

www.cypress.com Document No. 001-89661 Rev. *B 1

AN89661

USB RAID 1 Disk Design Using EZ-USB® FX3S™

Author: Hingkwan Huen
Associated Project: Yes

Associated Part Family: EZ-USB
®
 FX3S™

Software Version: N/A
Related Application Notes: AN75705 - Getting Started with FX3

AN89661 describes how to design and implement a USB Redundant Array of Independent Disks (RAID) level 1 disk

using EZ-USB
®
 FX3S™. It includes an example design of a USB RAID 1 disk for a server boot storage application to

help you develop server boot storage solutions.

Contents

1. Introduction ... 1
2. Introduction to RAID .. 2
3. System Overview .. 2
4. Functional Overview .. 4
5. Hardware ... 4
6. Firmware ... 6

6.1 Firmware Source .. 6
6.2 Callback Operations ... 8
6.3 Mass Storage Operations 8
6.4 Automatic Rebuild .. 10

7. Operating Procedure ... 10
8. Performance .. 11

8.1 USBSD Card .. 11
8.2 SD CardSD Card .. 11

9. Summary ... 11
Appendix A: FX3S RAID-on-Chip USB Boot Disk Board
Layout View ... 12
Appendix B: FX3S RAID-on-Chip USB Boot Disk
Schematic ... 13
Document History .. 14
Worldwide Sales and Design Support 15

1. Introduction

The USB standard allows many peripherals to be
connected using a single, standardized interface. Proven
over the years as a reliable, expandable, fast, low-cost,
low-power, and hot-pluggable interface, USB is now
ubiquitous in a wide variety of applications. This
application note addresses one such application, a RAID
boot disk in servers.

Among server applications, server virtualization is the
trend in IT and has become the fastest growing segment
of the server market. Server virtualization is the process of
using software to partition a physical server into multiple
virtual servers. Server virtualization requires a fast,
reliable, and compact boot disk that is separated from the
main server storage.

The EZ-USB FX3S is a RAID-on-Chip controller with
integrated dual Secure Digital (SD) interfaces, which is a
perfect fit for a low cost RAID Boot Disk. It not only
provides the benefit and function of a SuperSpeed USB
mass storage device, but also it manages storage
redundancy for high reliability through its RAID-on-Chip
functionality.

This application note presents an example design of a
USB RAID 1 disk using EZ-USB FX3S for a server boot
storage application. The RAID 1 functionality is managed
entirely within FX3S. This application also may be used as
a standalone mass storage device using two SD cards. A
FX3S RAID-on-Chip dongle kit can be purchased off the
shelf. The complete source code is available in the
appendix of this application note.

http://www.cypress.com/
http://www.cypress.com/?rID=59979

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 2

2. Introduction to RAID

RAID is a storage technology that combines multiple
storage disk components into a logical unit. Data is
distributed across the disks in one of several ways, called
“RAID levels,” depending on the amount of redundancy
and performance required. The different schemes or
architectures are named “RAID level,” or simply just
“RAID,” followed by a number. FX3S supports RAID 0 and
RAID 1.

RAID 0 (block-level striping) has no redundancy. Because
it interleaves data between two physical storage
components, it provides improved performance but no
fault tolerance. Any disk failure destroys the storage array.
Typically, the RAID 0 architecture supports two disks, as
shown in Figure 1.

Figure 1. RAID Level 0

For RAID 1 (mirroring), data is written identically to two
disks, producing a “mirrored set,” as shown in Figure 2.
Either of the two disks containing the requested data
services the read request. A write request updates the
stripes of both disks. At least two disks are required to
create such an array.

Figure 2. RAID Level 1

3. System Overview

Figure 3 is a high-level block diagram of a server that uses
a RAID boot disk. Since the advent of server virtualization,
a single physical server has been used to host multiple
virtual servers using virtualization software. The
virtualization software typically resides on a boot disk that
is separate from the main storage in a server. To increase
reliability, a RAID 1 configuration of this boot disk is
required. This RAID 1 boot disk, illustrated in the blue box
in Figure 3, can be implemented using the EZ-USB FX3S
RAID-on-Chip USB dongle, shown in Figure 4.

The FX3S USB RAID 1 disk is the initial boot source for
the main server system. With the fast USB 3.0 link to the
Platform Controller Hub (PCH), the server system can
boot up quickly. A typical server system also uses a
separate control link to the Board Management Controller
(BMC) to manage the RAID operations.

The FX3S RAID-on-Chip dongle provides a separate slave
MultiMediaCard (MMC) interface for the BMC connection.
Because the BMC control link protocol is vendor specific, it
is not covered in this application note. However, you can
easily add and customize the feature in the FX3S
firmware. Please create a technical support case from
cypress.com/go/support to work out the implementation
details of a specific protocol.

The example firmware in this application note implements
a generic RAID 1 solution without the BMC control.

The EZ-USB FX3S RAID-on-Chip dongle hardware shown
in Figure 4 is manufactured by Pactron and is available
from pactronstore.com/products/cypress-fx3s.html.

The hardware schematic and example firmware source
code are included in the appendix of this application note.

http://www.cypress.com/
http://en.wikipedia.org/wiki/Redundancy_(engineering)
http://en.wikipedia.org/wiki/Data_striping
http://www.cypress.com/go/support
http://pactronstore.com/products/cypress-fx3s.html

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 3

Figure 3. Server Overview

Figure 4. EZ-USB FX3S RAID-on-Chip USB Dongle

Dual SD

Card Slot

J4 Firmware

Flash Jumper

FX3S

RAID-on-Chip

USB 3.0 Controller

USB 3.0

Connector

SPI Boot Flash

Debug/Slave MMC

Connector

USB Power Indicator
USB Access Indicator

Rebuild Busy Indicator

Device

Reset Switch

PCH BMC

USB 2.0

USB 3.0

USB RAID Disk

FX3S

RAID-on-Chip

SD
Card

SATA or SAS

SD
Card

4

Intel
CPU

Virtual Server 3
Virtual Server 2

Virtual Server 1

Blade Server

RAID Storage

MMC

4

Disk
Storage

Disk
Storage

Serial
Interface

4

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 4

4. Functional Overview

The FX3S USB RAID 1 disk functions as a standard USB
3.0 mass storage device. The firmware example provided
in this application note implements the RAID 1 function
using two SD cards. The device enumerates as a single,
mirrored storage volume on the USB host PC. All RAID
operations are managed inside FX3S. No explicit external
RAID handling is required by the user.

FX3S recognizes two SD cards: a primary card and a
secondary card. For a read operation, data returned to the
USB host is read from the primary card. If the primary card
fails or is ejected, read operations continue from the
secondary card. For a write operation, data from the USB
host is simultaneously written to both the primary and
secondary cards. If one card fails or is ejected, the
transaction is aborted only to this card without
interruptions to the other card. In both cases, FX3S
maintains the seamless USB disk operations whenever an
error condition occurs on one of the two cards.

The RAID 1 firmware example supports automatic volume
rebuild when either the primary or secondary card is
replaced. If one card is ejected while the disk is
operational, the USB host sees no interruptions. If a new
card is inserted, the RAID 1 firmware triggers the rebuild
process by copying the entire contents of the active card
to the newly inserted card.

During the rebuild process, the LED rebuild busy indicator,
as shown in Figure 4, remains on. Storage access from
the USB host to the SD cards is blocked until the rebuild
process completes. The USB host sees a temporary
read/write request denial and keeps trying until the rebuild
process completes. The host operating system does this
automatically, requiring no user intervention.

In summary, the FX3S USB RAID 1 disk does the
following:

 Operates as a standard mass storage device at USB
SuperSpeed, High Speed, and Full Speed.

 Uses two SD 3.0 (UHS-I) cards

 Reports and uses the smaller capacity if the two SD
cards are of different size.

 Performs data mirroring during normal mass storage
operations

 Provides uninterrupted access to one SD card if the
other SD card is removed

 Performs data synchronization automatically when
one card is replaced

 Handles SD card hot-plug events (removal and
insertion)

5. Hardware

The USB RAID-on-Chip dongle hardware design shown in
Figure 5, uses FX3S to implement a SuperSpeed USB
mass storage device with built-in RAID management. The
board features these components:

 USB 3.0 peripheral interface supporting SuperSpeed,
High Speed, and Full Speed

 Dual independent storage ports, each supporting
SD/SDIO 3.0 (UHS-I) and embedded MMC 4.41
devices

 4-Mb SPI flash for FX3S firmware storage

 19.2-MHz crystal input as the system clock source

 12-pin header that includes UART for debug and a
MMC 4.2 interface (not used in the RAID 1 example
presented in this application note)

 LED indicators for power, USB access and rebuild
operation

 Hardware system reset button

The RAID-on-Chip dongle is bus powered via the USB
interface. All FX3S and SD card power rails are derived
from the 5-V VBUS provided by the USB host.

FX3S features a 200-MHz ARM9 MCU, 512KB of system
memory, and a full array of peripherals well suited to this
application. Although the board is set to boot load its
firmware from an onboard SPI flash device, you can also
configure the board to boot load over the USB for system
development.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 5

Figure 5. Hardware Overview

CYUSB3035

FX3S USB 3.0

Controller

U
S

B
 3

.0
 C

o
n

n
e

c
to

r

USB 3.0

USB 2.0

19.2 MHz

Crystal

Power

Distribution

5V VBUS

Standard SD/MMC

Socket 1

Standard SD/MMC

Socket 2

Reset

Button

LED Indicators

4Mb SPI

Flash
12-Pin Header

GPIOI2CUART

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 6

6. Firmware

The firmware example project supplied with this
application note is located in the FX3MSC_RAID1 folder of
the source zip file. This example project compiles and
generates a binary image without modifications. You can
download the binary image to FX3S using the Cypress
USB Control Center. Before downloading, make sure J4 of
the board is open to allow FX3S to come up in bootloader
mode.

Refer to AN75705 - Getting Started with EZ-USB FX3 for
more details on how to work with the FX3S firmware
projects and download image using the Cypress USB
Control Center.

6.1 Firmware Source

The RAID 1 firmware application runs on top of a Real-
Time Operating System (RTOS), which efficiently
manages FX3S internal resources. The FX3S firmware
application communicates with the FX3S hardware
peripherals via a set of application programming interface
(API) library functions that abstract low-level device
details, significantly simplifying the development effort.

Figure 6 illustrates the files and directories included in the
example RAID 1 firmware project:

 Includes: A directory that contains a collection of

C library header and project-specific header files.

 api: A directory that contains the FX3S API library
binaries.

 Debug and Release: The project can be compiled
with either debug or release configurations.
Debug and Release directories contain the output
of the respective compilation configurations.

 cyfx_gcc_startup.S: The startup code for the
ARM9 core on the FX3S device. This assembly
source file follows the syntax of the GNU
assembler. GNU, self-referentially, short for
GNU’s not UNIX, is a UNIX-compatible software
system developed by the Free Software
Foundation (FSF).

 cyfx3s_raid1.c: The main implementation for the
RAID 1 USB mass storage device example.

 cyfx3s_raid1.h: Constant definitions and function
declarations for the RAID 1 mass storage
application.

 cyfxtx.c: ThreadX RTOS wrappers and utility
functions required by the FX3S API library.

 cyraid1_descr.c: USB descriptor definitions.

 makefile: A shell command file that manages and
organizes code compilation.

 readme.txt: A simple description of the
FX3MSC_RAID1 project.

Figure 6. RAID 1 Firmware Source

All RAID functions are implemented within the
cyfx3s_raid1.c file. Table 1 summarizes these functions.

http://www.cypress.com/
http://www.cypress.com/?rID=59979

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 7

Table 1. Functions in cyfx3s_raid1.c Implementing the RAID 1 Application

Function
Category

Reference
Section

Function Name Description

RTOS 6.2 main() This function is the firmware C code entry point after the ARM core and C
library initialization. It sets up caches, configures the FX3 I/Os, and starts the
RTOS kernel.

6.2 CyFxApplicationDefine() This function defines the application thread that is executed by the RTOS.

6.2, 6.3,
6.4

MscAppThread_Entry() This function is the RAID 1 application thread that does the following:

Calls the application-level initializations

Manages the internal state transitions for the mass storage device

Mass storage
application-
level
initialization

6.3 CyFxMscApplnInit() This function calls the FX3S device-level initialization functions to perform the
following tasks:

1. Initialize the GPIOs.

2. Initialize two SD storage ports.

3. Initialize the USB port.

4. Register event callbacks.

5. Register the USB descriptors.

6. Initialize the required DMA channels.

7. Enable the USB connection to host.

6.3 CyFxMscApplnDebugInit() This function initializes the FX3 UART block for printing debug messages.

6.3 CyFxMscApplnDmaInit () This function allocates buffer memory and initializes the required DMA
channels between USB and the storage port. In a normal condition, when two
SD cards are attached, two DMA configurations are initialized:

For read operation: one-to-one single channel DMA connecting the USB BULK-
IN endpoint and primary SD card

For write operation: one-to-two multicast channel DMA connecting the USB
BULK-OUT endpoint to both SD cards

6.3 CyFxMscApplnDmaReInit () When one of the two SD cards goes offline and comes back online again, this
is the function to reconfigure the one-to-two multicast channel DMA.

FX3S device-
level
initialization

6.3 CyFxRdDmaInit() For read operation, this function creates a one-to-one single-channel DMA
connecting the USB BULK-IN endpoint and primary SD card.

6.3 CyFxWrErrDmaInit() When one of the two SD cards goes offline, this is the function to call and
reconfigure the multicast channel DMA into single-channel DMA.

6.3 CyFxMscApplnSibInit() This function initializes the two-SD storage controller.

6.3 CyFxMscApplnGpioInit () This function initializes the GPIO required for the application.

Mass storage
application
callbacks

6.2 CyFxMscApplnUSBEventCB() This callback function handles general USB events (such as reset, connect and
disconnect, and so on).

6.2 CyFxMscApplnUSBSetupCB() This callback function handles USB setup events during enumeration and
control transfers.

6.2 CyFxMscApplnSibCB() This callback function handles storage port events (such as card insert and
remove, data transfer complete, and so on).

6.2 CyFxMscApplnDmaCb() This callback function handles one-to-one single-channel DMA events.

6.2 CyFxMscApplnMultiDmaCb() This callback function handles one-to-two multicast-channel DMA events.

Mass storage
application
operations

Not
referenced

CyFxMscApplnResetCtlr() This function resets the clear the USB data path.

6.3 CyFxMscApplnParseCbw() This function parses the received storage command and handles it accordingly.

Not
referenced

CyFxMscApplnSendDataToHost() This function stages the data to the BULK-OUT endpoint for the host to pick up.

Not
referenced

CyFxMscApplnSendCsw() This function stages the storage command execution status to the BULK-OUT
endpoint for the host to pick up.

6.4 CyFxMscApplnQueryDevStatus() This function probes the two SD storage ports and reports their statuses.

Not
referenced

CyFxAppLedOn() This function sets the GPIO to turn on the LED.

CyFxAppLedOff() This function sets the GPIO to turn off the LED.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 8

6.2 Callback Operations

Because the RTOS manages the system resources,
RAID 1 firmware execution is event driven. Peripherals
(USB and SD ports) and the internal DMA system
generate events. These events are handled by callback
functions registered during firmware initialization.

When RAID 1 firmware execution starts, it performs a
series of initialization sequences for the ARM9 core, GNU

tool chain library, and RTOS before entering the main()
function in cyfx3s_raid1.c. The RTOS begins by calling

CyU3PKernelEntry() from the main(). Before the RTOS
starts the thread scheduling, at least one thread is created
to perform the application task. For the RAID 1 example

project, the application thread is MscAppThread_Entry(),

which starts by configuring the peripheral interfaces and
registering the event callback functions to handle USB,
storage, and DMA events. These callback functions
include the following:

 CyFxMscApplnUSBEventCB: This callback function

handles these USB events:

 CY_U3P_USB_EVENT_SUSPEND: The USB suspend

event. The device goes into a low power mode.

 CY_U3P_USB_EVENT_DISCONNECT: The USB

disconnect event. The device is disconnected from
the host.

 CY_U3P_USB_EVENT_RESET: The USB reset event.

A reset is received from the host.

 CY_U3P_USB_EVENT_CONNECT: The USB connect

event. The device is connected to the host.

 CY_U3P_USB_EVENT_SETCONF: The host

“configures” the device to complete the
enumeration process.

 CyFxMscApplnUSBSetupCB: This callback function

handles the following USB setup events, which occur
mainly during enumeration:

 CY_FX_MSC_USB_STANDARD_REQ: A standard setup

request is received from the host.

 CY_FX_MSC_USB_CLASS_REQ: A class-specific

request is received from the host.

 CY_FX_MSC_USB_VENDOR_REQ: A vendor-specific

request is received from the host. This is a
placeholder in case a custom vendor host driver is
used.

 CyFxMscApplnSibCB: This callback function handles
the following storage port events:

 CY_U3P_SIB_EVENT_XFER_CPLT: A DMA transfer
has completed.

 CY_U3P_SIB_EVENT_INSERT: A card insertion is

detected from one of the two SD sockets.

 CY_U3P_SIB_EVENT_REMOVE: A card removal is

detected from one of the two SD sockets.

 CY_U3P_SIB_EVENT_DATA_ERROR: An error has

occurred on one of the two cards.

 CY_U3P_SIB_EVENT_ABORT: A read/write operation

has been aborted.

 CyFxMscApplnDmaCb: This callback function handles
events for one-to-one DMA channels. In a one-to-one
channel, there is one data provider and one data
consumer. These events usually occur when receiving
a mass storage Command Block Wrapper (CBW) over
USB, sending a mass-storage Command Status
Wrapper (CSW) over the USB, or reading from one
storage port.

 CY_U3P_DMA_CB_SEND_CPLT: A DMA outgoing

data transfer has completed.

 CY_U3P_DMA_CB_RECV_CPLT: A DMA incoming

data transfer has completed.

 CyFxMscApplnMultiDmaCb: This callback function

handles the following events for a one-to-many DMA
channel. In a one-to-many transfer, there is one data
provider and multiple data consumers—in this case,
the two SD cards. These events usually occur during
a storage write command when data from the USB
needs to be written into both storage cards.

 CY_U3P_DMA_CB_RECV_CPLT: A DMA transfer with

outgoing data has been completed.

 CY_U3P_DMA_CB_PROD_EVENT: A DMA transfer with

incoming data has been completed.

6.3 Mass Storage Operations

After the RAID 1 firmware completes the device-level and
application-level initialization sequence, execution

continues in MscAppThread_Entry() and stays in an

infinite loop waiting for USB mass storage application
events raised by the device.

The RAID 1 firmware application implements the standard
USB mass-storage class (MSC) using bulk-only transport
(BOT). BOT defines three basic stages of the MSC
operation:

 Command transport: In command transport, the host
PC sends commands to the device using BULK-OUT
transfers. This command packet is defined as the
CBW, and BOT must always begin with the CBW.

 Data transport: Data transport is used to transfer data
between the host and the device. For example, with
the read/write command, the actual data of the
various storage sectors is sent using data transport,
which utilizes multiple bus transactions. Data
transfers carried out using data transport use either
BULK-OUT or BULK-IN transport.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 9

 Status transport: Status transport is used to send the
results of command execution from the device back to
the host using BULK-IN transport. The CSW defines
this status packet. BOT must always end with the
CSW.

Figure 7 shows the high-level MSC stage transitions.

Figure 7. USB MSC Transfer Stages

To support the standard MSC protocol, the following

events are handled within the MscAppThread_Entry():

 CY_FX_MSC_RESET_EVENT: The mass storage device
has been reset.

 CY_FX_MSC_SETCONF_EVENT: Enumeration has
completed. Need to set up the device for MSC
operation.

 CY_FX_MSC_CBW_EVENT: A MSC CBW package has

been received. The command (using SCSI format) is
parsed and executed when this event is received.

 CY_FX_MSC_DATASENT_EVENT: At the data transport

stage, data has been sent to the host, and firmware
will move the device to the status transport stage.

 CY_FX_MSC_SIBCB_EVENT: This event requires the

mass storage device to set up the storage port for the
next data transaction.

 If the device is at the command transport stage,
the firmware sets up a receive buffer to accept a
CBW package from the host.

 If the device is at the data transport stage, the
firmware sets up a transmit or receive buffer
depending on the data direction of the current
command.

 If the device is at the status transport stage,
firmware updates the CSW package and sends it
to the host.

The RAID 1 firmware manages the mass storage device
function via an internal state machine. States are defined
for each of the MSC transfer stages shown in Figure 7.
The following C code example shows how these states
are defined in the firmware:

typedef enum

{

 /* Inactive state, waiting for

SET_CONFIG. */

 CY_FX_MSC_STATE_INACTIVE = 0,

 /* Waiting to queue a CBW command. */

 CY_FX_MSC_STATE_CBW,

 /* transitional state that it tells USB

host it is ready to receive a CBW command.

*/

 CY_FX_MSC_STATE_WAITING,

 /* Waiting to complete data transfer for

a command. */

 CY_FX_MSC_STATE_DATA,

 /* Waiting to send CSW for a command. */

 CY_FX_MSC_STATE_STATUS,

 /* Waiting for host to read out CSW

packet. */

 CY_FX_MSC_STATE_CSW

} CyFxMscFuncState;

When the FX3S USB RAID disk is enumerated, the USB
host sends the CBW package to the BULK-OUT endpoint.

FX3S saves the CBW data in a buffer: glMscCbwBuffer.

When the device is ready to execute a command, the

current device state changes to CY_FX_MSC_STATE_CBW

and an MSC CBW event CY_FX_MSC_CBW_EVENT_FLAG is

raised. The device is set to the CY_FX_MSC_STATE_CBW

state after a successful USB enumeration, or after
successful completion of the last command.

After MscAppThread_Entry() detects the

CY_FX_MSC_CBW_EVENT_FLAG event, it calls

CyFxMscApplnParseCbw() to parse the command stored

in glMscCbwBuffer. Depending on the command type, it

moves the device state to CY_FX_MSC_STATE_DATA or

CY_FX_MSC_STATE_STATUS.

If the command is CY_FX_MSC_SCSI_READ_10 or

CY_FX_MSC_SCSI_WRITE_10, a storage callback event

CY_FX_MSC_SIBCB_EVENT_FLAG is raised. The

MscAppThread_Entry() function handles this event by

setting up the proper DMA channel between the SD card
and the USB endpoint. When the USB host initiates the
transfer, data flows through the DMA channel to or from
the SD card until the data count is reached. When a DMA
transfer completes, one of the two DMA callback functions
receives a transfer completion event, raising the MSC data

sent event CY_FX_MSC_DATASENT_EVENT_FLAG. After the

 Start

BULK-OUT

transport

BULK-OUT

transport

BULK-IN

transport

BULK-IN

transport

Command

transport (CBW)

Start

Data

transport

Status

transport (CSW)

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 10

MscAppThread_Entry() function handles the MSC data

sent event, the command status is updated. The device

state is also moved to CY_FX_MSC_STATE_STATUS.

When the device is in CY_FX_MSC_STATE_STATUS state, a

MSC CSW packet is constructed and sent back to the
USB host. Once the CSW is sent, the device state is

transitioned back to CY_FX_MSC_STATE_CBW, and the

device is ready to execute the next command.

6.4 Automatic Rebuild

The RAID 1 firmware supports automatic volume rebuild to

restore storage redundancy. MscAppThread_Entry()

manages the volume rebuild by monitoring two status
flags: stale status and card presence, one set for each
storage.

The stale status flag is set whenever the card fails or is
removed from the socket. It is cleared when both cards
are operational and synchronized, usually after a
successful rebuild operation. The stale status is also set
by default after an initial power up with two SD cards
inserted. The firmware always assumes the two SD cards
are synchronized under the initial power-up condition. It is
recommended that you format the disk after initial power
up to ensure both cards are synchronized at the start.

The card presence flag is updated when a card insertion

(CY_U3P_SIB_EVENT_INSERT) or removal

(CY_U3P_SIB_EVENT_REMOVE) event occurs. These events

are handled within the storage callback function

CyFxMscApplnSibCB(). If the card is removed, the card
presence flag is cleared. When the card is inserted, the

CY_U3P_SIB_EVENT_INSERT event is raised and

CyFxMscApplnSibCB() calls

CyFxMscApplnQueryDevStatus() to detect and initialize

the card. The card presence flag is set if the card is
successfully initialized.

If MscAppThread_Entry() detects that the card presence

and stale status flags are both set, it initiates the volume

rebuild process by calling CyWbRaidFullCardSync().

The volume rebuild process continues to run until the stale
status is cleared. The stale status is cleared when
redundancy is restored after the full content of the SD card
has been successfully transferred to the newly inserted
card. During the rebuild process, disk access on the USB
host may become unavailable because the primary SD
card is busy servicing the rebuild process. In this case, the
host continually retries disk access until the rebuild
operation completes and the disk is again accessible.

7. Operating Procedure

The following operating procedure can be used to test the
supported functions of the FX3S USB RAID disk:

1. Plug the FX3S USB RAID disk into any USB slot
(SuperSpeed, High Speed, or Full Speed). Notice that
the LED power indicator turns on. Any ongoing USB
access to SD cards also blinks the LED USB access
indicator. Figure 4 shows the locations of these LED
indicators.

2. After the USB enumeration, a disk drive in the
Windows Explorer AutoPlay window appears as
shown in Figure 8.

Figure 8. Windows Explorer AutoPlay Window

3. Format the disk using the FAT or FAT32 file system.
Notice that it appears as a single disk volume, hiding
the fact that it uses two mirrored SD cards.

4. Move a video file into the card, and then play the
video.

5. While the video plays, remove one of the SD cards.
Observe that the video continues playing without
interruption. This demonstrates the safety feature of
the RAID design – if one card fails or is removed the
system continues operating with the single card.

6. Delete the contents of the SD card removed in step 4
and reinsert the card. This triggers a rebuild
operation. The LED rebuild busy indicator shown in
Figure 4 turns on and PC access to the card is
inhibited. The video may play a bit longer due to
internal buffering, but eventually it stops.

7. When the rebuild operation completes, the LED
rebuild busy indicator turns off and the video resumes
playing. This demonstrates that a rebuild operation
requires no user intervention.

8. Remove the same SD card as in step 4 and check the
contents. It should be a copy of the SD card that is
still connected to the FX3S RAID-on-Chip USB
Dongle kit.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 11

8. Performance

With the RAID 1 firmware running on the EZ-USB FX3S
RAID-on-Chip USB boot disk, performance presented in
this section was measured under the following conditions:

 Measurement tool: CrystalDiskMark v3.0.2 x64

 SD card type: SanDisk Extreme Pro 8 GB

 USB host: Lenovo ThinkPad T430 with Intel Ivy
integrated USB 3.0 host running Windows 7 x64

In general, it is recommended to use identical SD cards to
achieve optimal performance. If the two cards are of
different size and speed, the smaller size is used for the
logical RAID 1 disk volume. Performance is also limited by
the slower card.

8.1 USBSD Card

USB to SD card transfer performance is measured by
reading and writing the drive from the USB 3.0 host using
a popular disk benchmark tool, CrystalDiskMark. The tool
is available for download from

 crystalmark.info/software/CrystalDiskMark/index-e.html.

Figure 9 shows the expected USBSD card performance.

Figure 9. USB 3.0SD Performance

8.2 SD CardSD Card

SD card to SD card transfers are initiated by removing and
then reinserting one of the SD cards. This triggers a
rebuild operation in which the entire contents of the active
card are transferred to the newly inserted card.

Figure 10 shows the expected SD card  SD card
performance.

Figure 10. SDSD Performance

9. Summary

This application note demonstrated a RAID-on-Chip USB
mass storage device using EZ-USB FX3S for server boot
storage applications. Included in this document are
associated board design schematics and example
firmware source code.

10. About the Author

Name: Hingkwan Huen

Title: Systems Engineer Principal

RAID-1 F/W

Primary

SD card

Secondary

SD card

USB3.0

Measured
WRITE

(MBps)

READ

(MBps)

Single

SD
43.2 43.6

RAID-1

(Dual SD)
43.7 43.7

FX3S

RAID-1 F/W

USB3.0

Measured
WRITE

(MBps)

Card to Card 43.5
Primary

SD card
Secondary

SD card

FX3S

http://www.cypress.com/
http://crystalmark.info/software/CrystalDiskMark/index-e.html

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 12

Appendix A: FX3S RAID-on-Chip USB Boot Disk Board Layout View

Double-click this image to open top and bottom views of the board layout.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 13

Appendix B: FX3S RAID-on-Chip USB Boot Disk Schematic

Double-click this image to open the board schematic file.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 14

Document History

Document Title: AN89661 - USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

Document Number: 001-89661

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4176619 HKH 10/29/2013 New Spec.

*A 4228644 HKH 12/21/2013 No change to spec itself. Removed a typo from the example project source.

*B 5687998 AESATMP8 04/19/2017 Updated logo and Copyright.

http://www.cypress.com/

USB RAID 1 Disk Design Using EZ-USB
®
 FX3S™

www.cypress.com Document No. 001-89661 Rev. *B 15

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Contents
	1. Introduction
	2. Introduction to RAID
	3. System Overview
	4. Functional Overview
	5. Hardware
	6. Firmware
	6.1 Firmware Source
	6.2 Callback Operations
	6.3 Mass Storage Operations
	6.4 Automatic Rebuild

	7. Operating Procedure
	8. Performance
	8.1 USB(SD Card
	8.2 SD Card(SD Card

	9. Summary
	10. About the Author
	Appendix A: FX3S RAID-on-Chip USB Boot Disk Board Layout View
	Appendix B: FX3S RAID-on-Chip USB Boot Disk Schematic
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

