3xxx supports buzzer frequencies of 1.0, 1.1, 1.3, 1.6, 2.0, 2.6, and 4.0 kHz to meet different Piezo-buzzer
drive requirements and to provide different tones. The duty cycle of buzzer output is fixed at 50%.

5.1.3.2 Buzzer ON Time
The Buzzer ON Time feature allows the user to specify the duration for which the buzzer output should be active when
the sensor is activated, as Figure 5-9 shows. The buzzer signal output is driven for the configured time and does not
depend on the sensor touch time. The output goes to the idle state after the Buzzer ON-Time elapses, even if the sensor
is active.
The buzzer signal output does not restart if the same sensor or any other sensor is touched before the Buzzer ON - Time
elapses, as Figure 5-10 and Figure 5-11 show. The Buzzer ON-Time can range from 100 ms to 12.7 s with a resolution of
100 ms.

Figure 5-9 Buzzer Activation on Touch Event

Figure 5-10 Buzzer Operation with Consecutive Touches of the Same Sensor

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

62
08/2023

Figure 5-11 Buzzer Operation When Multiple Sensors Are Activated

5.1.4 Device Configuration

 5.1.4.1 Supply Voltage
The supply voltage of the CY8CMBR3xxx controller should be specified in EZ-Click for proper operation. If the operating
voltage is in the range of 1.71 to 1.89 V, select the 1.8(±5%) V option; otherwise select the 1.8-5.5 V option. This feature is
not applicable to the CY8CMBR3002 CAPSENSE™ controller.

5.1.4.2 I2C Address
The CY8CMBR3xxx controller communicates to the host processor through the I2C interface. In a typical I2C communi-
cation, there will be more than one slave device on the I2C bus. To avoid conflicts in the I2C address among the slave
devices, CY8CMBR3xxx provides an option to specify the I2C address of the controller. The I2C address is the 7-bit value
and can range from 8 (0x08) to 119 (0x77). The CY8CMBR3002 controller does not support I2C communication.

5.1.4.3 Scan Period
The scan period parameter specifies the amount of time between successive sensor scans in Look-for-Touch Mode and
Look-for-Proximity Mode. This parameter can range from 20 to 500 ms with a resolution of 20 ms. This parameter is fixed
at 120 ms for CY8CMBR3002 CAPSENSE™ controller.
The response time and power consumption of the controller depends on the scan period.
See the Low-Power Design Considerations section for more details.

5.1.4.4 State Timeout
The State Timeout interval decides the time taken by the device to transition from one operating mode to another when
the sensors are not touched. This parameter affects the response time of the sensors for consecutive touches. This
parameter should be set based on the design requirements. This allows the controller to stay in the active mode and
provide a fast response to consecutive touches. This parameter can range from 0 to 63 s with a resolution of 1 s. This
parameter is fixed at 10 s for CY8CMBR3002 CAPSENSE™ controller.

5.1.4.5 Wake-on-Approach
To reduce power consumption, CAPSENSE™ designs use the wake-on-approach feature. This feature allows the device
to enter the Look-for-Proximity Mode when proximity sensors are enabled. In the look-for-proximity mode, only prox-
imity sensors are scanned; when proximity is detected, the controller enters the Look-for-Touch Mode in which all the
sensors are scanned, as shown in Figure 5-12. See the Low-Power Design Considerations section for more details. This
feature is not applicable to the CY8CMBR3002 CAPSENSE™ controller.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

63
08/2023

Figure 5-12 Transition From Look-for-Touch Mode to Look-for-Proximity Mode

64
08/2023

5.2 Configuring CY8CMBR3xxx
The CY8CMBR3xxx family is a register-configurable CAPSENSE™ controller. This controller has 128 bytes of configuration
registers starting from address 0x00 to 0x7E. Except the CY8CMBR3002 CAPSENSE™ controller, all other controllers in
the CY8CMBR3xxx family can be configured through the I2C interface. The configuration data can be saved to nonvolatile
memory so that controller retains the configuration data even when it is powered-off.
For more information on the CY8CMBR3xxx registers, refer to the CY8CMBR3xxx Registers TRM.

The CY8CMBR3xxx configuration registers are configured via I2C interface using one of the following methods:
1. EZ-Click 2.0
2. Third-party Programmer
3. Host APIs
4. Bridge Control Panel

5.2.1 Configuring CY8CMBR3xxx Using EZ-Click
EZ-Click is a simple and intuitive graphical user interface (GUI) used to configure the CY8CMBR3xxx CAPSENSE™ control-
ler. It takes all the required parameters, and configures the device via I2C interface.

5.2.1.1 Hardware Connection
Figure 5-13 shows the hardware setup required to configure the CY8CMBR3xxx CAPSENSE™ controller using EZ-Click
2.0 or Bridge Control Panel through an I2C interface. The EZ-Click/BCP communicates to the CY8CMBR3xxx controller
using either MiniProg3 or CY3240-I2USB Bridge. The connection between the MiniProg3 or I2USB Bridge and the CY8CM-
BR3xxx controller is shown in Figure 5-13. Because the SCL and SDA pins in the MiniProg3 or I2USB Bridge are internally
pulled to VDD (refer to the MiniProg3/I2USB Bridge kit user guide for the pull-up resistor values), you should not have any
external pull-up resistors connected on these lines. It is not mandatory to supply VDD to the CY8CMBR3xxx controller
from the MiniProg3 or CY3240-I2USB Bridge. The CY8CMBR3xxx controller can also be externally powered. In such cases,
in the EZ-Click and BCP, ensure that the power is turned ON and the voltage settings for the MiniProg3/I2USB Bridge is
selected as same as the CY8CMBR3xxx VDD.

Figure 5-13 Hardware Setup Required for Configuring CY8CMBR3xxx Using EZ-Click or BCP

Note:
In the CY3280-MBR3 Kit, the PSoC 5LP device is used as an I2USB Bridge and therefore, you do not need the MiniProg3
or CY3280-I2USB Bridge to communicate with the CY8CMBR3116 CAPSENSE™ controller. See CY3280-MBR3 Kit User
Guide for more details.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK40
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK40
https://www.infineon.com/cms/en/design-support/finder-selection-tools/product-finder/evaluation-board/?utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK244
https://www.infineon.com/dgdl/Infineon-CY3240_USB-I2C_Bridge_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eef8b677f87&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=File_1_2_1639
https://www.infineon.com/cms/en/product/evaluation-boards/cy3280-mbr3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK38
https://www.infineon.com/dgdl/Infineon-CY3280_MBR3_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eee77617d75&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=file_4_1_1038
https://www.infineon.com/dgdl/Infineon-CY3280_MBR3_Evaluation_Kit_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0eee77617d75&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files&redirId=file_4_1_1038

65
08/2023

5.2.1.2 EZ-Click
This section provides a quick introduction to EZ-Click. Refer to the EZ-Click user guide for details on how to configure
the CY8CMBR3xxx controller.

EZ-Click provides the following features:
 ‒ A Graphical User Interface (GUI) to configure the CY8CMBR3xxx controller.
 ‒ Allows tuning the sensor parameters and viewing the sensor debug data in real time.
 ‒ Supports production-line testing and displays system diagnostics results and the CAPSENSE™ sensor SNR.
 ‒ Allows to save the configuration and use it on multiple samples.
 ‒ Generates a header file which consists of an array with 128 bytes of configuration data to configure the CY8CMBR3xxx
controller using Host APIs, as Figure 5-16 shows. For more details, go to Section 5.2.3

 ‒ Generates hex file of your configuration to configure the device using third-party programming tools. For more details,
refer to section 5.2.2

 ‒ Generates the configuration file, including the required I2C instructions to configure the device using the Bridge Con-
trol Panel, as Figure 5-23 shows. For more details, refer to section 5.2.4

EZ-Click has five tabs, as Figure 5-15 shows:
 ‒ Start Page: This page shows the steps to create a new project, generate configuration files, and configure the MBR
family of controllers.

 ‒ CAPSENSE™ sensor configuration: In this tab, the number of sensors can be selected and various parameters and
features can be set for each sensor.

 ‒ Global configuration: In this tab, the GPOs can be enabled and the global parameters can be specified.
 ‒ CAPSENSE™ output: In this tab, the sensor debug data can be monitored for debugging purpose.
 ‒ System diagnostics: In this tab, the system diagnostics results can be viewed for each sensor.

Note:
The “CAPSENSE™ sensor configuration”, “Global configuration”, “CAPSENSE™ output”, and “System diagnostics” tab can
be accessed only if a new project is created or an existing project is opened.

Figure 5-14 Configuring CY8CMBR3xxx Using Various Files Generated by EZ-Click

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

66
08/2023

Figure 5-15 EZ-Click Customizer Tool

Figure 5-16 C Header File Generated by the EZ-Click Customizer Tool

67
08/2023

5.2.2 Configuring CY8CMBR3xxx Using a Third-Party Programmer
To configure large number of devices rapidly during mass production, Cypress recommends using a third-party pro-
grammer from RPM Systems Corporation. To configure the CY8CMBR3xxx controller using the third-party programmer,
use the hex file of the configuration generated by EZ-Click. Contact RPM Systems Corporation for further information.

For information on the CY8CMBR3xxx family programming specifications refer to the CY8CMBR3xxx Device Program-
ming Specifications.

5.2.3 Configuring CY8CMBR3xxx Using Host APIs
Figure 5-17 shows a system where the host processor communicates via I2C interface with the CY8CMBR3xxx controller
along with few other processors on the same PCB. The host can read back the sensor status from the CY8CMBR3xxx con-
troller during run-time, tune its operation if required, and also reconfigure it to suit a different requirement.
To configure the CY8CMBR3xxx controller on-board using a host processor, Cypress provides a set of library files called
“Host APIs”, which can be integrated into the host processor firmware. This section provides the description of Host
APIs and explains how to use them to configure the CY8CMBR3xxx Controller.

Figure 5-17 System Demonstrating Host API Usage

5.2.3.1 Host APIs Overview
Host APIs are a set of C-style functions provided by Cypress to enable the host processor to interact with the
 CY8CMBR3xxx controller, directly via the I2C interface.

These APIs can be used to:
1. Configure the CY8CMBR3xxx controller
2. Issue I2C commands to the CY8CMBR3xxx controller
3. Read information from the CY8CMBR3xxx register map

5.2.3.2 Host API Description and Usage
Host APIs are divided into two sections: High-Level APIs and Low-Level APIs.

5.2.3.2.1 High-Level APIs
High-level APIs implement the required functionality purely in C-style software, and are in turn dependent on low- level
APIs for physical interaction with the CY8CMBR3xxx controller. Table 5-2 lists the high-level APIs and their usage.
The API prototypes, parameters, and return values are mentioned in the Appendix.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://rpmsys.com
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_Device_Programming_Specifications-Programming+Specifications-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66afee55b9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification&redirId=PS7
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_Device_Programming_Specifications-Programming+Specifications-v08_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66afee55b9&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-programming_specification&redirId=PS7
https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

68
08/2023

10 The Host APIs cannot be used to configure different controllers of the CY8CMBR3xxx family present on the same I2C bus.

Table 5-2 High-Level Host APIs

API Description and Usage

1 CY8CMBR3xxx_WriteData() General purpose API to write data to the device. Use this API to write to
one or more registers of the CY8CMBR3xxx controller

2 CY8CMBR3xxx_ReadData() General purpose API to read data from the CY8CMBR3xxx controller.
Use this API to read from one or more registers of the CY8CMBR3xxx
controller.

3 CY8CMBR3xxx_WriteDualByte() API to write to a two-byte register of the CY8CMBR3xxx controller.
For example, the 16-bit sensor enable register can be written using this
API.

4 CY8CMBR3xxx_ReadDualByte() API to read from a two-byte register of the CY8CMBR3xxx controller.
For example, the 16-bit sensor status register can be read using this
API.

5 CY8CMBR3xxx_SendCommand() API to issue commands to the CY8CMBR3xxx controller, such as to
save configuration to nonvolatile memory, reset the CY8CMBR3xxx
controller, etc.

6 CY8CMBR3xxx_CheckCommandSta-
tus()

API to check the status of the last command sent to the CY8CMBR3xxx
controller. It is recommended to call this API in the host processor
before sending a new command to the CY8CMBR3xxx controller.

7 CY8CMBR3xxx_Configure() API to configure the entire 128 bytes of configuration registers in the
CY8CMBR3xxx controller.
To use this API, create a configuration in EZ-Click and use the generat-
ed header file in the host firmware.

8 CY8CMBR3xxx_CalculateCrc() API to calculate CRC checksum of a given configuration.

9 CY8CMBR3xxx_VerifyDeviceOnBus() API to verify that the CY8CMBR3xxx device on the I2C bus is the intend-
ed one10. Call this API from the host processor to confirm that the
right I2C slave device is on the bus.

10 CY8CMBR3xxx_SetDebugDataSensor-
Id()

This API sets the sensor number for which the sensor debug data has
to be read from the CY8CMBR3xxx controller.

11 CY8CMBR3xxx_ReadSensorDebugDa-
ta()

API to read sensor debug data. This API helps in knowing the sensor
performance.

12 CY8CMBR3xxx_ReadDiffCounts() API to read the difference counts of all sensors of the CY8CMBR3xxx
controller.

13 CY8CMBR3xxx_ReadSensorStatus() API to read the status of all sensors of the CY8CMBR3xxx controller.
When the CY8CMBR3xxx controller issues a Host Interrupt pulse, call
this API to know which sensor is triggered.

69
08/2023

5.2.3.2.2 Low-Level APIs
Low-level APIs are responsible for the physical communication between the host processor and the CY8CMBR3xxx de-
vice via I2C interface, and are thus hardware-dependent. These APIs support PSoC4 architecture by default, and require
to be modified to support a specific host processor.

When the CY8CMBR3xxx controller is in Deep Sleep Mode, the first I2C transaction will be NACKed. If the CY8CMBR3xxx
controller NACKs the I2C transaction, these low-level APIs must retry twice within the next 340 ms for a successful trans-
action. Refer to the “Host Communication Protocol” in the CY8CMBR3xxx Datasheet. To achieve this either disable all
the interrupts in the host processor except for I2C, or ensure that all pending interrupts complete within 340 ms. If there
is a delay of more than 340 ms between two subsequent I2C transactions, the device might go into Deep Sleep Mode
and the host might receive a NACK.

There are three low-level APIs – Host_LowLevelWrite(), Host_LowLevelRead(), and Host_LowLevelDelay().
The API prototypes, parameters, and return values are mentioned in the Appendix.

Table 5-3 Low-Level Host APIs

API Description and Usage

1 Host_LowLevelWrite() API to write to the register map of the CY8CMBR3xxx controller via I2C
interface.

2 Host_LowLevelRead() API to read data from the register map of the CY8CMBR3xxx controller via
I2C interface.

3 Host_LowLevelDelay() This API implements a time-delay function to be used by the High- level
APIs. The delay period is in milliseconds. This delay is achieved by a
code-execution block for the required amount of time.

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families&redirId=81748_h_299
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61

70
08/2023

5.2.3.3 Host API File Structure
The files listed in Table 5-4 form the library of Host APIs.

Table 5-4 File Structure for Host APIs

File Name Description

1 CY8CMBR3xxx_Device.h This file contains the macros to define the various devices in CY8CM-
BR3xxx family. Also, it defines which device is currently being used for
the Host APIs.

2 CY8CMBR3xxx_Registers.h This file contains the macros to define the offset addresses for all the
registers of the CY8CMBR3xxx family. Use these macros to refer to the
registers, in place of their addresses directly. Each register’s macro is
accessible only if the register is available for the currently used device.

3 CY8CMBR3xxx_CommandsAndCon-
fig.h

This file contains the macros to define the various op-codes of the com-
mand register (CTRL_CMD).

4 CY8CMBR3xxx_APIs.h This file contains the declarations of all the high-level APIs. This file also
declares the structure definitions for holding the sensor debug data and
sensor status read from the device.

5 CY8CMBR3xxx_CRC.c This file contains the API to calculate CRC for a given configuration of
CY8CMBR3xxx device.

6 CY8CMBR3xxx_APIs.c This file contains the definitions of all the high-level APIs, except the API
to calculate CRC.

7 CY8CMBR3xxx_HostFunctions.h This file contains the declarations of the host-dependent, low-level APIs.

8 CY8CMBR3xxx_HostFunctions.c This file contains the definitions of the low-level APIs. Modify the content
of these APIs to suit the host processor’s I2C implementation.

5.2.3.4 Macros
There are two macros “CY8CMBR3XXX_DEVICE” and “CY8CMBR3xxx_SYNC_COUNTER_MATCH_RETRY” defined in
“CY8CMBR3xxx_Device.h” and “CY8CMBR3xxx_APIs.h” respectively. These two macros need to be modified to define
the CY8CMBR3xxx controller and the I2C retry counts in case of sync counter mismatch.

1. CY8CMBR3xxx_DEVICE
This macro defines the controller accessed by the host. This controller can be one of the different controllers in the
CY8CMBR3xxx family, except for CY8CMBR3002 (since this controller does not support I2C communication). The differ-
ent controllers in CY8CMBR3xxx family are defined in CY8CMBR3xxx_Device.h.

2. CY8CMBR3xxx_SYNC_COUNTER_MATCH_RETRY
This macro defines the number of times the APIs CY8CMBR3xxx_ReadSensorDebugData() and CY8CMBR3xxx_Read-
DiffCounts() retry I2C communication with the CY8CMBR3xxx controller in case the sync counters do not match during
a read operation. Typically the read operation will be successful in the second attempt, if not in the first attempt. It is
recommended to set a value which is < 10. To know more about sync counters, refer to CY8CMBR3xxx Registers TRM.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34

71
08/2023

5.2.3.5 Demo Project and its Usage
To quickly get familiarized with using Host APIs, a demo project is created with PSoC 4 as the host processor. This demo
showcases how to use Host APIs to configure the CY8CMBR3116 controller on the CY3280-MBR3 Evaluation Kit using the
PSoC4 Pioneer Kit.

The following hardware is required for this demo:
 ‒ CY3280-MBR3 Evaluation Kit
 ‒ CY8CKIT-042 PSoC4 Pioneer kit
 ‒ USB A to mini-B cable
 ‒ PC/Laptop

The following software is required for this demo:
 ‒ PSoC Programmer 3.20.0

Note:
The kit driver for the PSoC4 pioneer kit should already have been installed. Refer to the
CY8CKIT-042 PSoC 4 Pioneer Kit Guide for details on installing kit driver.

To configure the MBR3 Evaluation Kit using the PSoC4 Pioneer Kit follow this procedure:
1. Change the jumper position on header J13 on MBR3 Evaluation Kit to connect pins J13-2 and J13-3.
2. Change the jumper position on header J14 on MBR3 Evaluation Kit to connect pins J14-2 and J14-3.
3. Change the jumper position on header J15 on MBR3 Evaluation Kit to position A. This will enable the kit to support

Buzzer and Host Interrupt output.

Figure 5-18 Jumper J13, J14 and J15 Location on the MBR3 Evaluation Kit

4. Mount the MBR3 Kit on top of the PSoC4 Pioneer Kit, such that the USB ports of both kits align with each other.
When the USB ports are aligned, the J1, J2, J3, and J4 headers on the PSoC 4 Pioneer Kit connect to J1, J2, J3, and J4
headers on the CY3280-MBR3 EVK.

5. Connect the PSoC4 Pioneer Kit to the PC via the USB A to mini-B cable, available as part of the MBR3 Evaluation Kit.
The power LED (red) of the MBR3 kit glows. The final connection is shown in Figure 5-19. Once the hardware is set up,
the project can be downloaded on to the PSoC4 host

https://www.infineon.com/cms/en/product/evaluation-boards/cy3280-mbr3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK38
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK50
https://www.infineon.com/cms/en/product/evaluation-boards/cy3280-mbr3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK38
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK50
https://www.infineon.com/cms/en/design-support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD5
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK50
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK50

72
08/2023

Figure 5-19 MBR3 Kit Mounted on Top of PSoC4 Pioneer Kit

6. Download the “CY8CMBR3xxx_Host_APIs_Demo_Project.zip” project from here and extract the contents from the .zip
file.

7. Open PSoC Programmer. It is located at Windows start menu > All programs > Cypress > PSoC Programmer 3.20.0.
If PSoC Programmer is not installed in your PC, download it from PSoC Programmer 3.20.0 and install.

8. In the PSoC Programmer click on File > File Load and navigate to the directory where the “CY8CMBR3xxx_Host
APIs_Demo_Project” is extracted.

9. Navigate to CY8CMBR3xxx_Host_APIs_Demo_Project > PSoC4_Pioneer_Kit_Demo > PSoC4_Pioneer_Kit_Demo.
cydsn > CortexM0 > ARM_GCC_473 > Release > PSoC4_Pioneer_Kit_Demo.hex and click on open.

10. Make sure that PSoC Programmer is connected to KitProg as shown in Figure 5-20. Click on the Program button to
program the PSoC4 Pioneer Kit with the given hex file, as shown in Figure 5-20.

11. Once the PSoC4 Pioneer Kit is programmed, the PSoC4 Pioneer Kit configures the CY8CMBR3116 controller on the
MBR3 Evaluation Kit with the demo configuration. If the CY8CMBR3116 controller is successfully configured, the
RGB LED D9 on the PSoC4 Pioneer Kit glows Green. If the CY8CMBR3xxx controller is not successfully configured,
the RGB LED D9 on the PSoC4 Pioneer Kit glows Red.

The MBR3 Evaluation Kit is configured for the following:
 ‒ Four CAPSENSE™ button sensors
 ‒ One proximity sensor
 ‒ One proximity LED
 ‒ Buzzer output
 ‒ Host Interrupt output
 ‒ Host controlled GPOs.

The LEDs in the MBR3 Evaluation Kit are turned ON/OFF by the host processor (PSoC 4) whenever the
 CY8CMBR3116 controller sends a Host Interrupt pulse. When a Host Interrupt is triggered, the host reads the
status of all the sensors of the CY8CMBR3116 controller and turns ON the corresponding LED if the sensor
status is set to ‘1’.

12. After the PSoC 4 host configures the CY8CMBR3116 controller, verify the following features on the MBR3 Evaluation
Kit:
 ‒ Proximity: Hover your hand/finger (3-cm distance) over the MBR3 Evaluation kit; the proximity LED blinks once,
to indicate proximity detection. Touch the proximity sensor (marked by a white rectangle at the edge of the MBR3
Kit); the buzzer beeps for 500 ms and the proximity LED remains ON as long as the proximity sensor is touched.
When the hand/finger is no longer touching the proximity sensor, the proximity LED turns OFF to indicate that
proximity touch is no longer detected. Moving the hand/finger further away results in the proximity LED blinking
once more to indicate that the proximity is no longer detected.

 ‒ CAPSENSE™ buttons: Touch any CAPSENSE™ button; the corresponding LED turns ON and buzzer beeps for 500 ms.

https://www.infineon.com/cms/en/design-support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD5
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-042/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK50

73
08/2023

Figure 5-20 Programming the PSoC4 Pioneer Kit Using PSoC Programmer

5.2.4 Configuring CY8CMBR3xxx Using Bridge Control Panel
The Bridge Control Panel (BCP) is a software tool that can be used as I2C Master to communicate with the I2C slave devic-
es using CY3240-I2USB or MiniProg3 hardware, as Figure 5-21 shows.

Bridge Control Panel CY3240-I2USB/
MiniProg3

I2C Slave
Device

Figure 5-21 Bridge Control Panel Communication with I2C Slave Device

Note:
The CY3280-MBR3 Evaluation kit does not require an additional I2USB/MiniProg3 hardware. This kit has an on-board
I2C-USB bridge to connect to BCP. To connect the on-board I2C-USB bridge to BCP change the jumper position on
header J13 on the MBR3 Evaluation Kit to connect pins J13-1 and J13-2 and on header J14 to connect pins J13-1 and
J13-2. This tool can be used to configure the CY8CMBR3xxx controller and read debug data using I2C Interface. It is
highly recommended to use EZ-Click to configure the CY8CMBR3xxx controller instead of BCP. However, there might
be situations where BCP can be used to configure the CY8CMBR3xxx controller. For example, to override the threshold
parameter and manually specify them, use BCP tool. For more information on using the BCP tool, click on BCP “Help”
menu in the BCP tool.
This section refers to various register names in the CY8CMBR3xxx controller. Refer to the CY8CMBR3xxx Registers TRM
for definitions and address of these registers.

https://www.infineon.com/cms/en/design-support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD5
https://www.infineon.com/cms/en/design-support/finder-selection-tools/product-finder/evaluation-board/?utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK244
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK40
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34

74
08/2023

5.2.4.1 Procedure to Configure CY8CMBR3xxx Using Bridge Control Panel
The flowchart for configuring the CY8CMBR3xxx using the BCP tool is shown in Figure 5-24. Refer to Figure 5-13 for
 details on the hardware connection required for communicating with the CY8CMBR3xxx controller using BCP.

The procedure to configure the CY8CMBR3xxx using the BCP tool can be divided into four steps:
1. Send the configuration data to the CY8CMBR3xxx controller. The configuration data can be one of the following:

 a) The configuration file (<project_name>.iic file) generated by the EZ-Click:
Configuring the CY8CMBR3xxx controller using the configuration file generated by EZ-Click is shown in Figure 5-22.
This method is rarely used since the CY8CMBR3xxx can be directly configured using EZ-Click. Click on the “Help”
option in the BCP tool for instructions on opening any IIC (configuration) file in the BCP tool and for sending the
commands to the slave device.

Figure 5-22 IIC File generated by EZ-Click to Configure the CY8CMBR3xxx Controller using BCP

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD5

75
08/2023

Figure 5-23 Example Configuration File Generated by the EZ-Click Customizer Tool

b) Custom commands entered in the BCP tool :
Configuring CY8CMBR3xxx by entering custom commands in BCP is shown in Figure 5-26. In this method all the 128-
byte configuration registers or any specific register can be configured. When the CY8CMBR3xxx is configured using the
custom command, it is required to compute the Cyclic Redundancy Check (CRC) of the first 126 bytes of the configu-
ration data and write it to CONFIG_CRC (0x7E) register. This CRC value will be used by the CY8CMBR3xxx controller to
verify the integrity of the configuration data.

 Note:
When an I2C command (read/write) is sent to the CY8CMBR3xxx controller it might NACK the I2C transaction. In this
case insert dummy I2C read transactions while writing or reading any register, as shown in Figure 5-26.

The CRC value of the first 126 bytes of configuration data can be calculated in two ways:
 ‒ Use the CY8CMBR3xxx controller to calculate the CRC value: The CY8CMBR3xxx controller calculates the checksum
of the configuration data when a CMD_OP_CODE value of ‘3’ is written to the CTRL_CMD (0x86) register, as shown
in Figure 5-25. The calculated CRC value will be stored in the CALC_CRC (0x94) register after 220 ms. The user has to
read the CRC value from the CALC_CRC (0x94) register and manually write it to the CONFIG_CRC (0x7E) register.
This method should be used only during testing and debugging the CY8CMBR3xxx controller. For configuring the
CY8CMBR3xxx controller in production, use the CRC API provided with the Host APIs.

76
08/2023

 ‒ Use the Host APIs to calculate the CRC value: Cypress provides Host APIs to configure the CY8CMBR3xxx using host
processor. The Host APIs have source code, which can be used to compute the CRC value of the 126 bytes of the
 configuration data. The user should use this code to calculate the CRC and write the calculated CRC value to the
CONFIG_CRC (0x7E) register, as shown in Figure 5-26. The procedure to calculate the CRC is explained in the section
5.2.4.2. It is highly recommended to use this method to calculate the CRC value.

2. Once the configuration data and the CRC value is written to the CY8CMBR3xxx controller registers, write a
CMD_OP_CODE value of ‘2’ to the CTRL_CMD (0x86) register to save the configuration data to the nonvolatile
 memory.

3. After writing a CMD_OP_CODE value of ‘2’ to the CTRL_CMD (0x86) register, wait for 220 ms and read the
CTRL_CMD_STATUS (0x88) register to check if the configuration data is successfully saved to nonvolatile memory.

 If the configuration data is successfully saved to nonvolatile memory, the value in the CTRL_CMD_STATUS (0x88) reg-
ister will be ‘0’. If the valued in the CTRL_CMD_STATUS register is ‘0’, issue reset command by writing CMD_OP_CODE
value of 255 to the CTRL_CMD (0x86) register.

 If the value in the CTRL_CMD_STATUS (0x88) register is ‘1’, it means the configuration data is not saved to the nonvola-
tile memory. In this case read the CTRL_CMD_ERR (0x89) register to know the reason for failure to save the configura-
tion data to nonvolatile memory.

 ‒ A value of ‘253’ in the CTRL_CMD_ERR indicates write to nonvolatile memory failed. In this case re-write the
configuration data and repeat from step 2.

 ‒ A value of ‘254’ in the CTRL_CMD_ERR register indicates CRC value written to CONFIG_CRC (0x7E) is incorrect. In this
case re-calculate the CRC for the entire 126 bytes of configuration data, write to the CONFIG_CRC (0x7E) register and
repeat from step 2.

 ‒ A value of ‘255’ in the CTRL_CMD_ERR register indicates the CMD_OP_CODE value written to the CTRL_CMD (0x86)
register is not valid. In this case send a valid CMD_OP_CODE = ‘2’ and repeat step 3.

77
08/2023

Figure 5-24 Flowchart for Configuring the CY8CMBR3xxx Using BCP

78
08/2023

Figure 5-25 Calculating the CRC Using CY8CMBR3xxx Controller

Note:
All the commands entered in the BCP can be sent at once by checking the “send all strings” box and clicking send
 button.

79
08/2023

Figure 5-26 Writing to CONFIG_CRC by Calculating the CRC Using Host APIs

5.2.4.2 Procedure to Calculate the CRC16-CCITT Using Host APIs

The CY8CMBR3xxx controller requires the user to specify the CRC value for the 126 bytes of configuration data.
The CRC algorithm implemented in the CY8CMBR3xxx controller is CRC16-CCITT.

Follow this procedure to calculate the CRC using the Host APIs:
1. Download a C IDE. In the example shown in Figure 5-29, eclipse IDE for C/C++ is used.
2. Create a C project and include the CY8CMBR3xxx_APIs.h and CY8CMBR3xxx_CRC.c files in your project. These files

are part of the Host APIs.
3. Create a new source file with suitable title. In the example shown in Figure 5-29 the source file name is “main.c”.
4. In the main.c file, enter the following code shown in the Figure 5-29.

80
08/2023

#include <stdio.h>

/* Variable to store 126 bytes of configuration data */
unsigned char CY8CMBR3xxx_configuration[126]= { };

/* The main() function invokes the CY8CMBR3xxx_CalculateCrc API to compute the CRC for 126 bytes of
* configuration data */
int main(void)
{

 /* Variable to store the 16-bit CRC value*/
 unsigned short crcValue;

 /* Call the "CY8CMBR3xxx_CalculateCrc" API with configuration data address as the argument*/
 crcValue = CY8CMBR3xxx_CalculateCrc(CY8CMBR3xxx_configuration);

 /* Print the calculated 16-bit CRC value*/
 printf("The CRC for the given configuration data is: 0x%x",crcValue);
 return 0;
}

5. Read the 126 bytes of configuration data from the CY8CMBR3xxx controller using BCP and copy this into a text
editor software (such as Notepad) to format the data i.e. to remove all the “+” symbols from the copied array and
replace it with “,0x” character in front of each byte data as shown in Figure 5-27 and Figure 5-28.

Figure 5-27 CY8CMBR3xxx Configuration Data Copied from BCP to Notepad

Figure 5-28 CY8CMBR3xxx Configuration Data Formatted in Notepad

6. Copy this formatted array into the “CY8CMBR3xxx_configuration [126]” array in the main.c, as shown in Figure 5-28.
7. Save and build the project. Ensure there are no errors.
8. Once the project is successfully built, click the “Run” button to get the CRC value.

81
08/2023

Figure 5-29 Computing CRC Value Using Host APIs in Eclipse C/C++ IDE

82
08/2023

6 CAPSENSE™ Performance Tuning

As explained in the CAPSENSE™ Technology chapter, Cypress' SmartSense Auto-tuning algorithm eliminates the need
for manual tuning by automatically tuning the hardware and firmware parameters. However, the SmartSense algorithm
requires setting the sensitivity parameter value of the sensor to ensure the SNR of all the sensors is greater than 5:1.
The CY8CMBR3xxx allows manually setting the threshold parameters. This section explains how to set the sensitivity of
the sensor and threshold parameters for reliable touch detection. The CY8CMBR3002 CAPSENSE™ controller does not
support manual tuning. In this controller the SmartSense algorithm automatically tunes all the hardware and firmware
parameters. Therefore, the following section is not applicable to the CY8CMBR3002 controller.

6.1 General Considerations

6.1.1 Signal, Noise, and SNR
A well-tuned CAPSENSE™ system reliably discriminates between ON and OFF sensor states. To achieve a robust level of
performance, the CAPSENSE™ signal must be significantly larger than the CAPSENSE™ noise. The CAPSENSE™ signal
is compared to the CAPSENSE™ noise by using a quantity called signal-to-noise ratio (SNR). For more in-depth in-
formation on SNR refer to the "CAPSENSE™ Technology" chapter in Getting Started with CAPSENSE™. According to
 CAPSENSE™ best practices, it is required to have a minimum SNR of 5:1 for all sensors. The SNR of the sensor is given by
the following equation:

SNR = Signal Equation 4
 Peak-to-Peak Noise

Where: Signal = Raw count - Baseline
Peak-to-Peak Noise = Peak-to-Peak noise of raw count measured over 3000 samples

Therefore, the key to achieve a high SNR is to increase the signal and decrease the noise.

6.1.1.1 Noise Counts Measurement
To compute the SNR, it is required to measure the signal and noise counts of the sensor.

To measure the noise counts using EZ-Click, follow these steps:
1. Generate the configuration file and download the configuration to the device.
2. Go to the "CAPSENSE™ output" tab and select the "Raw count vs Baseline" graph. Set the "Displayed Samples" field

to 3000.
3. Click on the "Start" button and wait until 3000 samples are acquired.

Note: The sensor should not be touched while acquiring raw count samples to measure noise counts.
4. Measure the noise count which is equal to the raw count (max) - raw count (min), as Figure 6-1 shows. The noise

counts for the graph shown in Figure 6-1 is 2860 - 2845 = 15 counts.

https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_notehttp://
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760http://

83
08/2023

Figure 6-1 Measuring Noise in EZ-Click Customizer

6.1.1.2 Signal Measurement
After the noise count is measured, it is required to measure the signal of the sensor to compute the SNR. To measure the
signal, follow these steps:
1. In the CAPSENSE™ output tab, click on the “Start” button to view the “Raw count vs Baseline” graph.
2. Touch the sensor for 1000 samples and then release the finger.
3. Measure the shift in raw counts from the no touch to touch state, as Figure 6-2 shows.

Signal = Average value of the raw count (When sensor is touched) - Average value of raw count (When sensor is not
touched)
For the graph shown in Figure 6-2, Signal = 2945 - 2855 = 90 counts

SNR = = 6:190
15

84
08/2023

Figure 6-2 Measuring the Signal in EZ-Click Customizer

6.2 Tuning the Buttons, Sliders, and Guard Sensor
Figure 6-3 shows the typical flow of tuning the buttons, sliders and guard sensors.
Tuning a sensor in the CY8CMBR3xxx controller is divided into two sections:
1. Ensure SNR is greater than 5:1
2. Set threshold parameters to the recommended value

6.2.1 Method to Ensure Minimum SNR
To ensure that the SNR is greater than 5:1, follow these steps:
1. Set the sensitivity of the sensor to 400 fF and measure the signal.
2. If the signal is less than 50 counts, lower the sensitivity value until the signal is greater than 50 counts. If the signal is

not greater than 50 counts even after setting the lowest sensitivity value (that is, 100 fF), reduce the overlay thickness
or increase the sensor size.

3. When the signal is greater than 50 counts, measure the noise counts. If the noise is greater than one-fifth of the
signal, enable filters to reduce the noise. Enable the IIR filter and measure the noise counts. If the noise is still greater
than one-fifth of the signal, enable the Median filter. If the median filter is enabled, the Automatic Threshold feature
should be disabled and the Finger Threshold parameter should be manually specified.

4. Calculate the SNR, and if it is greater than 5:1, proceed to set the threshold parameters.
5. If the SNR is not greater than 5:1 even after enabling filters, lower the sensitivity value and calculate the SNR. If the

SNR is less than 5:1 after setting the lowest value of sensitivity (that is, 100 fF) and enabling filters, reduce the overlay
thickness or increase the sensor size to achieve an SNR greater than 5:1.

85
08/2023

Note:
For sliders, the signal should always be less than 255 to get accurate centroid position. If the signal is greater than 255,
increase the sensitivity parameter until the signal is less than 255.

Figure 6-3 Buttons, Sliders, and Guard Sensor Tuning

6.2.2 Button Threshold Parameters
After ensuring that all the sensors meet SNR greater than 5:1, the threshold parameters can be specified. The following
threshold parameters are applicable for buttons and guard sensor:

 ‒ Finger threshold
 ‒ Hysteresis
 ‒ Noise threshold
 ‒ Negative Noise threshold
 ‒ Low-Baseline Reset

Section 6.2.3 explains when and how to set these parameters.

6.2.2.1 Finger Threshold
The finger threshold parameter is used to judge the active/inactive state of a sensor. If the difference count value of a
sensor is greater than the finger threshold + hysteresis, the sensor is judged as ON and if the difference count of the
 sensor is less than the finger threshold value – hysteresis, the sensor is judged as OFF. The finger threshold can range
from 31 to 200; the default value is set to 128. See Table 6-2 to set this parameter.

The relationship between finger threshold and sensor ON/OFF state is given by:

Sensor Stat = Equation 5
ON if (Signal ≥ Finger Threshold + Hysteresis)
OFF if (Signal ≤ Finger Threshold – Hysteresis) {

86
08/2023

6.2.2.2 Hysteresis
The hysteresis parameter is used along with the finger threshold parameter to determine the ON/OFF state of the
sensor. Hysteresis provides immunity against noisy transitions of the sensor state. This parameter is applicable only for
buttons and guard sensor. This parameter can range from 0 to 31; the default value is set to 12. See Table 6-2 to set this
parameter.

6.2.2.3 Noise Threshold
The noise threshold parameter sets the raw count limit above which the baseline is not updated, as Figure 6-4 shows.
In other words, the baseline remains constant as long as the raw count is above (baseline + noise threshold). This keeps
the baseline from becoming too high due to a finger touch. This parameter can range from 0 to 127; the default value is
set to 51. See Table 6-2 to set this parameter.

6.2.2.4 Negative Noise Threshold
If the raw count is less than (baseline – negative noise threshold) for the number of samples specified by the low-base-
line reset parameter, the baseline is reset to the new raw count value. This change in baseline resets any sensor that is
stuck in the active state during the device power ON i.e. sensor touched during controller power-up. This parameter can
range from 0 to 127; default value is set to 51. See Table 6-2 to set this parameter.

6.2.2.5 Low-Baseline Reset
This parameter is used along with the negative noise threshold parameter to reset the baseline when the baseline is
higher than the raw count. It counts the number of abnormally low raw counts required to reset the baseline. It is used
to reset the baseline if the finger is placed on the sensor during device startup and later removed. This parameter can
range from 0 to 127; the default value is set to 50. See Table 6-2 to set this parameter.

87
08/2023

Figure 6-4 Noise Threshold

6.2.3 Setting the Thresholds for the Button, Slider, and Guard Sensors
Table 6-1 shows the threshold parameters that are applicable for button, slider, and guard sensor.
CY8CMBR3xxx provides the Automatic Threshold feature for buttons. This feature should always be enabled unless the
user requires specifying the finger threshold manually.
Slider sensors require the user to specify the finger threshold parameter manually because the automatic threshold
feature is not applicable to slider sensor. The SmartSense auto-tuning algorithm automatically sets all other threshold
parameters.
To manually specify the threshold parameters such as noise threshold, negative noise threshold, and low-baseline re-
set, set the respective threshold override bit in the respective threshold register and specify these thresholds manually.
It is recommended not to override the threshold parameters. To set the threshold override bit and specify the threshold
parameters such as noise threshold, negative noise threshold, and low-baseline reset parameter, use Bridge Control
Panel (BCP) tool. EZ-click does not provide option to override or specify threshold parameters.

88
08/2023

Table 6-1 Threshold Parameters for Button, Slider, and Guard Sensor.

Threshold
Parameter

Sensor Type

Button Slider Guard

Finger Threshold Set only if the Automatic
Threshold feature is disabled

Should always be set manually Set only if the Automatic
Threshold feature is disabled

Noise Threshold Set only if the Noise Threshold
Override bit is enabled

Set only if the Slider Noise
Threshold Override bit is
enabled

Set only if the Noise Threshold
Override bit is enabled

Negative Noise
Threshold

Set only if the Negative Noise
Threshold Override bit is
enabled

Set only if the Slider Negative
Noise Threshold Override bit is
enabled

Set only if the Negative Noise
Threshold Override bit is
enabled

Hysteresis Set only if the Hysteresis
Threshold Override bit is
enabled

Not Applicable Set only if the Hysteresis
Threshold Override bit is
enabled

Low-Baseline
Reset

Set only if the Low-Baseline
Reset Override bit is enabled

Set only if the Slider Low-
Baseline Reset Override bit is
enabled

Set only if the Low-Baseline
Reset Override bit is enabled

Note:
CY8CMBR3xxx has separate registers for the button and slider sensors to set the noise threshold, negative noise thresh-
old, and low-baseline reset parameters.

Follow the below procedure to set these threshold parameters:
1. In the CAPSENSE™ output tab, select the “Diff count vs. Finger threshold” graph and click on the Start button.
2. Touch the sensor and measure the difference count, as Figure 6-5 shows.

 Notes:
 ‒ The difference count in CY8CMBR3xxx controller is normalized. It will not be equal to Raw counts (touched) - Base-
line.

 ‒ If the difference count is greater than 255, it will be truncated to 255. In this case, threshold parameters cannot be
set properly. Increase the sensitivity parameter value until the difference counts is less than 255. Ensure the SNR is
greater than 5:1 after changing the sensitivity parameter value by following the procedure explained in section 6.2.1

3. Set the threshold parameters to values as Table 6-2 shows:

Table 6-2 Threshold Parameter Values

Threshold Parameter Recommendation

Finger Threshold 80% of the Difference count

Noise Threshold 40% of the Difference count

Negative Noise Threshold 40% of the Difference count

Hysteresis 10% of the Difference count

Low-Baseline Reset Set to 50

89
08/2023

For the example shown in Figure 6-5, the difference count is approximately 210 counts and the threshold parameters
are set as shown below.

Finger threshold = 80% × 210 = 168
Noise threshold = 40% × 210 = 84
Negative Noise threshold = Noise threshold = 84
Hysteresis = 10% × 210 = 21
Low Baseline reset = 50

Figure 6-5 Difference Count Measurement

90
08/2023

6.3 Tuning a Proximity Sensor
Figure 6-6 shows the typical flow of tuning a proximity sensor.

Tuning a proximity sensor in the CY8CMBR3xxx controller has two stages:
1. Ensure SNR is greater than 5:1
2. Set appropriate threshold parameters

6.3.1 Method to Ensure Minimum SNR
To ensure that the SNR is greater than 5:1, follow these steps:
1. Set the resolution of the proximity sensor to 12-bit and measure the signal at the required proximity distance.
2. If the signal is less than 50 counts, increase the proximity resolution until the signal is greater than 50 counts. If the

signal is not greater than 50 counts even after setting the highest resolution (that is, 16-bit), increase the proximity
sensor size.

3. After the signal is greater than 50 counts, measure the noise counts, as shown in Figure 6-7. If the noise is greater
than one-fifth of the signal, enable the ALP filter to reduce the noise.

 Note: For proximity sensors Median and IIR filters are not applicable.
4. Compute the SNR, and if the SNR is greater than 5:1, proceed to set the threshold parameters.
5. If SNR is not greater than 5:1 even after enabling the ALP filter, increase the resolution and compute the SNR.

If the SNR is less than 5:1 even after setting the highest resolution (16-bit) and enabling the ALP filter, increase the
 proximity sensor size to achieve an SNR greater than 5:1.

91
08/2023

Figure 6-6 Proximity Sensor Tuning

92
08/2023

6.3.2 Advanced Low-Pass (ALP) Filter
The ALP filter is a combination of multiple low-pass filters specifically designed to attenuate the noise in proximity
sensors. The ALP filter switches among multiple low-pass filters to achieve the maximum noise attenuation and provide
optimum response time. Set the ALP parameters shown in Table 6-3 for proper operation.

Table 6-3 ALP Filter Parameters

Parameter Recommendation

K-value Set when the ALP filter is enabled

Proximity Positive Threshold Set when the ALP filter is enabled

Proximity Negative Threshold Set when the ALP filter is enabled

6.3.2.1 ALP Filter Parameters

6.3.2.1.1 K-Value
The K-value of the ALP filter determines the attenuation of noise in proximity sensor raw counts. The CY8CMBR3xxx
controller has three different K-values: 1/16, 1/32, and 1/64.
Noise attenuation decreases in the order 1/64 > 1/32 > 1/16. Refer to the ALP Filter Tuning section to set this parameter.

6.3.2.1.2 Proximity Positive Threshold
This parameter determines the turn-on time of the proximity sensor, and is in the range 0-255; the default value is set to
30. Refer to the ALP Filter Tuning section to set this parameter.

6.3.2.1.3 Proximity Negative Threshold
This parameter determines the turn-off time of the proximity sensor, and is in the range 0-255; the default value is set to
30. Refer to the ALP Filter Tuning section to set this parameter.

6.3.2.2 ALP Filter Tuning
To tune the ALP filter, follow these steps:
1. Disable the ALP filter and measure the peak-to-peak noise in raw counts for 3000 samples, as Figure 6-7 shows.

See the Noise Counts Measurement section for more details.
2. Set the K-value in the “CAPSENSE™ sensor configuration” tab of EZ-Click per the mapping in Table 6-4.

Table 6-4 Selecting the K-Value

Peak-to-Peak Noise Recommended K-Value Recommendation

Less than 32 counts 1/16

Greater than 32 counts 1/32

Greater than 64 counts 1/64

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

93
08/2023

Figure 6-7 Measuring Noise Counts of Proximity Sensor When ALP Filter is Disabled

3. Enable the ALP filter (If K-Value is set, EZ-Click automatically enables ALP filter) and measure the peak-to-peak noise
in the advanced low pass average filtered data for 3000 samples, as Figure 6-8 shows. The average filtered data can
be viewed in the CAPSENSE™ output tab in EZ-Click.

https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760

94
08/2023

Figure 6-8 Peak-to-Peak Noise in Average Filtered Data

4. Set the proximity positive threshold as equal to 1.5 × peak-to-peak noise of the average filtered data.
5. Set the proximity negative threshold as equal to 0.5 × peak-to-peak noise of the average filtered data.
6. Set the finger threshold as equal to the proximity positive threshold. This is required to determine the response of

the ALP filter.
7. Configure the device with these settings and measure the noise in raw counts.
8. Place the hand at the required proximity distance and measure the signal, as Figure 6-9 shows.
9. Compute the SNR. If the SNR is greater than 5:1, then proceed to set the thresholds, as per Table 6-5. Otherwise,

increase the proximity resolution and repeat from Step 1.

95
08/2023

Figure 6-9 Measuring Proximity Sensor Signal

6.3.3 Proximity Sensor Threshold Parameters
Table 6-5 lists the threshold parameters that are applicable to proximity sensors.

Table 6-5 Proximity Sensor Thresholds

Parameter Recommendation

Proximity Threshold Should always be set manually Should always be set manually

Proximity Touch Thresholdally Should always be set manually

Proximity Hysteresis Set when hysteresis override is enabled

Proximity Noise Threshold Set when Noise threshold override is enabled

Proximity Negative Noise Threshold Set when Negative Noise threshold override is enabled

Proximity Low-Baseline Reset Set when low baseline reset override is enabled

96
08/2023

6.3.3.1 Proximity Threshold
The proximity threshold parameter is similar to the finger threshold of buttons. It determines the ON/OFF state of the
proximity sensor. If the difference count is greater than proximity threshold + hysteresis, the proximity status is ON.
If the difference count is less than proximity threshold - hysteresis, the proximity status is OFF. This threshold should
be manually set. This parameter can range from 31 to 200; the default value is 128. See Table 6-6 for the recommended
value.

6.3.3.2 Proximity Touch Threshold
A proximity sensor has two events: proximity detect event and touch detect event (upon physically touching the
 proximity sensor). The proximity threshold parameter determines the ON/OFF status of the proximity event; the
 proximity touch threshold is used to detect the touch event of the proximity sensor. This parameter can range from
62 to 65000; the default value is 512. See Table 6-6 for the recommended value.

6.3.3.3 Proximity Hysteresis
The proximity hysteresis parameter is similar to button hysteresis. It is used along with the proximity threshold
 parameter to determine the ON/OFF status of the proximity sensor. This parameter can range from 0 to 127; the default
value is 5. See Table 6-6 for the recommended value.

6.3.3.4 Proximity Noise Threshold
The proximity noise threshold parameter is similar to the Noise Threshold parameter for buttons. This parameter can
range from 0 to 127; the default value is 20. See Table 6-6 for the recommended value.

6.3.3.5 Proximity Negative Noise Threshold
The proximity negative noise threshold parameter is similar to the Negative Noise Threshold parameter for buttons.
This parameter can range from 0 to 127; the default value is 20. See Table 6-6 for the recommended value.

6.3.3.6 Proximity Low-Baseline Reset
The proximity low-baseline reset parameter is similar to the Low-Baseline Reset parameter for buttons. This parameter
can range from 0 to 127; the default value is 50. See Table 6-6 for the recommended value.

6.3.4 Setting Proximity Sensor Threshold Parameters
For a proximity sensor, only the proximity threshold and proximity touch threshold need to be specified. All other
thresholds will be internally calculated by the SmartSense algorithm.
If, for some reason, these parameters need to be overridden, use the Bridge Control Panel to send I2C commands to
override these parameters. Refer to the CY8CMBR3xxx Registers TRM for more details. It is strongly recommended not to
override threshold parameters.

Follow the below procedure to set the threshold parameters for a proximity sensor:
1. In the CAPSENSE™ output tab, select the Diff count vs. Finger threshold graph for proximity sensor and click on the

Start button.
2. Place the hand at the required proximity distance and measure the difference count, as shown in Figure 6-10.

Notes:
 ‒ The difference count in CY8CMBR3xxx controller is normalized. It will not be equal to Raw counts (touched) - Baseline.
 ‒ If the difference count is greater than 255, it will be truncated to 255. In this case, threshold parameters cannot be
set properly. Increase the sensitivity parameter value until the difference counts is less than 255. Ensure the SNR is
greater than 5:1 after changing the sensitivity parameter value.

https://www.infineon.com/cms/en/design-support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD5
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34

97
08/2023

3. Set the threshold parameters to values as shown in Table 6-6.
4. To set the proximity touch threshold, touch the proximity sensor and measure the difference counts (Proximity

 Sensor Touched).
5. Set the proximity touch threshold to a value equal to 80% of difference counts (Proximity Sensor Touched)

Table 6-6 Proximity Threshold Settings

Threshold Parameter Recommendation

Proximity Threshold 80% of Difference count

Proximity Touch Threshold 80% of Difference count (when proximity sensor is
touched)

Proximity Noise Threshold 40% of Difference count

Proximity Negative Noise Threshold 40% of Difference count

Proximity Hysteresis 10% of Difference count

Proximity Low-Baseline Reset Set to 50

Figure 6-10 Measuring Difference Count to Set Proximity Sensor Thresholds

98
08/2023

7 Low-Power Design Considerations

Capacitive touch sensing is used in battery-powered, handheld, and portable electronic devices. Because these devic-
es are battery powered, power consumption and energy efficiency become very important. This section explains the
factors that affect the power consumption of the CY8CMBR3xxx controller and provides guidelines on how to minimize
the power consumption.

7.1 CY8CMBR3xxx Operating Modes
The CY8CMBR3xxx controller supports five operational modes:
1. Active Mode
2. Look-for-Touch Mode
3. Look-for-Proximity Mode
4. Deep Sleep Mode
5. Configuration Mode

Figure 7-1 CY8CMBR3xxx Operational Modes

99
08/2023

7.1.1 Active Mode
The CY8CMBR3xxx controller enters the Active mode from the reset state, as Figure 7-1 shows. In the Active mode, the
controller scans all the sensors, updates the sensor data, and drives any configured outputs (GPOs, buzzer, and host in-
terrupt) based on the sensor status. By default, the scan rate during the Active mode is set to 20 ms to ensure fast touch
response. If the sensor scanning and processing is completed within 20 ms, then the controller is put to the sleep mode
for the time duration equal to (20 ms – Active time). When the 20 ms timer expires, sensors are scanned again and the
cycle continues, as Figure 7-2 shows.
If the time taken to scan all the sensors and process the sensor data is more than 20 ms, then the device is not put in to
the sleep mode. Instead, the next cycle of scanning will be started, as Figure 7-3 shows.

Figure 7-2 Active Mode Scan-Sleep Sequence When Active Time < 20 ms

Figure 7-3 Active Mode Scan-Sleep Sequence When Active Time > 20 ms

100
08/2023

 7.1.2 Look-for-Touch Mode
If no touch is detected in the Active mode for duration equal to the State Timeout value, CY8CMBR3xxx enters the
Look-for-Touch mode, as Figure 7-1 shows. The Look-for-Touch mode is similar to the Active mode except that the scan
period is configurable. The default value of scan period is 120 ms. In this mode, all the sensors are scanned and sensors
data are processed. If any sensor is ON, outputs (GPOs, buzzer and host interrupt) are driven and the controller enters
the Active mode.

7.1.3 Look-for-Proximity Mode
The Look-for-Proximity mode is applicable only if the design has a proximity sensor and Wake-on-Approach is enabled.
If no touch is detected in the Look-for-Touch mode for a duration greater than or equal to the State Timeout value, then
the controller enters the Look-for-Proximity mode, as Figure 7-1. shows.
In the Look-for-Proximity mode, the controller scans only proximity sensors. If a proximity event is detected, then the
controller enters the Look-for-Touch mode. If a touch event is detected in the Look-for-Proximity mode, then the con-
troller enters the Active mode. The scan period in this mode is configurable and it is equal to the scan period in the
Look-for-Touch mode; the default value is 120 ms.

7.1.4 Deep Sleep Mode
The Deep Sleep mode is the lowest power consumption mode. The CY8CMBR3xxx device enters deep sleep mode when
the host issues a sleep command. Refer to the CTRL_CMD register in the CY8CMBR3xxx Registers TRM for more details.
In the deep sleep mode, the device does not scan any sensor and all outputs are disabled. The device wakes up on the
I2C address match event; NACKs the first I2C command, and then enters the Look-for-Touch mode.

7.1.5 Configuration Mode
The device enters the configuration mode when CMD_OP_CODE = ‘2’ is written to CTRL_CMD register to save the con-
figuration data to nonvolatile memory. Refer to CY8CMBR3xxx Registers TRM for more details. The device comes out of
the configuration mode only through a device reset (either software or hardware reset).

7.2 Factors Affecting Power Consumption
Various factors that affect power consumption of the CY8CMBR3xxx controller are:

 ‒ Number of Sensors: The total scan time of sensors increases with the increase in the number of sensors. For a fixed
scan period, if the scan time increases, then the duration in which the device is in sleep mode decreases. This results
in increased power consumption of the device.

 ‒ CP of the Sensor: This affects the scan time of the sensor. With a larger value of CP, there will be higher sensor scan
time, which results in increased power consumption. Follow the layout guidelines mentioned in the
Getting Started with CAPSENSE™ guide to minimize the sensor CP.

 ‒ Sensitivity: This parameter affects the scan time of the sensor. The scan time of the sensor increases with a decrease
in the sensor sensitivity parameter value. As a result, the lower the sensitivity parameter value, the higher will be the
power consumption.
The power consumption decreases in the order 100 fF > 200 fF > 300 fF > 400 fF.

 ‒ Electromagnetic Compatibility (EMC): When the EMC feature is enabled, the scan time of the sensor increases and
results in increased power consumption.

 ‒ Buzzer Duration: The CY8CMBR3xxx controller stays in the active state while driving the buzzer output. Longer buzzer
duration results in increased active time and higher power consumption.

 ‒ PWM on GPOs: Enabling PWM on GPOs has the same effect as that of enabling the buzzer output. If PWM output is
enabled on the GPO pins, the device is not put into sleep mode and this increases the power consumption.

 ‒ Scan period: The scan period parameter affects the duration for which the device is in sleep mode. The higher the
scan period, the lower will be the power consumption.

https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

101
08/2023

 ‒ State Timeout: The state timeout parameter affects how quickly the device enters the look-for-touch mode from the
active mode or the look-for-proximity mode from the look-for-touch mode. The shorter the state timeout interval, the
lower will be the power consumption.

 ‒ I2C Communication: As explained in the Active Mode section, CY8CMBR3xxx enters sleep mode after the sensor scan-
ning is completed. The CY8CMBR3xxx will not enter sleep mode or it will exit from deep sleep mode if there are any I2C
transactions with the host processor. Therefore, frequent I2C transactions result in increased average power consump-
tion.
To reduce the average power consumption, implement a dedicated host interrupt pin and initiate an I2C transaction
only when the CY8CMBR3xxx sends a host interrupt pulse.

Use the CY8CMBR3xxx Design Toolbox to estimate the average current consumption of the controller based on the
design inputs as explained in Estimating the Average Current section.

7.3 System Design Recommendations for Low Power Consumption
Cypress’ CY8CMBR3xxx is designed to meet the low-power requirements of battery-powered applications. To minimize
power consumption, follow these guidelines:

 ‒ Minimize the sensor CP using the design guidelines mentioned in Getting Started with CAPSENSE™ and
CY8CMBR3xxx Design Toolbox.

 ‒ Set optimum value of sensitivity for sensors. Refer to the Sensitivity Control section.
 ‒ Enable EMC only if required. Refer to the Electromagnetic Compatibility (EMC) section.
 ‒ Increase the scan period and decrease the state timeout period.
 ‒ Put the device in the Deep Sleep mode or turn off the power to the device using the power manager IC (PMIC) when
sensor scanning is not required.

 ‒ Avoid frequent I2C reads/writes to the CY8CMBR3xxx controller. Use host interrupt pin and initiate I2C transaction only
after the CY8CMBR3xxx sends a host interrupt pulse.

 ‒ Use the proximity sensor and enable the wake-on-approach feature.
 ‒ Reduce the Buzzer ON time duration.
 ‒ Enable PWM on GPOs only if required.

https://www.infineon.com/dgdl/Infineon-AN64846_Getting_Started_with_CapSense-ApplicationNotes-v26_00-EN.pdf?fileId=8ac78c8c7cdc391c017d071c431e2179&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

102
08/2023

8 Resources

8.1 Website
Visit the Cypress’ CAPSENSE™ Controllers website to access the reference material discussed in this document. You can
find a variety of technical resources on the CY8CMBR3xxx web page.

8.2 Datasheet
The datasheet for the CAPSENSE™ CY8CMBR3xxx device is available at CY8CMBR3xxx Datasheet

8.3 Registers Technical Reference Manual
The registers technical reference manual is available at CY8CMBR3xxx Registers TRM

8.4 Design Toolbox
The interactive Design Toolbox enables you to design a robust and reliable CY8CMBR3xxx CAPSENSE™ solution.

8.5 EZ-Click™ 2.0
EZ-Click 2.0 is a simple, GUI-based software utility that can be used to customize CY8CMBR3xxx device configurations.

8.6 Development Kit
The CY3280-MBR3 Evaluation Kit is designed to showcase the abilities of the CY8CMBR3116 CAPSENSE™ Controller. Use
this kit to quickly evaluate the features of CY8CMBR3xxx solution.

8.7 Design Support
Cypress has a variety of design support channels to ensure the success of your CAPSENSE™ solutions.
Knowledge-Based Articles – Browse technical articles by product family or search on CAPSENSE™ topics.
CAPSENSE™ Application Notes – Peruse a wide variety of application notes built on information presented in this
document.
White Papers – Learn about advanced capacitive touch interface topics.
Cypress Developer Community – Connect with the Cypress technical community and exchange information.
CAPSENSE™ Product Selector Guide – See the complete CAPSENSE™ product line.
Video Library –Get up to speed quickly with tutorial videos
Quality & Reliability – Cypress is committed to customer satisfaction. At our Quality website, find reliability and product
qualification reports.
Technical Support – World-class technical support is available online.

https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/dgdl/Infineon-CY8CMBR3002_CY8CMBR3102_CY8CMBR3106S_CY8CMBR3108_CY8CMBR3110_CY8CMBR3116-DataSheet-v18_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ebe3508318e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-datasheet&redirId=DS61
https://www.infineon.com/dgdl/Infineon-CY8CMBR3xxx_CapSense_Express_Controllers_Registers_TRM-AdditionalTechnicalInformation-v06_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f90b2ad7da7&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-technical_reference_manual&redirId=TRM34
https://www.infineon.com/dgdl/Infineon-AN90071_CY8CMBR3xxx_CapSense%28R%29_Design_Guide-ApplicationNotes-v09_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07236b6e4698&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/cms/en/design-support/tools/configuration/capsense-controllers-configuration-tools/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD760
https://www.infineon.com/cms/en/product/evaluation-boards/cy3280-mbr3/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit&redirId=DK38
https://community.infineon.com/t5/Knowledge-Base-Articles/tkb-p/KnowledgeBaseArticles?redirId=kba2
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-homepage&redirId=test_homepage
https://www.infineon.com/cms/en/about-infineon/company/contacts/support/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-other&redirId=mycase_redirect

103
08/2023

9 Appendix

9.1 High-Level APIs

Table 9-1 High-Level Host APIs

1 CY8CMBR3xxx_ReadSensorStatus

Description This API reads the button status, latched button status, proximity status, latched
proximity status, slider 1 and 2 positions, and slider 1 and 2 liftoff positions from the
CY8CMBR3xxx device.
The slider positions and slider liftoff positions are valid for CY8CMBR3106S device
only.
You can use this API when the device asserts a Host Interrupt pulse, to understand
the corresponding status change.

Prototype bool CY8CMBR3xxx_ReadSensorStatus(uint8 slaveAddress,
CY8CMBR3XXX_SENSORSTATUS *status)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*status
Pointer to the user-defined buffer where the sensor status read from the CY8CM-
BR3xxx device is stored. The buffer structure is defined in CY8CMBR3xxx_APIs.h.

Return value TRUE – If the buffer was updated properly
FALSE – If the buffer was not updated

2 CY8CMBR3xxx_WriteData

Description This API writes one or more bytes of data to successive register locations in the
CY8CMBR3xxx device. The initial register location is user specified.

Prototype bool CY8CMBR3xxx_WriteData(uint8 slaveAddress, uint8 *writeBuffer, uint8 number-
OfBytes)

Parameters SlaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*writeBuffer
The buffer from which data is written to the device.
The first element should always contain the location of the register of the device to
write to. This value can be within 0 – 134.
Each successive element should contain the data to be written to that register and
the successive registers. These elements can have a value between 0 – 255. The num-
ber of data bytes can be between 1 to minimum of (128, and 135 – register location).

numberOfBytes
Number of bytes to be written, equal to the number of elements in the buffer.
Valid range: 1 – min(129, 136 – register location)

Return value TRUE – If the write was successful
FALSE – If the write was not successful

104
08/2023

3 CY8CMBR3xxx_ReadData

Description This API reads one or more bytes of data from successive register locations in the
CY8CMBR3xxx device. The initial register location is user specified.

Prototype bool CY8CMBR3xxx_ReadData(uint8 slaveAddress, uint8 registerAddress, uint8
*readBuffer, uint8 numberOfBytes)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

registerAddress
The register location to read from. The value passed to this argument should be one
of the register offset macros defined in the file CY8CMBR3xxx_Registers.h.
The macro for a register is defined only if it is supported by the device defined by
CY8CMBR3xxx_DEVICE macro.

*readBuffer
The buffer to be updated with the data read from the device.
Each successive element to contain the data read from successive registers. These
elements can have a value between 0 – 255.

numberOfBytes
Number of bytes to be read, equal to the number of elements in the buffer.
Valid range: 1 – 252

Return value TRUE – If the read was successful
FALSE – If the read was not successful

4 CY8CMBR3xxx_WriteDualByte

Description This API writes to a two byte register in the CY8CMBR3xxx device. The register
 location is user – specified

Prototype bool CY8CMBR3xxx_WriteDualByte(uint8 slaveAddress, uint8 registerAddress, uint16
writeData)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

registerAddress
The register location to write to. The value passed to this argument should be one of
the register offset macros defined in the file CY8CMBR3xxx_Registers.h. The mac-
ro for a register is defined only if it is supported by the device defined by CY8CM-
BR3xxx_DEVICE macro.

writeData
The two-byte value to be written to the register. The LSB forms the first byte and the
MSB forms the second byte.
Valid range: 0 – 65535

Return value TRUE – If the read was successful
FALSE – If the read was not successful

105
08/2023

5 CY8CMBR3xxx_ReadDualByte

Description This API reads from a two-byte register in the CY8CMBR3xxx device and updates the
concatenated value to the read buffer. The register location is user – specified.

Prototype bool CY8CMBR3xxx_ReadDualByte(uint8 slaveAddress, uint8 registerAddress, uint16
*readData)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

registerAddress
The two-byte register to read from. The data will be read from this address and the
successive address.
The value passed to this argument should be one of the register offset macros de-
fined in the file CY8CMBR3xxx_Registers.h. The macro for a register is defined only if
it is supported by the device defined by CY8CMBR3xxx_DEVICE macro.

*readData
The 2-byte buffer to be updated with the value read from the device. The API fills the
LSB with the first byte read from the device and the MSB with the second byte. The
value can be between 0 – 65535.

Return value TRUE – If the read was successful
FALSE – If the read was not successful

6 CY8CMBR3xxx_SendCommand

Description This API issues a new command to the CY8CMBR3xxx device. Before calling this API,
you should check whether the device is ready to accept a new command by calling
CY8CMBR3xxx_CheckCommandStatus().

Prototype bool CY8CMBR3xxx_SendCommand(uint8 slaveAddress, uint8 command)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 - 119

command
The command op-code to issue. The value passed to this argument should be one of
the op-code macros defined in the file CY8CMBR3xxx_CommandsAndConfig.h.

Return value TRUE – If the command was issued successfully
FALSE – If the command was not issued successfully

7 CY8CMBR3xxx_CheckCommandStatus

Description This API verifies whether the CY8CMBR3xxx device is ready to accept a new com-
mand, and whether the previously issued command has executed successfully.

Prototype uint8 CY8CMRB3xxx_CheckCommandStatus(uint8 slaveAddress, uint8 *errorCode)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 - 119

*errorCode
Pointer to the error code returned from the last command execution. If the last com-
mand failed, the API updates this data to show what caused the failure. Valid range is
0 to 255.

Return value 0 – If the last command is still executing
1 – If the last command executed successfully
2 – If the last command did not execute successfully, or if the I2C communication
failed.

106
08/2023

8 CY8CMBR3xxx_Configure

Description This API writes a user – specified configuration to the CY8CMBR3xxx device, saves the
configuration, and resets the device.
To configure the device, you should first create a configuration using EZ-Click. The
128-byte configuration data (generated in the project specific .h file in the EZ-Click
project) should be used directly for this API.
This API blocks CPU execution during the configuration save command execution,
and during CY8CMBR3xxx device reset.

Prototype bool CY8CMBR3xxx_Configure(uint8 slaveAddress, const unsigned char *configura-
tion)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*configuration
Buffer of 128 bytes to store the entire configuration for the device. This data should
be taken directly from the EZ-Click generated configuration data. This includes
126-bytes of configuration registers data and two bytes of CRC.

Return value TRUE – If the device was configured successfully
FALSE – If the device was not configured successfully

9 CY8CMBR3xxx_CalculateCrc

Description This API calculates the CRC checksum of a given configuration setting for the
CY8CMBR3xxx device.

Prototype uint16 CY8CMBR3xxx_CalculateCrc(uint8 *configuration)

Parameters *configuration
This 126-byte buffer would hold the entire configuration setting for the device.

Return value A two-byte value (with the higher byte being the MSB) for the calculated CRC.

10 CY8CMBR3xxx_VerifyDeviceOnBus

Description This API verifies that the device on the I2C bus is a valid CY8CMBR3xxx device. It
checks the Device ID, Family ID, and Device Revision to verify the device.

Prototype bool CY8CMBR3xxx_VerifyDeviceOnBus(uint8 slaveAddress)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

Return value TRUE – if the device is valid
FALSE – if the device is not valid

107
08/2023

11 CY8CMBR3xxx_SetDebugDataSensorId

Description This API sets the Sensor ID for reading the corresponding debug data from the
CY8CMBR3xxx device.
To read the debug data from the device, you should first call this API, followed by a
time wait equal to the device refresh interval. Then you should call CY8CMBR3xxx_
ReadSensorDebugData() to read back the debug data from the device.

Prototype bool CY8CMBR3xxx_SetDebugDataSensorId(uint8 slaveAddress, uint8 sensorId)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

sensorId
The sensor number for which the data is requested. This number can be a maximum
of one less than the total number of sensors supported by the device.

Return value TRUE – If the sensor ID write operation was successful
FALSE – If the sensor ID write operation was not successful

12 CY8CMBR3xxx_ReadSensorDebugData

Description This API reads the Cp, Difference counts, Baseline, Raw counts, and Average Raw
counts of a sensor and updates the data to a buffer.
To read debug data, you should first call CY8CMBR3xxx_SetDebugDataSensorId(),
and then wait for one refresh interval. After this time, you should call this API to read
the data from the device.
The API updates the buffer only if the sync counters of the device match. In case they
don’t, the API tries to read the data again. The maximum number of read attempts is
defined by CY8CMBR3xxx_SYNC_COUNTER_MATCH_RETRY.
You can set this value in CY8CMBR3xxx_APIs.h file.

Prototype bool CY8CMBR3xxx_ReadSensorDebugData(uint8 slaveAddress,
CY8CMBR3XXX_SENSORDATA *debugData)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*debugData
Pointer to the user-defined buffer where the data read from the CY8CMBR3xxx
device is stored. The buffer structure is defined in CY8CMBR3xxx_APIs.h.

Return value TRUE – If the buffer was updated properly
FALSE – If the buffer was not updated

108
08/2023

13 CY8CMBR3xxx_ReadDiffCounts

Description This API reads the Difference counts of all sensors of the CY8CMBR3xxx device and
updates the data to a buffer.
The API updates the buffer only if the sync counters of the device match. In case they
don’t, the API tries to read the data again. The maximum number of read attempts is
defined by CY8CMBR3xxx_SYNC_COUNTER_MATCH_RETRY. You can set this value in
CY8CMBR3xxx_APIs.h file.

Prototype bool CY8CMBR3xxx_ReadDiffCounts(uint8 slaveAddress, uin16 *differenceCounts)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*differenceCounts
Buffer to store the difference counts of all sensors. The buffer size should be equal to
the number of sensors in the device.

Return value TRUE – If the buffer was updated properly
FALSE – If the buffer was not updated

109
08/2023

9.2 Low-Level APIs

1 Host_LowLevelWrite

Description This API writes to the register map of the CY8CMBR3xxx device using the I2C
 communication protocol. The implementation is host processor dependent and
requires modification to the API code to suit specific host processor.
In case the device NACKs I2C transaction on the first time, ensure that this API retries
twice within the next 340 ms.

Prototype bool Host_LowLevelWrite(uint8 slaveAddress, uint8 *writeBuffer,
uint8 numberOfBytes)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*writeBuffer
The buffer from which data is written to the device.
The first element should always contain the location of the register of the device to
write to.
This value can be within 0 – 251.
Each successive element should contain the data to be written to that register and
the successive registers. These elements can have a value between 0 – 255. The num-
ber of data bytes can be between 0 and 128. Writing zero data bytes signifies that
you are updating the register location from which you want to read device register
map information.

numberOfBytes
Number of bytes to be written, equal to the number of elements in the buffer (i.e.
number of data bytes + 1 for register location)

Return value TRUE – If the write process was successful
FALSE – If the write process was not successful

2 Host_LowLevelRead

Description This API reads from the register map of the CY8CMBR3xxx device using the I2C com-
munication protocol. The implementation is host processor dependent and requires
modification to the API code to suit specific host processor.
In case the device NACKs I2C transaction on the first time, you must ensure that this
API retries twice within the next 340 ms.w

Prototype bool Host_LowLevelRead(uint8 slaveAddress, uint8 *readBuffer, uint8 numberOf-
Bytes)

Parameters slaveAddress
The I2C address of the CY8CMBR3xxx device.
Valid range: 8 – 119

*readBuffer
The buffer to be updated with the data read from the device.
The register location to read from should be set using Host_LowLevelWrite API prior
to calling this API. Each successive element to contain the data read from that regis-
ter and the successive registers. These elements can have a value between 0 – 255.

numberOfBytes
Number of data bytes to be read, equal to the buffer size.
Valid range: 1 – 252

Return value TRUE – If the read process was successful
FALSE – If the read process was not successful

Table 9-2 Low-Level Host APIs

110
08/2023

3 Host_LowLevelDelay

Description This API implements a time-delay function to be used by the High-level APIs.
The delay period is in milliseconds. This delay is achieved by a code-execution block
for the required amount of time.
The implementation is host processor dependent and requires modification to the
API code to suit your host.

Prototype void Host_LowLevelDelay(uint16 milliseconds)

Parameters milliseconds
The amount of time in milliseconds for which a wait is required.
Valid range: 0 – 65535

Return value None

111
08/2023

Glossary

AMUXBUS
Analog multiplexer bus available inside PSoC that helps to connect I/O pins with multiple internal analog signals.

SmartSense™ Auto-Tuning
A CAPSENSE™ algorithm that automatically sets sensing parameters for optimal performance after the design phase
and continuously compensates for system, manufacturing, and environmental changes.

Baseline
A value resulting from a firmware algorithm that estimates a trend in the Raw Count when there is no human finger
present on the sensor. The Baseline is less sensitive to sudden changes in the Raw Count and provides a reference point
for computing the Difference Count.

Button or Button Widget
A widget with an associated sensor that can report the active or inactive state (that is, only two states) of the sensor.
For example, it can detect the touch or no-touch state of a finger on the sensor.

Difference Count
The difference between Raw Count and Baseline. If the difference is negative, or if it is below Noise Threshold, the
Difference Count is always set to zero.

Capacitive Sensor
A conductor and substrate, such as a copper button on a printed circuit board (PCB), which reacts to a touch or an
approaching object with a change in capacitance.

CAPSENSE™®
Cypress’ touch-sensing user interface solution. The industry’s No. 1 solution in sales by 4x over No. 2.

CAPSENSE™ Mechanical Button Replacement (MBR)
Cypress’ configurable solution to upgrade mechanical buttons to capacitive buttons, requires minimal engineering ef-
fort to configure the sensor parameters and does not require firmware development. These devices include the CY8CM-
BR3XXX and CY8CMBR2XXX families.

Centroid or Centroid Position
A number indicating the finger position on a slider within the range given by the Slider Resolution. This number is
calculated by the CAPSENSE™ centroid calculation algorithm.

Compensation IDAC
A programmable constant current source, which is used by CSD to compensate for excess sensor CP. This IDAC is not
controlled by the Sigma-Delta Modulator in the CSD block unlike the Modulation IDAC.

112
08/2023

CSD
CAPSENSE™ Sigma Delta (CSD) is a Cypress-patented method of performing self-capacitance (also called self-cap)
measurements for capacitive sensing applications.
In CSD mode, the sensing system measures the self-capacitance of an electrode, and a change in the self-capacitance is
detected to identify the presence or absence of a finger.

Debounce
A parameter that defines the number of consecutive scan samples for which the touch should be present for it to be-
come valid. This parameter helps to reject spurious touch signals.
A finger touch is reported only if the Difference Count is greater than Finger Threshold + Hysteresis for a consecutive
Debounce number of scan samples.

Driven-Shield
A technique used by CSD for enabling liquid tolerance in which the Shield Electrode is driven by a signal that is equal to
the sensor switching signal in phase and amplitude.

Electrode
A conductive material such as a pad or a layer on PCB, ITO, or FPCB. The electrode is connected to a port pin on a
CAPSENSE™ device and is used as a CAPSENSE™ sensor or to drive specific signals associated with CAPSENSE™ function-
ality.

Finger Threshold
A parameter used with Hysteresis to determine the state of the sensor. Sensor state is reported ON if the Difference
Count is higher than Finger Threshold + Hysteresis, and it is reported OFF if the Difference Count is below Finger Thresh-
old – Hysteresis.

Ganged Sensors
The method of connecting multiple sensors together and scanning them as a single sensor. Used for increasing the
sensor area for proximity sensing and to reduce power consumption.
To reduce power when the system is in low-power mode, all the sensors can be ganged together and scanned as a
single sensor taking less time instead of scanning all the sensors individually. When the user touches any of the sensors,
the system can transition into active mode where it scans all the sensors individually to detect which sensor is activat-
ed. PSoC supports sensor-ganging in firmware, that is, multiple sensors can be connected simultaneously to AMUXBUS
for scanning.

Gesture
Gesture is an action, such as swiping and pinch-zoom, performed by the user. CAPSENSE™ has a gesture detection
feature that identifies the different gestures based on predefined touch patterns. In the CAPSENSE™ component, the
Gesture feature is supported only by the Touchpad Widget.

Guard Sensor
Copper trace that surrounds all the sensors on the PCB, similar to a button sensor and is used to detect a liquid stream.
When the Guard Sensor is triggered, firmware can disable scanning of all other sensors to prevent false touches.

113
08/2023

Hatch Fill or Hatch Ground or Hatched Ground
While designing a PCB for capacitive sensing, a grounded copper plane should be placed surrounding the sensors for
good noise immunity. But a solid ground increases the parasitic capacitance of the sensor which is not desired. There-
fore, the ground should be filled in a special hatch pattern. A hatch pattern has closely-placed, crisscrossed lines look-
ing like a mesh and the line width and the spacing between two lines determine the fill percentage. In case of liquid
tolerance, this hatch fill referred as a shield electrode is driven with a shield signal instead of ground.

Hysteresis
A parameter used to prevent the sensor status output from random toggling due to system noise, used in conjunction
with the Finger Threshold to determine the sensor state. See Finger Threshold.

IDAC (Current-Output Digital-to-Analog Converter)
Programmable constant current source available inside PSoC, used for CAPSENSE™ and ADC operations.

Liquid Tolerance
The ability of a capacitive sensing system to work reliably in the presence of liquid droplets, streaming liquids or mist.

Linear Slider
A widget consisting of more than one sensor arranged in a specific linear fashion to detect the physical position (in
single axis) of a finger.

Low Baseline Reset
A parameter that represents the maximum number of scan samples where the Raw Count is abnormally below the Neg-
ative Noise Threshold. If the Low Baseline Reset value is exceeded, the Baseline is reset to the current Raw Count.

Manual-Tuning
The manual process of setting (or tuning) the CAPSENSE™ parameters.

Matrix Buttons
A widget consisting of more than two sensors arranged in a matrix fashion, used to detect the presence or absence of a
human finger (a touch) on the intersections of vertically and horizontally arranged sensors.
If M is the number of sensors on the horizontal axis and N is the number of sensors on the vertical axis, the Matrix But-
tons Widget can monitor a total of M x N intersections using ONLY M + N port pins.
When using the CSD sensing method (self-capacitance), this Widget can detect a valid touch on only one intersection
position at a time.

Modulation Capacitor (CMOD)
An external capacitor required for the operation of a CSD block in Self-Capacitance sensing mode.

Modulator Clock
A clock source that is used to sample the modulator output from a CSD block during a sensor scan. This clock is also fed
to the Raw Count counter. The scan time (excluding pre and post processing times) is given by (2N – 1)/Modulator Clock
Frequency, where N is the Scan Resolution.

114
08/2023

Modulation IDAC
Modulation IDAC is a programmable constant current source, whose output is controlled (ON/OFF) by the sigma-delta
modulator output in a CSD block to maintain the AMUXBUS voltage at VREF. The average current supplied by this IDAC is
equal to the average current drawn out by the sensor capacitor.

Mutual-Capacitance
Capacitance associated with an electrode (say TX) with respect to another electrode (say RX) is known as mutual
capacitance.

Negative Noise Threshold
A threshold used to differentiate usual noise from the spurious signals appearing in negative direction. This parameter
is used in conjunction with the Low Baseline Reset parameter.
Baseline is updated to track the change in the Raw Count as long as the Raw Count stays within Negative Noise Thresh-
old, that is, the difference between Baseline and Raw count (Baseline – Raw count) is less than Negative Noise Thresh-
old.
Scenarios that may trigger such spurious signals in a negative direction include: a finger on the sensor on power-up,
removal of a metal object placed near the sensor, removing a liquid-tolerant CAPSENSE™-enabled product from the
water; and other sudden environmental changes.

Noise (CAPSENSE™ Noise)
The variation in the Raw Count when a sensor is in the OFF state (no touch), measured as peak-to-peak counts.

Noise Threshold
A parameter used to differentiate signal from noise for a sensor. If Raw Count – Baseline is greater than Noise Thresh-
old, it indicates a likely valid signal. If the difference is less than Noise Threshold, Raw Count contains nothing but noise.

Overlay
A non-conductive material, such as plastic and glass, which covers the capacitive sensors and acts as a touch-surface.
The PCB with the sensors is directly placed under the overlay or is connected through springs. The casing for a product
often becomes the overlay.

Parasitic Capacitance (CP)
Parasitic capacitance is the intrinsic capacitance of the sensor electrode contributed by PCB trace, sensor pad, vias, and
air gap. It is unwanted because it reduces the sensitivity of CSD.

Proximity Sensor
A sensor that can detect the presence of nearby objects without any physical contact.

Radial Slider
A widget consisting of more than one sensor arranged in a specific circular fashion to detect the physical position of a
finger.

Raw Count
The unprocessed digital count output of the CAPSENSE™ hardware block that represents the physical capacitance of
the sensor.

115
08/2023

Refresh Interval
The time between two consecutive scans of a sensor.

Scan Resolution
Resolution (in bits) of the Raw Count produced by the CSD block.

Scan Time
Time taken for completing the scan of a sensor.

Self-Capacitance
The capacitance associated with an electrode with respect to circuit ground.

Sensitivity
The change in Raw Count corresponding to the change in sensor capacitance, expressed in counts/pF. Sensitivity of a
sensor is dependent on the board layout, overlay properties, sensing method, and tuning parameters.

Sense Clock
A clock source used to implement a switched-capacitor front-end for the CSD sensing method.

Sensor
See Capacitive Sensor.

Sensor Auto Reset
A setting to prevent a sensor from reporting false touch status indefinitely due to system failure, or when a metal object
is continuously present near the sensor.
When Sensor Auto Reset is enabled, the Baseline is always updated even if the Difference Count is greater than the
Noise Threshold. This prevents the sensor from reporting the ON status for an indefinite period of time. When Sensor
Auto Reset is disabled, the Baseline is updated only when the Difference Count is less than the Noise Threshold.

Sensor Ganging
See Ganged Sensors.

Shield Electrode
Copper fill around sensors to prevent false touches due to the presence of water or other liquids. Shield Electrode is
driven by the shield signal output from the CSD block. See Driven-Shield.

Shield Tank Capacitor (CSH)
An optional external capacitor (CSH Tank Capacitor) used to enhance the drive capability of the CSD shield, when there is
a large shield layer with high parasitic capacitance.

Signal (CAPSENSE™ Signal)
Difference Count is also called Signal. See Difference Count.

Signal-to-Noise Ratio (SNR)
The ratio of the sensor signal, when touched, to the noise signal of an untouched sensor.

Slider Resolution
A parameter indicating the total number of finger positions to be resolved on a slider.

116
08/2023

Touchpad
A Widget consisting of multiple sensors arranged in a specific horizontal and vertical fashion to detect the X and Y
 position of a touch.

Trackpad
See Touchpad.

Tuning
The process of finding the optimum values for various hardware and software or threshold parameters required for
CAPSENSE™ operation.

VREF
Programmable reference voltage block available inside PSoC used for CAPSENSE™ and ADC operation.

Widget
A user-interface element in the CAPSENSE™ component that consists of one sensor or a group of similar sensors.
 Button, proximity sensor, linear slider, radial slider, matrix buttons, and touchpad are the supported widgets.

117
08/2023

Revision History

Document Revision History
Document Title: AN90071 - CY8CMBR3xxx CAPSENSE™ Design Guide
Document Number: 001-90071

Revision Issue Date Origin of
Change

Description of Change

** 02/18/2014 DCHE New Design Guide

*A 02/25/2014 DCHE/UDYG Modified Figure 1-2 and Figure 2-13
Added Min and Max Cp range for each sensors in Table 4-1
Updated section 5.2 with Host APIs and Bridge Control
 Panel Added Appendix chapter

*B 03/11/2014 DCHE Updated the Operating Voltage Specifications

*C 06/05/2014 DCHE Added footnote#6 in page 27
Updated MBR3 Design Toolbox with Device Timing Parame-
ters Table Updated “Estimating the Response Time” section
with Device Timing Parameters.

*D 07/31/2014 DCHE Updated Table 3-2 and Figure 5-21

*E 12/12/2014 DCHE Updated Table 1-1, Table 4-1
Updated Shield Electrode Construction section.
Updated Figure 2-13 and Figure 2-14
Added section CAPSENSE™ Design on FR4 and FPC
Added information on CY8CMBR3002 in Configurations in
CY8CMBR3xxx
Added section Hardware Connection
Updated Slider Layout Guidelines in MBR3 Design Toolbox
Updated CY8CMBR3xxx_Host_APIs_Demo_Project folder
structure to fix build errors.

*F 01/21/2016 VAIR Added Glossary.
Changed category from “Guides – Tech Pubs – English (EN)”
to “Application Notes – English (EN)”.

*G 02/14/2017 DCHE Updated Liquid Tolerance section.

*H 06/29/2017 AESATMP8 Updated logo and Copyright.

Please note!
This Document is for information purposes only and any information given
herein shall in no event be regarded as a warranty, guarantee or description
of any functionality, conditions and/or quality of our products or any suit ability
for a particular purpose. With regard to the technical specifications of our
products, we kindly ask you to refer to the relevant product data sheets provided
by us. Our customers and their technical departments are required to evaluate
the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given
herein at any time.

Additional information
For further information on technologies, our products, the application of our
products, delivery terms and conditions and/or prices, please contact your
nearest Infineon Technologies office (www.infineon.com).

Warnings
Due to technical requirements, our products may contain dangerous substances.
For information on the types in question, please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by us in a written document signed by
authorized representatives of Infineon Technologies, our products may not be
used in any life- endangering applications, including but not limited to medical,
nuclear, military, life-critical or any other applications where a failure of the
product or any consequences of the use thereof can result in personal injury.

Scan QR code and explore offering
www.infineon.com

Published by
Infineon Technologies AG
Am Campeon 1-15, 85579 Neubiberg
Germany

© 2023 Infineon Technologies AG.
All rights reserved.

Public

Date: 08 / 2023

Stay connected!

