
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 www.cypress.com Document Number. 001-89056 Rev. *D 1

AN89056

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

Authors: Vasyl Parovinchak, Taras Kuzo
Associated Project: Yes

Associated Part Family: PSoC 4000, PSoC 4100, PSoC 4200,
PSoC 4200M, PSoC 4000S, PSoC 4100S, PSoC 4100S Plus

Software Version: PSoC Creator™ 4.2
Related Application Note: AN78175

<

AN89056 describes the PSoC® 4 MCU IEC 60730 Class B and IEC 61508 safety integrity level (SIL) Safety Software

Library and includes example projects with self-check routines to help ensure reliable and safe operation. You can

integrate the library routines and examples included in the example projects with your application. This application note

also describes the API functions that are available in the library.

Contents

1 Introduction .. 2
2 Overview of IEC 60730-1 Annex H 2
3 Overview of IEC 61508-2 Annex A 3
4 IEC 60730 Class B and IEC 61508 Requirements 3
5 Safety Software Library ... 4
6 API Functions for PSoC 4 .. 5

6.1 CPU Registers Test .. 5
6.2 Program Counter Test... 6
6.3 Program Flow Test .. 7
6.4 Interrupt Handling and Execution Test 7
6.5 Clock Test ... 9
6.6 Flash (Invariable Memory) Test 10
6.7 SRAM (Variable Memory) Test 10
6.8 Stack Overflow Test .. 14
6.9 Digital I/O Test .. 14
6.10 ADC and DAC Test ... 15
6.11 Comparator Test ... 16
6.12 Opamp Test .. 16
6.13 Communications UART Test 17
6.14 Communications UART Test using SmartIO 18
6.15 Communications SPI Test 19

6.16 Communications SPI Test using SmartIO 20
6.17 Communications I2C Test 20
6.18 UDB Configuration Registers Test 22
6.19 Startup Configuration Registers Test 24
6.20 Watchdog Test .. 25
6.21 CapSense Test ... 25
6.22 Windowed Watchdog Timer 26
6.23 Communications UART Data Transfer

Protocol Example ... 28
7 Summary ... 32
8 References .. 33
Appendix A. Set Checksum in Flash

 (Invariable Memory) Test 34
Appendix B. Migration Guide 39

B.1 Migration to PSoC 4000 Family 39
B.2 Migration to PSoC 4200M Family 42
B.3 Migration to PSoC 4200L Family 43
B.4 Migration to PSoC 4000S Family 43
B.5 Migration to PSoC4100S Family 43

Appendix C. IEC 60730-1 Certificate of Compliance ... 45
Appendix D. Supported Part Numbers 47
Appendix E. MISRA Compliance 48

http://www.cypress.com/
http://www.cypress.com/?rID=61356

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 2

1 Introduction

Today, the majority of automatic electronic controls for home appliance and industrial products use single-chip
microcontroller units (MCUs). Manufacturers develop real-time embedded firmware that executes in the MCU and
provides the hidden intelligence to control home appliances and industrial machines. MCU damage due to overheating,
static discharge, overvoltage, or other factors can cause the end product to enter an unknown or unsafe state.

The International Electrotechnical Commission (IEC) 60730-1 safety standard discusses the mechanical, electrical,
electronic, environmental endurance, EMC, and abnormal operation of home appliances. IEC 61508 details the
requirements for electrical/electronic/programmable electronic (E/E/PE) safety-related systems in industrial designs.
The test requirements of both specifications are similar and are addressed in this document and the Safety Software
Library.

This application note focuses on Annex H of IEC 60730-1, “Requirements for electronic controls,” and Annex A of IEC
61508-2, “Techniques and measures for E/E/PE safety-related systems: control of failures during operation.” These
sections detail test and diagnostic methods that promote the safe operation of embedded control hardware and software
for home appliances and industrial machines.

2 Overview of IEC 60730-1 Annex H

Annex H of the IEC 60730-1 standard classifies appliance software into the following categories:

▪ Class A control functions, which are not intended to be relied upon for the safety of the equipment. Examples are
humidity controls, lighting controls, timers, and switches.

▪ Class B control functions, which are intended to prevent the unsafe operation of controlled equipment. Examples
are thermal cutoffs and door locks for laundry equipment.

▪ Class C control functions, which are intended to prevent special hazards (such as an explosion caused by the
controlled equipment). Examples are automatic burner controls and thermal cutouts for closed, unvented water
heater systems.

Large appliance products, such as washing machines, dishwashers, dryers, refrigerators, freezers, and cookers/stoves,
tend to fall into Class B. An exception is an appliance that may cause an explosion, such as a gas-fired controlled dryer,
which falls into Class C.

The Class B Safety Software Library and the example projects presented in this application note implement the self-
test and self-diagnostic methods prescribed in the Class B category. These methods use various measures to detect
software-related faults and errors and respond to them. According to the IEC 60730-1 standard, a manufacturer of
automatic electronic controls must design its Class B software using one of the following structures:

▪ Single channel with functional test

▪ Single channel with periodic self-test

▪ Dual channel without comparison (see Figure 1)

In the single-channel structure with the functional test, the software is designed using a single CPU to execute the
functions as required. The functional test is executed after the application starts to ensure that all the critical features
are functioning reliably.

In the single-channel structure with the periodic self-test, the software is designed using a single CPU to execute the
functions as required. The periodic tests are embedded in the software, and the self-test occurs periodically while the
software is in execution mode. The CPU is expected to check the critical functions of the electronic control regularly,
without conflicting with the end application’s operation.

In the dual-channel structure without a comparison, the software is designed using two CPUs to execute the critical
functions. Before executing a critical function, both CPUs are required to share that they have completed their
corresponding task. For example, when a laundry door lock is released, one CPU stops the motor spinning the drum
and the other CPU checks the drum speed to verify that it has stopped, as shown in Figure 1.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 3

Figure 1. Dual-Channel Without Comparison Structure

CPU 1

CPU 2

Analysis and

Operation

The dual-channel structure implementation is costlier because two CPUs (or two MCUs) are required. In addition, it is
more complex because two devices are needed to regularly communicate with each other. The single-channel structure
with the periodic self-test is the most common implementation.

3 Overview of IEC 61508-2 Annex A

Annex A of IEC 61508-2 defines the maximum diagnostic coverage that may be claimed for relevant techniques and
measures in industrial designs. Additional requirements not covered in this library may be applicable to specific
industries such as rail, process control, automotive, nuclear, and machinery. For each safety integrity level (SIL), the
annex recommends techniques and measures for controlling random hardware, systematic, environmental, and
operational failures. More information about architectures and measures is available in Annex B of IEC 61508-6 and
Annex A of IEC 61508-7.

To avoid or control such failures when they occur, a number of measures are normally necessary. The requirements in
IEC 61508 Annexes A and B are divided into the measures used to avoid failures during the different phases of the
E/E/PE system safety lifecycle (Annex B) and those used to control failures during operation (Annex A). The measures
to control failures are built-in features of the E/E/PE safety-related systems.

The process starts by evaluating the risk for each hazardous event of the controlled equipment. Typically, diagnostic
coverage and safe failure fraction are then determined based on the likelihood of each failure occurring, combined with
the consequence of the failure. This weights the risk such that a remote catastrophic failure has a risk similar to a
frequent negligible failure, for example. The result of the risk assessment is a target SIL that becomes a requirement
for the end system.

The meaning of SIL levels varies based on the frequency of device operation. Most devices are categorized as “high
demand” because they are used more than once per year. The probability of a dangerous failure, per hour of use, for
the SIL levels at a high level of demand is as follows:

▪ SIL 1: ≥10-6 to < 10-5 (1 failure in 11 years)

▪ SIL 2: ≥10-7 to < 10-6 (1 failure in 114 years)

▪ SIL 3: ≥10-8 to < 10-7 (1 failure in 1,144 years)

▪ SIL 4: ≥10-9 to < 10-8 (1 failure in 11,446 years)

4 IEC 60730 Class B and IEC 61508 Requirements

According to the IEC 60730-1 Class B Annex H Table H.11.12.7 and the IEC 61508-2 Annex A Tables A.1 to A.14,
certain components must be tested, depending on the software classification. Generally, each component offers
optional measures to verify or test the corresponding component, providing flexibility for manufacturers.

To comply with Class B IEC 60730 and IEC 61508 for single-channel structures, manufacturers of electronic controls
are required to test the components listed in Table 1.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 4

Table 1. Components Required to Be Tested for Single-Channel Structures

Class B IEC 60730 Components Required to Be
Tested on Electronic Controls
(Table H.11.12.7 in Annex H)

IEC 61508 Components Required to
Be Tested

(Tables A.1–A14 in Annex A)

Fault/Error

1.1 CPU registers A.4, A.10 CPU registers Stuck at

1.3 CPU program counter A.4, A.10 Program counter Stuck at

2. Interrupt handling and execution A.4 Interrupt handling No interrupt or too frequent interrupt

3. Clock A.11 Clock Wrong frequency

4.1 Invariable memory A.5 Invariable memory All single-bit faults

4.2 Variable memory A.6 Variable memory DC fault

4.3 Addressing (relevant to variable/invariable
memory)

A.4, A.10 Address calculation Stuck at

5.1 Internal data path data A.8 Data paths (internal
communication)

Stuck at

5.2 Internal data path addressing (for expanded
memory MCU systems only)

– Wrong address

6.1 External communications data A.7 I/O units and interface Hamming distance 3

6.2 External communications addressing A.7 I/O units and interface Hamming distance 3

6.3 Timing – Wrong point in time/sequence

7.1 I/O periphery A.7 I/O units and interface Fault conditions specified in Appendix B,
“IEC 60730-1, H.27”

7.2.1 Analog A/D and D/A converters A.3 Analog signal monitoring Fault conditions specified in Appendix B,
“IEC 60730-1, H.27”

7.2.2 Analog multiplexer – Wrong addressing

The user application must determine whether interrupts need to be enabled or disabled during execution of the Class
B Safety Software Library. For example, if an interrupt occurs during execution of the CPU self-test routine, an
unexpected change may occur in any register. Therefore, when the interrupt service routine (ISR) is executed, the
contents of the register will not match the expected value.

The Class B Safety Software Library example projects show where interrupts need to be disabled and enabled for
correct self-testing.

5 Safety Software Library

The Safety Software Library described in this application note can be used with PSoC 4 MCU devices. The library
includes APIs that are designed to maximize application reliability through fault detection.

Some self-tests can be applied by only adding an appropriate API function to the *.c and *.h files from the Class B
Safety Software Library. Others can be applied by adding an appropriate API function to the *.c and *.h files and
modifying the project schematic.

This application note describes and implements two types of self-test functions:

▪ Self-test functions to help meet the IEC 60730-1 Class B and IEC 61508-2 standards.

 CPU registers: Test for stuck bits

 Program counter: Test for jumps to the correct address

 Program flow: Test for checking correct firmware program flow

 Interrupt handling and execution: Test for proper interrupt calling and periodicity

 Clock: Test for wrong frequency

 Flash (invariable memory): Test for memory corruption

 SRAM (variable memory): Test for stuck bits and proper memory addressing

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 5

 Stack overflow: Test for checking stack overflow with the program data memory during program execution

 Digital I/O: Test for pins short

 ADC and DAC: Test for proper functionality

 Comparator: Test for proper functionality

 Communications (UART, SPI): Test for correct data reception

▪ Additional self-test functions that PSoC 4 MCU can support due to programmable interconnect. Often, the end
application also needs these self-tests, even though they are not provided in Appendix B of IEC 60730-1 or IEC
61508-2.

 Opamp test

 Universal Digital Block (UDB) configuration registers test

 Startup configuration registers test

 Watchdog test for chip reset

 Additional windowed watchdog timer (WDT) to monitor firmware execution

 CapSense test for proper functionality and external/internal hardware damage

All self-tests can be executed once immediately after device startup and continuously during device operation.
Performing the self-test at startup provides an opportunity to determine whether the chip is suitable for operation prior
to executing the application firmware. Self-tests executed during normal operation allow continuous damage detection
and user-defined corrective actions.

The following sections describe the implementation details for each test and list the APIs required to execute the
corresponding tests.

6 API Functions for PSoC 4

6.1 CPU Registers Test

PSoC 4 with the Arm® Cortex®-M0 or Cortex-M0+ CPU has 16-bit and 32-bit registers:

▪ R0 to R12 – General-purpose registers

▪ R13 – Stack pointer (SP): There are two stack pointers, with only one available at a time. The SP is always 32-bit-
word aligned; bits [1:0] are always ignored and considered to be ‘0’.

▪ R14 – Link register: This register stores the return program counter during function calls.

▪ R15 – Program counter: This register can be written to control the program flow.

The CPU registers test detects stuck-at faults in the CPU registers by using the checkerboard test. This test ensures
that the bits in the registers are not stuck at value ‘0’ or ‘1’. It is a nondestructive test that performs the following major
tasks:

1. The contents of the CPU registers to be tested are saved on the stack before executing the routine.

2. The registers are tested by successively writing the binary sequences 01010101 followed by 10101010 into the
registers, and then reading the values from these registers for verification.

3. The test returns an error code if the returned values do not match.

The checkerboard method is implemented for all CPU registers except the program counter.

Function

uint8 SelfTest_CPU_Registers(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_CPU.c

 SelfTest_CPU.h

The function SelfTest_CPU_Registers is called to do the CPU test.

If an error is detected, the PSoC device should not continue to function because its behavior can be unpredictable and
therefore potentially unsafe.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 6

6.2 Program Counter Test

The PSoC 4 CPU program counter R15 register is part of the CPU register set. To test these registers, a checkerboard
test is commonly used; the addresses 0x5555 and 0xAAAA must be allocated for this test. 0x5555 and 0xAAAA
represent the checkerboard bit patterns.

The program counter (PC) test implements the functional test defined in section H.2.16.5 of the IEC 60730 standard.
The PC holds the address of the next instruction to be executed. The test performs the following major tasks:

1. The functions that are in flash memory at different addresses are called. For PSoC 4, this can be done by using
the linker script in an *.ld file.

NV_CONFIG1 0x5555 :

{

 . = 0x00;

 *(PC5555);

} >rom =0

NV_CONFIG2 0xAAAA :

{

 . = 0x00;

 *(PCAAAA);

} >rom =0

In the example project, it is already added to the custom_cm0gcc_42XX.ld file. You can add the linker file by
choosing Project > Build Setting > Linker > Custom Linker Script.

2. The functions return a unique value.

3. The returned value is verified using the PC test function.

4. If the values match, the PC branches to the correct location, or a WDT triggers a reset because the program
execution is out of range.

Function

uint8 SelfTest_PC(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_CPU.c

 SelfTest_CPU.h

The function SelfTest_PC() is called to do the PC test.

Note: For PSoC 4, add the corresponding custom_cm0gcc_XXXX.ld file listed in Table 2 to the linker.

Table 2 Custom Linker Files

PSoC Family Default Device Flash Size
(KB)

Linker File

PSoC 4200 CY8C4245AXI-483 32 custom_cm0gcc_42XX.ld

PSoC 4000 CY8C4014LQI-422 16 custom_cm0gcc_40XX.ld

PSoC 4200M CY8C4247AZI-M485 128 custom_cm0gcc_42XXM.ld

PSoC 4200L CY8C4248BZI-L489 256 custom_cm0gcc_42XXL.ld

PSoC 4000S CY8C4045AZI-S413 32 custom_cm0gcc_40XXS.ld

PSoC 4100S CY8C4146AZI-S433 64 custom_cm0gcc_41XXS.ld

PSoC 4100S Plus Cy8C4147AZI-S475 128 custom_cm0gcc_41XXSplus.ld

Note: Linker file for each device family is created based on the default device for the corresponding family. Update
linkers if the Flash size is different from the default device.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 7

6.3 Program Flow Test

A specific method is used to check program execution flow. For every critical execution code block, unique numbers
are added to or subtracted from complementary counters before block execution and immediately after execution.
These procedures allow you to see if the code block is correctly called from the main program flow and to check if the
block is correctly executed.

As long as there are always the same number of exit and entry points, the counter pair will always be complementary
after each tested block. See Figure 2.

Any unexpected values should be treated as a program flow execution error.

Figure 2. Program Flow Test

Counter1 = Counter1 + 0x10

Counter1 = Counter1 + 0x15

Counter2 = Counter2 – 0x15

Counter2 = Counter2 – 0x10

Code Block 1

Counter1 = 0x0000

Counter2 = 0xFFFF

...

Counter1 = 0x10

Counter1 = 0x25

Counter2 = 0xFFEA

Counter2 = 0xFFDA

Counter1 XOR Counter2 = 0x0095 XOR 0xFF6A = 0xFFFF

…

Check if Counter1 and

Counter2 are

complementrary

Program Flow

Counter1 = Counter1 + 0x30

Counter1 = Counter1 + 0x40

Counter2 = Counter2 – 0x40

Counter2 = Counter2 – 0x30

Code Block 2

Counter1 = 0x55

Counter1 = 0x95

Counter2 = 0xFF9A

Counter2 = 0xFF6A

...

6.4 Interrupt Handling and Execution Test

The PSoC 4 interrupt controllers provide the mechanism for hardware resources to change the program address to a
new location independent of the current execution in main code. They also handle continuation of the interrupted code
after completion of the ISR.

The interrupt test implements the independent time-slot monitoring defined in section H.2.18.10.4 of the IEC 60730
standard. It checks whether the number of interrupts that occurred is within the predefined range.

The goal of the interrupt test is to verify that interrupts occur regularly. The test checks the interrupt controller by using
the interrupt source driven by the timer UM.

Function

uint8 SelfTest_Interrupt(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_Interrupt.c

 SelfTest_Interrupt.h

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 8

Note: The component’s name should be that shown in Figure 3. Global interrupts must be enabled for this test, but all
interrupts except isr_1 must be disabled.

The SelfTest_Interrupt() function is called to check the interrupt controller operation. Calling the function starts the

timers.

Timer_1 is configured to generate 13 interrupts per 1 ms. isr_1 counts the number of interrupts that occurred. If the

counted value in isr_1 is  9 and ≤ 15, then the test is passed. The specific number of interrupts to pass this test is
application dependent and can be modified as required.

Figure 4 shows the interrupt self-test flow chart.

Figure 3. PSoC Creator Schematic for Interrupt Self-Test

Figure 4. Interrupt Self-Test Flow Chart

Start isr_1

Start Timer_1

1-ms Delay

Stop isr_1

Stop Timer_1

Number of int

As Expected?

Test Passed

Test Failed

Yes

No

isr_1

Increment isr_1

count

RETI

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 9

6.5 Clock Test

The clock test implements independent time-slot monitoring defined in section H.2.18.10.4 of the IEC 60730 standard.
It verifies the reliability of the internal main oscillator (IMO) system clock, specifically, that the system clock is neither
too fast nor too slow within the tolerance of the internal low-speed oscillator (ILO). The ILO clock is accurate to ± 60
percent. If accuracy greater than 60 percent is required, the ILO may be trimmed to be more accurate using a precision
system level signal or production test. If ILO trimming is required, it is trimmed using the CLK_ILO_TRIM register.

Function

uint8 SelfTest_Clock(void)

Returns: 0 No error

 Not 0 Error detected

Located in: SelfTest_Clock.h

 SelfTest_Clock.c

Note: The tested clock accuracies are defined in the SelfTest_Clock.h file. Clock accuracies may be modified based
on end system requirements.

The clock test uses the 16-bit timer0 integrated into the WDT and clocked by the 32.768-kHz ILO. The WDT timer0 is
a continuous up counting 16-bit timer with overflow. The test starts by reading the current count of the timer, then waits
1 ms using a software delay, and finally reads the timer count a second time. The two count values are then subtracted
and optionally corrected for the special case of a timer overflow mid test. The measured period (nominally 33 counts)
is then tested. If it is within the predefined range, the test is passed. Figure 5 shows the clock self-test flow chart.

Figure 5. Clock Self-Test Flow Chart

Start Test

Read Timer

Initial Count

1 ms Delay

Count Diff Within

Expected Range?

Test Passed

Test Failed

Yes

No

Read Timer

Final Count

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 10

6.6 Flash (Invariable Memory) Test

PSoC 4 devices include an on-chip flash memory of up to 128 KB. The flash memory is organized in rows, where each
row contains 128 data bytes.

6.6.1 Checksum Method

To complete a full diagnostic of the flash memory, a checksum of all used flash needs to be calculated.

The current library uses a Fletcher’s 64-bit checksum. The Fletcher’s 64-bit method was chosen because it is sufficiently
reliable.

You can change the Fletcher’s checksum method to any checksum method in function
SelfTest_CheckSum_Formula() in the SelfTest_Flash.c file.

PSOC_FLASH_SIZE in the SelfTest_Flash.h file defines the flash size that needs to be monitored.

The proposed checksum flash test reads each ROM or flash location and accumulates the values in a 64-bit variable
to calculate a running checksum of the entire flash memory. The actual 64-bit checksum of flash is stored in the last 8
bytes of flash itself. When the test reaches the end of flash minus 8 bytes (0x7FF8 on 32-KB devices), it stops. Custom
linker files are used to place the checksum in the desired location (see Table 2). The calculated checksum value is then
compared with the actual value stored in the last 8 bytes of flash. A mismatch indicates flash failure, and code execution
is frozen to avoid trying to execute invalid code.

Note: The checksum can also be stored in SFLASH, EEPROM, or any other external flash. See the System reference
guide to know more about using SFLASH functions like CySysSFlashWriteUserRow to store checksum in SFLASH, if
available.

6.6.2 Programming Steps

Before starting the test, you need to set the correct precalculated checksum, as described in Set Checksum in Flash
(Invariable Memory) Test.

Function

uint8 SelfTest_FlashCheckSum()

Returns:

 1 Error detected

2 Checksum for one block calculated, but end of Flash was not reached

 3 Pass, Checksum of all flash is calculated and checked

Located in: SelfTest_Flash.c

 SelfTest_Flash.h

The function SelfTest_FlashCheckSum() is called to perform the flash memory corruption test using the checksum

method. During the call, this function calculates the checksum for one block of flash. The size of the block can be set
using parameters in the SelfTest_Flash.h file:

/*Set size of one block in Flash test*/

#define FLASH_DOUBLE_WORDS_TO_TEST (512u)

The function must be called multiple times until the entire flash area is tested. Each call to the function will automatically
increment to the next test block. If the checksum for the block is calculated and the end address of the tested flash is
reached, the test returns 0x03. If the checksum for the block is calculated but the end address of flash is not reached,
the test returns 0x02. If an error is detected, the test returns 0x01.

Note: The check does not work if there is a change in flash during run time. The checksum needs to be updated before
calling the test. Other tests that may change the contents of Flash must be called prior to the flash test.

6.7 SRAM (Variable Memory) Test

Note: PSoC 4 devices include an on-chip SRAM of up to 32 KB. Part of this SRAM includes the stack located at the
end of memory.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 11

The variable memory test implements the periodic static memory test defined in section H.2.19.6 of the IEC 60730
standard. It detects single-bit faults in the variable memory. Variable memory tests can be destructive or nondestructive.
Destructive tests destroy the contents of memory during testing, whereas nondestructive tests preserve the memory
contents. While the test algorithm used in this library is destructive, it is encapsulated in code that first saves the memory
contents before a test and then restores the contents after completion.

The variable memory contains data, which varies during program execution. The RAM memory test is used to determine
if any bit of the RAM memory is stuck at ‘1’ or ‘0’. The March memory test and checkerboard test are among the most
widely used static memory algorithms to check for DC faults.

The March tests comprise a family of similar tests with slightly different algorithms. The March test variations are
denoted by a capital letter and allow tailoring of the test to a specific architecture’s test requirements. The March C test
is implemented for the PSoC 4 Safety Software Library because it provides better test coverage than the checkerboard
algorithm and is the optimal March method for this device. Separate functions are implemented for the “variable SRAM”
and “stack SRAM” areas to ensure no data is corrupted during testing.

6.7.1 March C Test

March tests perform a finite set of operations on every memory cell in the memory array. The March C test is used to
detect the following types of faults in the variable memory:

▪ Stuck-at fault

▪ Addressing fault

▪ Transition fault

▪ Coupling fault

The test complexity is 11n, where “n” indicates the number of bits in memory, because 11 operations are required to
test each location. While this test is normally destructive, Cypress provides the March C test without data corruption by
testing only a small block of memory in each test, allowing the block’s contents to be saved and restored.

6.7.2 March C Algori thm

March test notations:

> Arrange address sequence in ascending order

< Arrange address sequence in descending order

<> Arrange address sequence in either ascending or
descending order

r0 Indicate read operation (reads ‘0’ from a memory cell)

r1 Indicate read operation (reads ‘1’ from a memory cell)

w0 Indicate write operation (writes ‘0’ from a memory cell)

w1 Indicate write operation (writes ‘1’ from a memory cell)

MarchC

{

 <> (w0)

 > (r0 then w1)

 > (r1 then w0)

 <> (r0)

 < (r0 then w1)

 < (r1 then w0)

 > (r0)

}

Function

uint8 SelfTests_SRAM_March(void)

Returns: 1 Error detected

2 Still testing

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 12

3 Pass, all RAM is tested

Located in: SelfTest_RAM.c

 SelfTest_RAM.h

This function is called to do the March SRAM test in run time without data corruption.

Using the start address and end address pointers, the function performs the run-time March C test by backing up the
area of SRAM under test to another reserved part of SRAM and then restoring the data.

The reserved part of SRAM is also tested using the March test before data is copied. This area of memory corrupts;
therefore, storage or placement of variables in it is prohibited. Control over this memory is assigned to the user. It is
recommended that you allocate it to an array that is not used and set a compiler directive prohibiting optimization for
this array. This is demonstrated in the AN_89056_Cpu project.

The reserved area of SRAM is located at the end of SRAM just before the stack area and is set using the following
parameters in the SelfTest_SRAM_March.s file:

MARCH_BUFF_ADDR_START: .word (CYDEV_SRAM_BASE + CYDEV_SRAM_SIZE - CYDEV_STACK_SIZE

- RESERVE_BLOCK_SIZE)

MARCH_BUFF_ADDR_END: .word (CYDEV_SRAM_BASE + CYDEV_SRAM_SIZE -

CYDEV_STACK_SIZE)

.if (TEST_BLOCK_SRAM_SIZE>TEST_BLOCK_STACK_SIZE)

 .equ RESERVE_BLOCK_SIZE, TEST_BLOCK_SRAM_SIZE

.else

 .equ RESERVE_BLOCK_SIZE, TEST_BLOCK_STACK_SIZE

.endif

The location of different sections inside SRAM is next. For example:

CYDEV_SRAM_BASE = 0x20000000;

CYDEV_SRAM_SIZE = 0x00001000;

[0x20000000;

(0x20001000-CYDEV_STACK_SIZE- RESERVE_BLOCK_SIZE)]

Variable SRAM

[(0x20001000-CYDEV_STACK_SIZE- RESERVE_BLOCK_SIZE);

(0x20001000-CYDEV_STACK_SIZE)]

Buffer for March C test (reserved part of SRAM)

[(0x20001000-CYDEV_STACK_SIZE);

0x20001000]

Stack SRAM

During the call, this function tests one block of SRAM. The size of the block is the same as that of the reserved buffer
area in SRAM. It can be set using the following parameters in the SelfTest_SRAM_March.s file:

.equ TEST_BLOCK_SRAM_SIZE, 0x00000400

This test covers the variable SRAM area only and not the stack area. If the block is tested successfully and the start
address of the reserved area is reached, the test returns 0x03. If the block is tested successfully, but the start address
of the reserved area is not reached, the test returns 0x02. If an error is detected, the test returns 0x01.

Function

void SelfTests_Init_March_SRAM_Test(uint8 shift)

Located in: SelfTest_RAM.c

 SelfTest_RAM.h

This function initializes the SRAM base address and should be called in two cases:

▪ Before the first call of SelfTests_SRAM_March(). This case initializes the start test address the first time.

▪ When all SRAM is tested and SelfTests_SRAM_March() returns the status “Pass” (0x02u). This case reinitializes
the start test address.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 13

The parameter “shift” sets the shift from the start test address. It is used to set different start addresses and allows
testing to cover all block boundaries of previous test passes. Without use of the “shift” parameter, the first and last bytes
of each block will not be tested for interaction with the adjacent test blocks. Typically, the “shift” parameter will alternate
between 0 and half the test block size of each full test sequence.

For example:

Case 1:

TEST_BLOCK_SRAM_SIZE = 10;

CYDEV_SRAM_SIZE = 100;

SelfTests_Init_March_SRAM_Test(0x00u);

During each SelfTests_SRAM_March() call, the test range will be:

[0-9]; [10-19]; [20-29] …..[80-99]; [90-99]

Case 2:

TEST_BLOCK_SRAM_SIZE = 10;

CYDEV_SRAM_SIZE = 100;

SelfTests_Init_March_SRAM_Test(0x05u);

During each SelfTests_SRAM_March() call, the test range will be:

[5-14]; [15-24]; [25-34] …..[85-94]; [95-99]

You can change the “shift” parameter after each full SRAM test.

Function

uint8 SelfTests_Stack_March (void)

Returns: 1 Error detected

2 Still testing

3 Pass, all RAM is tested

Located in: SelfTest_RAM.c

 SelfTest_RAM.h

This function is called to do the March stack tests in run time without data corruption.

Using the start address and end address pointers, the function performs a run-time March C test by backing up the
area of stack under test to a reserved part of SRAM and then restoring the data.

The reserved part of SRAM is also tested using the March test before data copy. This function uses the same reserved
area of SRAM as that used for the SRAM March test.

The reserved part of SRAM corrupts; therefore, storage or placement of variables is prohibited in this area of memory.
Control over this memory is assigned to the user. It is recommended that you allocate it to an array that is not used and
set a compiler directive prohibiting optimization for this array.

During the call, this function tests one block of SRAM. The size of the block is the same as that of the reserved buffer
area in SRAM. It can be set using the following parameters in the SelfTest_SRAM_March.s file:

.equ TEST_BLOCK_STACK_SIZE, 0x00000040

If the block is tested successfully and the end address of SRAM is reached (meaning all stack RAM is tested), the test
returns 0x03. If the block is tested successfully, but the end address of SRAM is not reached, the test returns 0x02. If
an error is detected, the test returns 0x01.

Function

void SelfTests_Init_March_Stack_Test (uint8 shift)

Located in: SelfTest_RAM.c

 SelfTest_RAM.h

This function initializes the stack SRAM base address and should be called in two cases:

▪ Before the first call of SelfTests_Stack_March(). This case initializes the start test address the first time.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 14

▪ When all stack SRAM is tested and SelfTests_Stack_March() returns the status “Pass” (0x02u). This case

reinitializes the start test address.

The parameter “shift” sets the shift from the start test address. It is used to set different start addresses and to cover
all variants of addressing.

An example of this function’s use is the same as that described for the SelfTests_Init_March_SRAM_Test(uint8
shift) function.

6.8 Stack Overflow Test

The stack is a section of RAM used by the CPU to store information temporarily. This information can be data or an
address. The CPU needs this storage area since there are only a limited number of registers.

In PSoC 4, the stack is located at the end of RAM and grows downward. The stack pointer is 32 bits wide and is
decremented with every PUSH instruction and incremented with POP.

The purpose of the stack overflow test is to ensure that the stack does not overlap with the program data memory
during program execution. This can occur, for example, if recursive functions are used.

To perform this test, a reserved fixed-memory block at the end of the stack is filled with a predefined pattern, and the
test function is periodically called to verify it. If stack overflow occurs, the reserved block will be overwritten with
corrupted data bytes, which should be treated as an overflow error.

Function

void SelfTests_Init_Stack_Test(void)

Returns: NONE

Located in: SelfTest_Stack.c

 SelfTest_Stack.h

This function is called once to fill the reserved memory block with a predefined pattern.

Function

uint8 SelfTests_Stack_Check(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_Stack.c

 SelfTest_Stack.h

This function is called periodically at run time to test for stack overflow. The block size should be an even value and
can be modified using the macro located in SelfTest_Stack.h:

#define STACK_TEST_BLOCK_SIZE 0x08u

The pattern can be modified using the macro located in SelfTest_Stack.h:

#define STACK_TEST_PATTERN 0x55AAu

6.9 Digital I/O Test

PSoC 4 provides up to 98 programmable GPIO pins. Any GPIO pin can be CapSense®, LCD, analog, or digital. Drive
modes, strengths, and slew rates are programmable.

Digital I/Os are arranged into ports, with up to eight pins per port. Some of the I/O pins are multiplexed with special
functions (USB, debug port, crystal oscillator). Special functions are enabled using control registers associated with the
specific functions.

The test goal is to ensure that I/O pins are not shorted to GND or Vcc.

In normal operating conditions, the pin-to-ground and pin-to-VCC resistances are very high. To detect any shorts,
resistance values are compared with the PSoC internal pull-up resistors.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 15

To detect a pin-to-ground short, the pin is configured in the resistive pull-up drive mode. Under normal conditions, the
CPU reads a logical one because of the pull-up resistor. If the pin is connected to ground through a small resistance,
the input level is recognized as a logical zero.

To detect a sensor-to-VCC short, the sensor pin is configured in the resistive pull-down drive mode. The input level is
zero under normal conditions.

Important Note: This test is application dependent and may require customization. The default test values may cause
the pins to be momentarily configured into an incorrect state for the end application.

Function

uint8 SelfTests_IO()

Returns: 0 No error

1 Error detected (Short to VCC)

2 Error detected (Short to GND)

Located in: SelfTest_IO.c

 SelfTest_IO.h

The function SelfTests_IO() is called to check shorts of the I/O pins to GND or Vcc. The PintToTest array in

the SelfTests_IO() function is used to set the pins that must be tested.

For example:

static const uint8 PinToTest[] =

{

 0b11011111, /* PORT0 mask */

 0b00111111, /* PORT1 mask */

 0b11111111, /* PORT2 mask */

 0b11110011, /* PORT3 mask */

 0b00000000, /* PORT4 mask */

};

Each pin is represented by the corresponding bit in the PinToTest table port mask. Pin 0 is represented by the LSB,
and pin 7 by the MSB. If a pin should be tested, a corresponding bit should be set to ‘1’.

6.10 ADC and DAC Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, PSoC 4200L, PSoC 4100S, and PSoC 4100S Plus families
only.

The ADC test implements an independent input comparison as defined in section H.2.18.8 of the IEC 60730 standard.
It provides a fault/error control technique with which the inputs/outputs that are designed to be within specified
tolerances are compared.

The purpose of the test is to check the ADC and IDAC analog functions. PSoC 4 has no voltage reference, so an IDAC
with an external resistor is used.

This test is easily implemented by using the reconfigurable hardware of the PSoC device and an IDAC with an external
resistor to form the voltage reference, for example, a 4.99-kΩ 1 percent external resistor. This configuration can deliver
up to 3.05 V in 12-mV steps (8-bit resolution). Figure 6 shows a schematic implementation of the ADC and DAC test
based on PSoC 4. Additional analog system elements are present for use in the optional comparator and opamp tests.
Pin_Opamp1, Pin_Opamp2, Pin_ADC1, and Pin_ADC2 are the user pins. The ADC is configured to scan three
channels. The first two channels are for test purposes, and the third is for user purposes. Other user channels can be
added. ADC channel “0” is connected to the DAC via an opamp and is used for the opamp test. Channel “1” is connected
to the DAC directly and is used for the ADC and DAC test.

Function

uint8 SelfTest_ADC(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_Analog.h

SelfTest_Analog.c

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 16

The ADC accuracy is defined in SelfTest_Analog.h. A 12-bit ADC is used for testing:

#define ADC_TEST_ACC 12 // +/- ADC result value

To perform this test, the ADC is configured to scan channel “1”. A predefined (reference) voltage is generated using
the IDAC and is sampled by the ADC.

The test is a success if the digitalized input voltage value is equal to the required reference voltage value within the
defined accuracy. When the test is a success, the function returns 0; otherwise, it returns 1.

The test function saves all the component configurations before testing and restores them after the test ends.

Figure 6. PSoC Implementation of ADC and DAC Tests

6.11 Comparator Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, PSoC 4200L, PSoC 4100S, and PSoC 4100S Plus families
only.

The comparator functional test is performed using IDAC1 and IDAC2 with external resisters to generate two voltage
references. These reference voltages are sequentially put into the input of the analog comparator, forcing the output
value of the comparator to change. The output state is read and compared with the expected value. When the test is a
success, the function returns 0; otherwise, it returns 1.

Function

uint8 SelfTest_Comparator(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_Analog.h

SelfTest_Analog.c

Figure 6 shows the PSoC schematic implementation of the comparator test and includes the optional ADC, DAC, and
opamp tests. The output values of the comparator are analyzed at different polarities of the input signals. If the output
signal changes during this operation, the test is passed.

The test function saves the ADC and DAC configurations before testing and restores them after the test ends.

6.12 Opamp Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, PSoC 4200L, PSoC 4100S, and PSoC 4100S Plus Families
only.

The opamp test is not provided in the IEC 60730 standard, but it is useful when using the opamp in critical blocks.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 17

The opamp test adheres to the principle of “independent output comparison” testing defined in section H.2.18.8 of the
IEC 60730 standard. It provides a fault/error control technique by which inputs/outputs that are designed to be within
specified tolerances are compared.

The purpose of the test is to test the opamp analog functions. This test is easily implemented using the reconfigurable
hardware of the PSoC device and can be performed by using the IDAC with an external resistor as a predefined voltage
reference. The opamp output signal can be regularly converted by the ADC to test opamp functions. Figure 6 shows
the schematic implementation of the opamp test based on PSoC 4 and includes optional ADC, DAC, and comparator
tests. Pin_Opamp1 and Pin_Opamp2 are the user pins. Before the test, the analog multiplexers disconnect the opamp
from the user pins and reconfigure the internal connections as required for the opamp self-test. After the test is
complete, the user pin connections are restored.

Function

uint8 SelfTest_Opamp(void)

Returns: 0 No error

1 Error detected

Located in: SelfTest_Analog.h

SelfTest_Analog.c

The opamp test accuracy is defined in SelfTest_Analog.h. A 12-bit ADC is used for testing:

#define OPAMP_TEST_ACC 12 // +/- Opamp result value

This function implements the opamp test by measuring the opamp output signal using the ADC in two cases:

▪ IDAC1 out: 0.096 V; expected ADC result: 0.096 V

▪ IDAC1 out: 1.52 V; expected ADC result: 1.52 V

The test is a success if the input ADC voltage value is equal to the expected value within the defined accuracy. When
the test is a success, the function returns 0; otherwise, it returns 1.

The test function restores ADC and DAC configurations to the default after the test ends.

6.13 Communications UART Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, and PSoC 4200L families only.

This test implements the UART internal data loopback test. The test is a success if the transmitted byte is equal to the
received byte and returns 2. Each function call increments the test byte. After 256 function calls, when the test finishes
testing all 256 values and they are all a success, the function returns 3.

Function

uint8 SelfTest_UART(void)

Returns: 1 Error detected

2 Pass test with current value, but test is not complete testing full range

from 0x00 to 0xFF

3 Pass, completed testing full range from 0x00 to 0xFF

4 ERROR_TX_NOT_EMPTY

5 ERROR_RX_NOT_EMPTY

6 ERROR_TX_NOT_ENABLE

7 ERROR_RX_NOT_ENABLE

Located in: SelfTest_UART.h

SelfTest_UART.c

Figure 7 shows the PSoC schematic implementation of the UART test. The input and output terminals switch between
the corresponding pins and loop to each other to provide the internal loopback test by using the UART multiplexer and
demultiplexer. If the receiving or transmitting buffers are not empty before the test, the test is not executed and returns
an ERROR_RX_NOT_EMPTY or ERROR_TX_NOT_EMPTY status.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 18

The test function saves the component configuration before testing and restores them after the test ends. During the
call, the function transmits 1 byte. The transmitted value increments after each function call. The range of test values
is from 0x00 to 0xFF.

Figure 7. PSoC Implementation of UART Test

6.14 Communications UART Test using SmartIO

Note: Applies to PSoC 4000S, PSoC 4100S, and PSoC 4100S Plus Families only.

This test is similar to Communications UART Test, instead of using UDB, SmartIO is used for loopback. UART pins are
connected to SmartIO component as shown in Figure 8.

Figure 8. PSoC Implementation of UART Test using SmartIO

Function

uint8 SelfTest_UART_SCB(void)

Returns:

1 Error detected

2 Pass test with current values, but not all tests in range from 0x00 to 0xFF

have completed

3 Pass, tested with all values in range from 0x00 to 0xFF

4 ERROR_TX_NOT_EMPTY

5 ERROR_RX_NOT_EMPTY

6 ERROR_TX_NOT_ENABLE or ERROR_RX_NOT_ENABLE

Located in: SelfTest_UART_SCB.h

SelfTest_UART_SCB.c

The input and output terminals switch between the corresponding pins and loop to each other to provide the internal
loopback test by using the SmartIO.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 19

6.15 Communications SPI Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, and PSoC 4200L families only.

This test implements the SPI internal data loopback test. The test is a success if the transmitted byte is equal to the
received byte and returns 2. Each function call increments the test byte. After 256 function calls, when the test finishes
testing all 256 values and they are all a success, the function returns 3.

Function

uint8 SelfTest_SPI (void)

Returns: 1 Error detected

2 Pass test with current values, but not all tests in range from 0x00 to 0xFF

have completed

3 Pass, tested with all values in range from 0x00 to 0xFF

4 ERROR_TX_NOT_EMPTY

5 ERROR_RX_NOT_EMPTY

Located in: SelfTest_SPI.h

SelfTest_SPI.c

Figure 9 shows the PSoC schematic implementation of the SPI test. The SPI input and output terminals switch between
the corresponding pins and loop to each other to provide the internal loopback test using a multiplexer and
demultiplexer. If the receiving or transmitting buffers are not empty before the test, the test is not executed and returns
an ERROR_RX_NOT_EMPTY or ERROR_TX_NOT_EMPTY status.

The test function saves all component configurations before testing and restores them after the test ends. During the
call, the function transmits 1 byte. The transmitted value increments after each function call. The range of test values
is from 0x00 to 0xFF.

Figure 9. PSoC Implementation of SPI Test

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 20

6.16 Communications SPI Test using SmartIO

Note: Applies to PSoC 4000S, PSoC 4100S, and PSoC 4100S Plus families only.

This test is similar to Communications SPI Test, instead of using UDB, SmartIO is used for loopback. SPI pins are
connected to SmartIO component as shown in Figure 10.

Figure 10. PSoC Implementation of SPI Test using SmartIO

Function

uint8 SelfTest_SPI_SCB (void)

Returns:

1 Error detected

2 Pass test with current values, but not all tests in range from 0x00 to 0xFF

have completed

3 Pass, tested with all values in range from 0x00 to 0xFF

4 ERROR_TX_NOT_EMPTY

5 ERROR_RX_NOT_EMPTY

Located in: SelfTest_SPI_SCB.h

SelfTest_SPI_SCB.c

The input and output terminals switch between the corresponding pins and loop to each other to provide the internal
loopback test by using the SmartIO.

6.17 Communications I2C Test

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, PSoC 4200L PSoC 4000S, PSoC 4100S, and PSoC 4100S
Plus families only.

This test requires to connect I2C Master and Slave externally as per Figure 11.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 21

Figure 11. PSoC Implementation of I2C Test

This project uses an I2C Master as component under test (Figure 12). With no modifications, the project can also be
used for testing I2C Slave l (Figure 13). The end application must have the capability of configuring I2C Master as I2C
Multi Master.

Figure 12. I2C Master under Test

I2C Multi Master
[Component
under Test]

I2C Slave [Used
for Testing the

Master]
Address: 0x08

I2C Slave – Address
0x08 cannot be

Assigned

PSoC

Interfacing
Component

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 22

Figure 13. I2C Slave under Test

I2C Multi Master
[to Test the I2C

Slave]

I2C Slave
[Component
under Test]

Address: 0x08

I2C Multi Master –
Multi Master

Configuration is
Required

PSoC

Interfacing
Component

1. Master periodically sends an I2C data addressing slave [0x08].

2. Slave reads the data, complements, and writes to slave read buffer.

3. Master reads the data from slave and compares it with the complement of data sent in last interaction.

Function

uint8 SelfTest_I2C_SCB (void)

Returns:

1 No Error

2 Error detected

3 I2C Master Busy

Located in: SelfTest_I2C_SCB.h

SelfTest_I2C_SCB.c

I2C Write API - Operation

▪ Initiates I2C Master transaction to write data to the slave.

▪ Waits for Write transfer completion

▪ Reads the Slave Write buffer

▪ Performs 1’s complement on the read data

▪ Writes the complemented data to Slave Read Buffer

I2C Read API - Operation

▪ Initiates I2C Master transaction to read data from the slave .

▪ Waits for Read transfer completion

▪ Checks whether the data read is equal to the complement of data written

6.18 UDB Configuration Registers Test

Note: Applies to PSoC 4200, PSoC 4200M, and PSoC 4200L families only.

UDB configuration registers are static and configured during design build. They should not be changed during device
operation and can be checked against the initial configuration.

The following functions allow you to implement UDB configuration register tests in a design. They implement two test
modes:

▪ Store duplicates of UDB configuration registers in flash memory after device startup. Periodically, the configuration
registers are compared with the stored duplicates. Corrupted registers can be restored from flash after checking.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 23

▪ Compare the calculated CRC with the CRC previously stored in flash if the CRC status semaphore is set. If the
status semaphore is not set, the CRC must be calculated and stored in flash, and the status semaphore must be
set.

Function

cystatus SelfTests_Save_UDB_Cfg(void)

Returns: 0 write in flash is successful

1 error detected during flash writing

Located in: SelfTest_UDB_CfgReg.c

 SelfTest_UDB_CfgReg.h

This function stores UDB configuration registers in flash memory. UDB configuration registers are located in the
memory addresses from 0x400F0000 to 0x40100000 and occupy 65K bytes. But the registers do not occupy all this
memory—there are gaps with unused memory. Therefore, an array, located in SelfTest_UDB_CfgReg is used with

addresses of registers that need to be tested. The register array is generated by copying all UDB registers from the

projects cydevice_trm.h file.

const uint16 UDB_ConfRegs[UDB_REGS_COUNT]

* Number of UDB configuration registers to be counted */

#define UDB_REGS_COUNT 1551

The number of registers to test is defined in SelfTest_UDB_CfgReg.h. UDB_REGS_COUNT is the total number of

UDB registers copied from the cydevice_trm.h file.

Note: This function should be called once after the initial PSoC power up and initialization before entering the main
program. It writes the correct UDB configuration register values to flash. After this initial write, typically executed during
manufacturing with a test command, the register values are already stored and this function does not need to be called
again.

Note: The flash test should only be called after the UDB configuration registers are saved or the CRC calculated,
otherwise the flash test will fail. Make sure the UDB configuration registers or CRC values are not stored in a flash
location which is already in use. For example, flash test uses the last 8 bytes to store the flash checksum by default.

Function

uint8 selfTests_UDB_ConfigReg(uint16 RegsToTest)

Parameters: RegsToTest – number of blocks to be tested per 1 function call. 128 – used

in demo project.

Returns: 1 Error detected

2 Test in progress

3 Test completed OK

Located in: SelfTest_UDB_CfgReg.c

 SelfTest_UDB_CfgReg.h

This function checks the UDB configuration registers. The number of registers to be tested on each function call can
be set using the UDB_REGISTERS_PER_TEST constant in the SelfTest_UDB_CfgReg.h file. This constant should be
passed as an argument to the selfTests_UDB_ConfigReg function.

#define UDB_REGISTERS_PER_TEST (128u)

There are two modes of checking:

▪ CRC-16 calculation and verification

▪ Register comparison with duplicated copy

You can define the mode by defining UDB_CFG_REGS_MODE to one of the following constants in the
SelfTest_UDB_CfgReg.h file:

#define UDB_CFG_REGS_MODE CFG_REGS_TO_FLASH_MODE / CFG_REGS_CRC_MODE

#define CFG_REGS_TO_FLASH_MODE (1u)

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 24

This mode stores duplicates of registers in flash and compares the registers with duplicates. It returns a fail if the values
are different. Registers can be restored in this mode. The SelfTests_Save_UDB_Cfg() function is used to store

duplicates in flash. Registers are automatically saved to the last flash rows.

#define CFG_REGS_CRC_MODE (0u)

In this mode, the function calculates a CRC-16 of registers and stores the CRC in flash. Later, function calls recalculate
the CRC-16 and compare it with the saved value. It returns a fail if the values are different.

By default, the CRC mode values are stored at the 6th, 4th, and 5th byte locations from the end of flash. While using
alongside the flash test, which uses last 8 bytes of flash, it is recommended to move the CRC mode values to the 13th
, 11th, and 12th byte locations from the end of flash.

You can define custom location for CRC-16 values by updating defines CRC_UDB_SEMAPHORE_SHIFT, CRC_UDB_LO,

and CRC_UDB_HI in the SelfTest_UDB_CfgReg.h file.

6.19 Startup Configuration Registers Test

This test describes and shows an example of how to check the startup configuration registers:

1. Test digital clock configuration registers.

2. Test analog configuration registers (set to default values after startup).

3. Test cyfitter configuration registers.

These startup configuration registers are typically static and are in the cyfitter_cfg.c file after the design is built. In rare
use cases, some of these registers may be dynamically updated. Dynamically updated registers must be excluded from
this test. Dynamic registers are instead tested in application with the knowledge of the current correct value.

Two test modes are implemented in the functions:

▪ Store duplicates of startup configuration registers in flash memory after device startup. Periodically, the
configuration registers are compared with stored duplicates. Corrupted registers can be restored from flash after
checking.

▪ Compare the calculated CRC with the CRC previously stored in flash if the CRC status semaphore is set. If the
status semaphore is not set, the CRC must be calculated and stored in flash, and the status semaphore must be
set.

Note: The following functions are examples and can be applied only to the example project. If you make changes in
the schematic or configuration, other configuration registers may be generated in the cyfitter_cfg.c file. You must
change the list of required registers (the recommended registers are generated in the cyfitter_cfg() function).

Function

cystatus SelfTests_Save_StartUp_ConfigReg(void)

Returns: 0 write in flash is successful

 1 error detected during flash writing

Located in: SelfTest_ConfigRegisters.c

 SelfTest_ConfigRegisters.h

This function copies all listed startup configuration registers into the last row(s) of flash as required by the number of
registers to save. If the UDB configuration test is configured for the CFG_REGS_TO_FLASH_MODE then the startup

configuration registers are stored into the row(s) of flash immediately preceding the UDB configuration registers.

Note: This function should be called once after the initial PSoC power up and initialization before entering the main
program. It writes the startup configuration register values to flash. After this initial write, typically during manufacturing,
the register values are already stored, and this function does not need to be called again.

Note: Make sure the Startup configuration registers or CRC values are not stored in a flash location which is already
in use. For example, flash test uses the last 8 bytes to store the flash checksum by default.

Function

uint8 SelfTests_StartUp_ConfigReg(void)

Returns: 0 No error

1 Error detected

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 25

Located in: SelfTest_ConfigRegisters.c

 SelfTest_ConfigRegisters.h

This function checks the listed startup configuration registers. There are two modes of checking:

▪ CRC-16 calculation and verification

▪ Register comparison with duplicated copy

You can define the mode using the parameters in the SelfTest_ConfigRegisters.h file:

#define STARTUP_CFG_REGS_MODE CFG_REGS_CRC_MODE / CFG_REGS_TO_FLASH_MODE

#define CFG_REGS_TO_FLASH_MODE (1u)

This mode stores duplicates of registers in flash and compares registers with the duplicates. It returns a fail (1) if the
values are different. Registers can be restored in this mode. The SelfTests_Save_StartUp_ConfigReg function is

used to store duplicates in flash. CONF_REG_FIRST_ROW defines the location of the startup configuration registers in

flash memory and is automatically calculated in SelfTest_ConfigRegisters.h.

#define CFG_REGS_CRC_MODE (0u)

In this mode, the function calculates a CRC-16 of registers and stores the CRC in flash. Later, function calls recalculate
the CRC-16 and compare it with the saved value. It returns a fail (1) if the values are different.

By default, the CRC mode values are stored at the 9th, 7th, and 8th byte locations from the end of flash. While using
alongside the flash test, which uses last 8 bytes of flash, it is recommended to move the CRC mode values to the 16th,
14th, and 15th byte locations from the end of flash.

You can define custom location for CRC-16 values by updating defines CRC_STARTUP_SEMAPHORE_SHIFT,

CRC_STARTUP_LO, and CRC_STARTUP_HI in the SelfTest_ConfigRegisters.h file.

6.20 Watchdog Test

This function implements the watchdog functional test. The function starts the WDT and runs an infinite loop. If the
WDT works, it generates a reset. After the reset, the function analyzes the reset source. If the watchdog is the source
of the reset, the function returns; otherwise, the infinite loop executes.

Function

void SelfTest_WDT(void)

Returns: None

Located in: SelfTest_WDT.h

SelfTest_WDT.c

Figure 14 shows the test flow chart.

Figure 14. PSoC Implementation of WDT Test

Watchdog is a

source of Reset

NO

Stop (infinity loop) Return

YES

Start Watchdog

Start

6.21 CapSense Test

CapSense safety library includes several tests to verify the CapSense Components and proper functionality of related
peripherals. This library is pre-certified by Cypress (per IEC 60730-1) and are available as part of the CapSense
Component. This library includes tests for verifying:

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 26

▪ Sensor shorts

▪ External capacitor

▪ Integrity of CapSense configuration data

▪ Integrity of sensor signal (raw count) and sensor baseline

▪ VDDA

Note: Contact Cypress Support for more details, code examples, and certificate (These are distributed under NDA).

6.22 Windowed Watchdog Timer

Note: Applies to PSoC 4200, PSoC 4200M, and PSoC 4200L families only.

The WDT increases the reliability of microprocessor-based systems. Window-selectable WDTs allow the watchdog
timeout period to be adjusted, providing more flexibility to meet different processor timing requirements. The windowed
watchdog circuits protect systems from running too fast or too slow.

Microprocessors executing critical or safety-related functions demand a high level of supervision to ensure proper fault
detection and correction. A critical function can be defined as one for which downtime cannot be tolerated and (in many
cases) one for which a repair is very costly. Such functions are found in almost every segment of the microprocessor
market: patient-monitoring systems, process control plants, and safety-related automotive applications, for example.

There is no windowed WDT in PSoC 4, but it can be implemented using PSoC reconfigurable hardware. The windowed
WDT provides a way to demand that the ClearWDT instruction be executed, for example, only in the last quarter of the
watchdog timeout period. Essentially, this enables better code flow monitoring to catch firmware bugs. For example,
an application bug that results in the ClearWDT instruction repeatedly executing close to the beginning of the code flow
could be interpreted as a normal operation in the non-windowed WDT mode. Most users use only the non-windowed
WDT mode.

The caveat to the windowed WDT mode is that the ClearWDT instruction must be called within a prescribed window,
which limits the tolerance of the clock source that drives the WDT. The tolerance of the clock source also defines the
nominal watchdog period minimum and maximum.

A counter and flip-flops are used to implement the windowed WDT in PSoC 4.

Figure 15 shows the windowed WDT counter configuration. Clock_Count (Clock_2 in Figure 17) and Period (shown
in Figure 15) are used to define the maximum waiting (maximum firmware execution) time for the clear command.
Compare Value (shown in Figure 15) is used to define the width of the clearing window.

Figure 15. Windowed WDT Counter Configuration

http://www.cypress.com/
cypress.com/support

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 27

The down-counting counter output “comp” changes as follows during the count period, as shown in Figure 16:

Figure 16. Windowed WDT Timing Diagram

▪ First window: From (255u) to (200u), output “comp” is “0”.

▪ Second window: From (200u) to (0u), output “comp” is “1”.

The second window, from (200u) to (0u), is used to detect if the windowed WDT clear is correct.

If the windowed WDT clear happens in the first window or does not happen during the counter period, an incorrect
firmware operation has occurred, and PSoC must be reset.

The clear windowed WDT means trigger “1” in the Control_Reg_ClearWDT control register.

Figure 17 shows the schematic implementation of the windowed WDT test based on PSoC 4. There are three stages
in the schematic operation:

1. The flip-flop DFF1 detects if the clear happens in the second window.

2. The flip-flop DFF2 detects if the clear happens in the first window.

3. The flip-flop DFF3 detects if the clear does not happen during the period of time.

The ISR isr_Windowed_WDT is triggered in stages 2 or 3. It is used to detect a reset in the example project for
demonstration. In the customer design, a pin connected to the hardware reset can be used instead of the ISR.

Also, the windowed WDT output can be ANDed/ORed with the critical outputs to disable them in case of a WDT event.

Integrating safety inputs like windowed WDT or interlock inputs with output logic and pins can result in 100 percent
hardware safety control with no CPU processing.

Figure 18 shows the flow chart of the windowed WDT operation.

Functions

There are two functions to operate the windowed WDT:

▪ void Windowed_WDT_Start(void): This function starts operation of the windowed WDT.

▪ void Windowed_WDT_Clear(void): This function clears the windowed WDT.

▪ Uint8 SelfTest_Windowed_WDT(void): This function checks the windowed WDT status.

Above functions are in the following files:

▪ SelfTest_Windowed_WDT.c

▪ SelfTest_Windowed_WDT.h

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 28

Figure 17. Windowed WDT Implementation in PSoC 4

Figure 18. Flow Chart of Windowed WDT Operation

6.23 Communications UART Data Transfer Protocol Example

Note: Applies to PSoC 4100, PSoC 4200, PSoC 4200M, PSoC 4200L, PSoC 4000S, PSoC 4100S, and PSoC 4100S
Plus families only.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 29

For additional system safety when transferring data between system components, you can use communication
protocols with CRCs and packet handling. An example of safety communication follows.

Data is placed into the packets with a defined structure to be transferred. All packets have a CRC calculated with the
packet data to ensure the packet’s safe transfer. Figure 19 shows the packet format.

Figure 19. Packet Structure

STX ADDR DL D0 ……..(data bytes) Dn CRCH CRCL

To allow the reserved start of packet marker (STX) value to be transmitted, use a common escape method. When any
byte in a packet is equal to STX or ESC, it changes to a 2-byte sequence. If packet byte = ESC, replace it with 2 bytes
(ESC, ESC + 1). If any packet byte = STX, then replace it with 2 bytes (ESC, STX + 1). This procedure provides a
unique packet start symbol. The ESC byte is always equal to 0x1B. It is not a part of the packet and is always sent
before the (packet byte + 1) or (ESC, STX + 1). Table 3 shows the packet field descriptions.

Table 3. Packet Field Descriptions

Name Length Value Description

STX 1 byte 0x02 Unique start of packet marker = 0x02.

ADDR 1or 2 bytes 0x000xFF except
0x02

Slave address. If this byte is equal to STX, it changes to a 2-byte sequence:
(ESC) + (STX + 1). If this byte is equal to ESC, it changes to a 2-byte sequence:
(ESC) + (ESC +1).

DL 1or 2 bytes 0x000xFF except
0x02

Data length of packet (without protocol bytes). If this byte is equal to STX, it
changes to a 2-byte sequence: (ESC) + (STX + 1). If this byte is equal to ESC, it
changes to a 2-byte sequence: (ESC) + (ESC + 1).

D0Dn
(data)

1510 bytes 0x000xFF except
0x02

Packet’s data. If any byte in the data is equal to STX, it changes to a 2-byte
sequence: (ESC) + (STX + 1). If any byte in the data is equal to ESC, it changes
to a 2-byte sequence: (ESC) + (ESC + 1).

CRCH 1 or 2 bytes 0x000xFF except
0x02

MSB of packet CRC. CRC-16 is used. CRC is calculated for all packet bytes from
ADDR to the last data byte. CRC is calculated after the ESC changing procedure.
If this byte is equal to STX, it changes to a 2-byte sequence: (ESC) + (STX + 1). If
this byte is equal to ESC, it changes to a 2-byte sequence: (ESC) + (ESC + 1).

CRCL 1 or 2 bytes 0x000xFF except
0x02

LSB of packet CRC. CRC-16 is used. CRC is calculated for all packet bytes from
ADDR to the last data byte. CRC is calculated after the ESC changing procedure.
If this byte is equal to STX, it changes to a 2-byte sequence: (ESC) + (STX + 1). If
this byte is equal to ESC, it changes to a 2-byte sequence: (ESC) + (ESC + 1).

6.23.1 Data Del ivery Control

The communication procedure can be divided into three parts:

▪ Send request (opposite side receives request)

▪ Wait for response (opposite side analyzes request)

▪ Receive response (opposite side sends response)

“Send request” consists of sending the STX, sending the data length and data using the byte changing procedure,
calculating the CRC, and sending the CRC.

“Receive response” consists of finding the STX and starting the CRC calculation. If the received address is invalid, the
search for the STX byte is repeated. If the address is valid, the data length and data bytes are received. The CRC
counter then stops and two CRC bytes are received. These bytes are compared with the calculated CRC value.

After sending a request, the guard timer is started to detect if a response is not received within the timeout period.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 30

6.23.2 PSoC Implementat ion

Figure 20 represents the protocol implementation using PSoC. The UART SCB Components are used to physically
generate the signals. The software CRC-16 calculation is applied to every sent/received byte (except STX and the CRC
itself). To detect an unsuccessful packet transaction, the timer is used.

Three interrupts implemented in this project provide a fully interrupt-driven background process:

▪ The transmit interrupt in the UART is configured for a FIFO not full event to take the new data from the RAM and
place it into the TX buffer, and for a transmit complete event to start or stop the CRC calculation.

▪ The receive interrupt in the UART is configured for a FIFO not empty event to analyze the received data, calculate
the CRC, and store the received data into RAM.

▪ The timer interrupt is used to detect the end of an unsuccessful transmission.

Figure 20. PSoC Protocol Implementation

This software unit is implemented as an interrupt-driven driver. That is, the user only starts the process and checks the
state of the unit. All operation is done in the background.

Four Functions for Working with the Protocol Unit for the Master

Function 1

void UartMesMaster_Init(void)

Returns: None

Located in: UART_master_message.h

UART_master_message.c

This function initializes the UART message unit.

Function 2

uint8 UartMesMaster_DataProc(uint8 address, char * txd, uint8 tlen, char * rxd, uint8

rlen)

Returns: 0 No error

1 Error detected

Located in: UART_master_message.h

UART_master_message.c

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 31

This function starts the process of transmitting and receiving messages and returns the result of the process start: 0 =
success and 1 = error. An error can occur because the unit is already busy sending a message or a null transmitting
length was detected.

The input parameters are as follows:

▪ Address: Slave address for communication

▪ txd: Pointer to the transmitted data (request data)

▪ tlen: Length of the request in bytes

▪ rxd: Pointer to the buffer where the received data is stored (received data)

▪ rlen: Length of the received buffer in bytes

Function 3

uint8 UartMesMaster_State(void)

Returns:

0 (UM_ERROR) – the last transaction process finished with an error and the unit is

ready to start a new process

1 (UM_COMPLETE) – the last transaction process finished successfully, the received buffer

contains a response. The unit is ready to start a new process

2 (UM_BUSY) – the unit is busy with an active transaction operation.

Located in: UART_master_message.h

UART_master_message.c

This function returns the current state of the UART message unit.

Possible results are the following:

▪ UM_ERROR: Last transaction process finished with an error, and the unit is ready to start a new process.

▪ UM_COMPLETE: Last transaction process finished successfully, and the received buffer contains a response. The
unit is ready to start a new process.

▪ UM_BUSY: Unit is busy with an active transaction operation.

Function 4

uint8 UartMesMaster_GetDataSize(void)

Returns: returns data size

Located in: UART_master_message.h

UART_master_message.c

This function returns the received data size that is stored in the receive buffer. If the unit is busy or the last process
generated an error, it returns 0.

Five Functions for Working with the Protocol Unit for the Slave

Function 1

void UartMesSlave_Init(uint8 address)

Returns: None

Located in: UART_slave_message.h

 UART_slave_message.c

This function initializes the UART message unit. The input parameter is as follows:

▪ Address: Slave address

Function 2

uint8 UartMesSlave_Respond(char * txd, uint8 tlen)

Returns: 0 No error

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 32

1 Error detected

Located in: UART_slave_message.h

 UART_slave_message.c

This function starts respond. It returns the result of process start. Success is 0, and error is 1 (the unit has not received
a marker).

The input parameters are as follows:

▪ txd: Pointer to the transmitted data (request data)

▪ tlen: Length of the request in bytes

Function 3

uint8 UartMesSlave_State(void)

Returns:

0 (UM_IDLE) – the last transaction process is finished

1 (UM_PACKREADY) – the unit has received a marker and there is received data in the

buffer. The master waits for a response.

2 (UM_RESPOND) – the unit is busy with sending a response.

Located in: UART_slave_message.h

 UART_slave_message.c

This function returns the current state of the UART message unit. Possible results are the following:

▪ UM_IDLE: Last transaction process is finished.

▪ UM_PACKREADY: Unit has received a marker and there is received data in the buffer. The master waits for a
response.

▪ UM_RESPOND: Unit is busy sending a response.

Function 4

uint8 UartMes_GetDataSize(void)

Returns: returns data size

Located in: UART_slave_message.h

 UART_slave_message.c

This function obtains the received data size that was stored in the receive buffer. If the unit state is not
UM_PACKREADY, it returns 0.

Function 5

uint8 * UartMesSlave_GetDataPtr(void)

Returns: return pointer to data

Located in: UART_slave_message.h

 UART_slave_message.c

This function obtains a pointer to the received data.

7 Summary

This application note described how to implement diagnostic tests defined by the IEC 60730 and IEC 61508 standards.
Incorporation of these standards into the design of white goods and other appliances will add a new level of safety for
consumers.

By taking advantage of the unique hardware configurability offered by PSoC 4, designers can comply with regulations
while maintaining or reducing electronic systems cost. Use of PSoC and the Safety Software Library enables the
creation of a strong system-level development platform to achieve superior performance, fast time to market, and
energy efficiency.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 33

8 References

▪ IEC 60730 Standard, “Automatic electrical controls for household and similar use,” IEC 60730-1 Edition 3.2, 2007-
03

▪ IEC 61508 Standard, “Functional safety of electrical/electronic/programmable electronic safety-related systems,”
IEC 61508-2 Edition 2.0, 2010-04

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 34

Appendix A. Set Checksum in Flash (Invariable Memory) Test
The following instructions will help you program your part for proper flash and ROM diagnostic testing.

1. Build a project in PSoC Creator with the stored checksum value set to 0x0000 in the SelfTest_Flash.c file.

For the GCC compiler:

#if (CYDEV_CHIP_MEMBER_USED == CYDEV_CHIP_MEMBER_4A)

 volatile const uint64 flash_StoredCheckSum __attribute__ ((used, section

("CheckSum"))) = 0x0000000000000000u;

#endif

For the MDK compiler:

#if (CYDEV_CHIP_MEMBER_USED == CYDEV_CHIP_MEMBER_4A)

 volatile const uint64 flash_StoredCheckSum __attribute__ ((at(0x00007FF8))) =

0x0000000000000000;

#endif

For the IAR compiler:

#if (CYDEV_CHIP_MEMBER_USED == CYDEV_CHIP_MEMBER_4A)

 #pragma location = (0x00007FF8)

 const uint64 flash_StoredCheckSum = 0x0000000000000000u;

#endif

2. Read the calculated flash checksum. There are two ways:

a. Read the checksum in debug mode.

i. Open the project file SelfTest_Flash.c and set the breakpoint in debug mode to the line shown in Figure
21.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 35

Figure 21. Stored Checksum in Debug Mode.

ii. Press [F10] to single step past the breakpoint location and hover the mouse over the variable
“flash_CheckSum.” A value stored in this variable should appear, as shown in Figure 22.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 36

Figure 22. Stored Checksum in Debug Mode.

b. Read the checksum using the communication protocol:

i. To speed up the process of testing the flash checksum outputs, use a UART. This feature is
implemented in Class B firmware. It will print the calculated checksum value when the stored flash
checksum does not match the calculated flash checksum. To use this project, set the UART parameters
shown in Figure 23.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 37

Figure 23. Checksum Output Using UART

3. Copy this checksum value and store it in the checksum location, but remember that PSoC 4 uses little endian
format. The project for the GCC compiler is shown in Figure 24.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 38

Figure 24. Reassign Checksum Constant with Actual Checksum

4. Compile the project and program PSoC.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 39

Appendix B. Migration Guide
There are seven PSoC 4 device families certified in this application note. PSoC 4200, PSoC 4000, PSoC 4200M, PSoC
4200L families have CM0 processor and PSoC 4000S, PSoC 4100S, and PSoC4 4100S Plus families have CM0+
processor. Two example projects1 are attached with this application note for each processor, PSoC 4200 project for
CM0 processor and PSoC 4100S Plus project for CM0+ processor.

These projects can be migrated to all the applicable families.

B.1 Migration to PSoC 4000 Family

Use PSoC 4200 project as the base project.

B.1.1 Common Migrat ion Steps across a l l Projects

1. Change device to PSoC 4000 default device:

 Project  Device Selector  Device = CY8C4014LQI-422

Figure 25. Device Selector

2. Change the clock Frequency to 16 MHz.

 Go to the Clocks tab in the project CYDWR file.

 Press Edit Clock….

 Go to the High Frequency Clocks tab and set IMO frequency to 32 MHz

 Select 2 as the HFCLK Divider value.

1 Example projects are created using the latest components available. Some of these component versions are released later to PSoC Creator version
4.2 via Web-based content delivery (WCD). Click Project  Update Components to download and select the required component version.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 40

Figure 26. Change Clock Settings

B.1.2 Addit ional Migrat ion Steps

Follow these additional project-specific migration steps, if required.

B.1.2.1 CPU Test

Change the linker file:

▪ Open Build settings.

▪ In Linker setting, set Custom Linker Script to custom_cm0plusgcc_40XX.ld.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 41

Figure 27. Change Linker Settings

Note: Linker files are available in [downloaded folder]\AN89056_projects\Class_B_Library\Source.

B.1.2.2 Flash Test

Change the linker file:

▪ Open Build settings.

▪ In the Linker setting, set Custom Linker Script to custom_cm0plusgcc_40XX.ld. (see Figure 27).

B.1.2.3 Interrupts Test

Change the clock Frequency to 12 MHz as the library requires interrupt to be generated every 83.3 us.

▪ Go to the Clocks tab in project CYDWR file.

▪ Press Edit Clock….

▪ Go to the High Frequency Clocks tab and set IMO frequency to 24 MHz.

▪ Select 2 as the HFCLK Divider value.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 42

Figure 28. Change Clock Settings

B.2 Migration to PSoC 4200M Family

Use PSoC 4200 project as base project.

B.2.1 Common Migrat ion Steps across a l l Projects

Change device to PSoC 4200M default device:

▪ Project  Device Selector  Device = CY8C4247AZI-M485

B.2.2 Addit ional Migrat ion Steps

Follow these additional project-specific migration steps, if required.

B.2.2.1 CPU Test

Change linker file:

▪ Open Build settings.

▪ Set the Custom linker script to custom_cm0plusgcc_42XXM.ld in linker setting. (see Figure 27).

B.2.2.2 Flash Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to custom_cm0plusgcc_42XXM.ld in linker setting. (see Figure 27).

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 43

B.3 Migration to PSoC 4200L Family

Use PSoC 4200 project as the base project.

B.3.1 Common Migrat ion Steps across a l l Projects

Change the device to PSoC 4200L default device:

▪ Project  Device Selector  Device = CY8C4248BZI-L489

B.3.2 Addit ional Migrat ion Steps

Follow these additional project-specific migration steps, if required.

B.3.2.1 CPU Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to custom_cm0plusgcc_42XXL.ld in linker setting (see Figure 27).

B.3.2.2 Flash Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to custom_cm0plusgcc_42XXL.ld in linker setting (see Figure 27).

B.4 Migration to PSoC 4000S Family

Use PSoC 4100S Plus project as base project.

B.4.1 Common Migrat ion Steps across a l l Projects

Change device to PSoC 4000S default device:

▪ Project  Device Selector  Device = CY8C4045AZI-S413

B.4.2 Addit ional p roject specif ic migrat ion steps , i f required

B.4.2.1 CPU Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to ‘custom_cm0plusgcc_40XXS.ld’ in linker setting (see Figure 27).

B.4.2.2 Flash Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to ‘custom_cm0plusgcc_40XXS.ld’ in linker setting (see Figure 27).

B.5 Migration to PSoC4100S Family

Use PSoC 4100S Plus project as base project.

B.5.1 Common Migrat ion Steps across a l l Projects

Change device to PSoC 4100S default device:

▪ Project  Device Selector  Device = CY8C4146AZI-S433

B.5.2 Addit ional Migrat ion Steps

Follow these additional project-specific migration steps, if required.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 44

B.5.2.1 CPU Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to custom_cm0plusgcc_41XXS.ld in linker setting (see Figure 27).

B.5.2.2 Flash Test

Change linker file:

▪ Open Build settings.

▪ Set Custom linker script to custom_cm0plusgcc_41XXS.ld in linker setting (see Figure 27)

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 45

Appendix C. IEC 60730-1 Certificate of Compliance

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 46

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 47

Appendix D. Supported Part Numbers

The certified libraries support the following PSoC 4 families:

▪ PSoC 4200

▪ PSoC 4100

▪ PSoC 4000

▪ PSoC 4200M

▪ PSoC 4200L

▪ PSoC 4000S

▪ PSoC 4100S

▪ PSoC 4100S Plus

For details on the supported part numbers, see the Ordering Information section of the corresponding device datasheet.

http://www.cypress.com/
https://www.cypress.com/file/138656/download
https://www.cypress.com/file/138651/download
https://www.cypress.com/file/138646/download
https://www.cypress.com/file/139956/download
https://www.cypress.com/file/222206/download
https://www.cypress.com/file/230631/download
https://www.cypress.com/file/230626/download
https://www.cypress.com/file/396611/download

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 48

Appendix E. MISRA Compliance
Table 4,

Table 5, and Table 6 in this appendix provide details on MISRA-C:2004 compliance and deviations for the test projects.

The Motor Industry Software Reliability Association (MISRA) specification covers a set of 122 mandatory rules and 20
advisory rules that apply to firmware design. The automotive industry compiled it to enhance the quality and robustness
of the firmware code embedded in automotive devices.

Table 4. Verification Environment

Component Name Version

Test Specification MISRAC:2004 guidelines for the use of the C language in critical systems October 2004

Target Device PSoC 4 Production

Target Compiler

PK51 9.03

GCC 5.4-2016-q2-update

Generation Tool PSoC Creator 4.2

MISRA Checking Tool
Programming Research QA C source code analyzer for Windows 8.1-R

Programming Research QA C MISRA-C:2004 Compliance Module (M2CM) 3.2

Table 5. Deviated Rules

MISRA-
C:2004

Rule

Rule
Class
(R/A)

Rule Description Description of Deviation(s)

1.1 R This rule states that code shall conform to C ISO/IEC
9899:1990 standard

Some C language extensions (like interrupt keyword)
relate to device hardware functionality and cannot be
practically avoided.

2.3 R The character sequence /* shall not be used with in a
comment.

Comment includes a hyperlink.

3.1 R All use of implementation-defined behavior shall be
documented.

For the documentation on PK51 and GCC compilers, refer
to the PSoC Creator Help menu, Documentation
submenu, and Keil and GCC commands, respectively.

8.1 R Functions shall have prototype declarations and the
prototype shall be visible at both the function definition
and call.

Functions are declared inside component source code
and included to the library.

8.7 R Objects shall be defined at block scope if they are
accessed only from within a single function.

Volatile global variables are accessed in ISR routines.
Static global variables are used in multiple functions
based on project configuration.

8.8 R An external object or function shall be declared in one
and only one file.

For PSoC 4, some objects are being declared with
external linkage in *.c files, and these declarations are not
in header files.

10.1 R The value of an expression of integer type shall not be
implicitly converted to a different underlying type if: a)
it is not a conversion to a wider integer type of the
same signedness, or b) the expression is complex, or
c) the expression is not constant and is a function
argument, or d) the expression is not constant and is
a return expression.

File SelfTest_Analog.c: The uint16 dacOffset,

adres1, adres2 variable is used in arithmetic.

10.3 R The value of a complex expression of integer type
may only be cast to a type that is narrower and of the
same signedness as the underlying type of the
expression.

File SelfTest_UDB_CfgReg.c. Type casting for Flash
write.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 49

MISRA-
C:2004

Rule

Rule
Class
(R/A)

Rule Description Description of Deviation(s)

11.3 A A cast should not be performed between a pointer
type and an integral type.

See Table 6.

11.5 R A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer.

See Table 6.

12.1 A Limited dependence should be placed on the C
operator precedence rules in expressions

Extra parenthesis is recommended, not required.

12.2 R The value of an expression shall be the same under
any order of evaluation that the standard permits.

See Table 6.

12.4 R The right-hand operand of a logical && or || operator
shall not contain side effects.

No side effects for the operands.

12.7 R Bitwise operators shall not be applied to operands
whose underlying type is signed.

Unsigned integer is used as the operand. This is a false
positive.

12.13 A The increment (++) and decrement (--) operators
should not be mixed with other operators in an
expression.

File SelfTest_UDB_CfgReg.c. increment operator is used.

13.7 R Boolean operations whose results are invariant shall
not be permitted.

Some Boolean operations are mistakenly treated by the
analyzer as “invariant.” These are all false positives.

14.1 R There shall be no unreachable code. The particular code is non-reached because of false
positive on rule 13.7. These are all false positives.

16.9 R A function identifier shall be used only with either a
proceding “&” or with a parenthesized parameter list,
which may be empty.

File SelfTest_Interrupt.c; Function isr_1_StartEx

take functions name as input parameter.

Files uart_master_message.c and uart_slave_message.c:
Functions UTX_M_ISR_SetVector,
URX_M_ISR_SetVector,

U_M_TIME_ISR_SetVector,

UTX_S_ISR_SetVector, and

URX_S_ISR_SetVector take functions names as input

parameters.

16.10 R If a function returns error information, then that error
information shall be tested.

Library functions return values that are not used in demo
projects but can be used in customer projects.

17.4 R Array indexing shall be the only allowed form of
pointer arithmetic.

See Table 6.

19.11 R All macro identifiers in preprocessor directives shall
be defined before use, except in #ifdef and #ifndef
preprocessor directives and the defined() operator.

False positive and this is defined in user configuration file.

21.1 R Minimization of run-time failures shall be ensured by
the use of at least one of the following:

a) static analysis tools/techniques
b) dynamic analysis tools/techniques
c) explicit coding of checks to handle run-time faults

Some code generated by PSoC Creator in some specific
configurations can contain redundant operations
introduced because of a generalized implementation
approach.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 50

Table 6. Pointer Violations in Demo Projects

Pointer (variable name) MISRA Rule Files Description

All register definitions in *.h files
that are used in library APIs

11.3 A cast should
not be performed
between a pointer
type and an integral
type.

AN89056_Ram project:
SelfTest_CRC_calc.c,
SelfTest_Stack.c,
SelfTest_UDB_CfgReg.c
SelfTest_ConfigRegisters.c

AN89056_Flash project:
SelfTest_Flash.c,

AN89056_Protocol project:
UART_master_message.c
UART_slave_message.c

AN89056_UART_SCB project:
SelfTest_UART_SCB.c

AN89056_I2C_SCB project:
SelfTest_I2C_SCB.c

AN89056_IO project:
SelfTest_IO.c

Hardware register access is implemented
over pointers to these registers.

uart_slave_message.c: 11.5 A cast shall not
be performed that
removes any “const”
or “volatile”
qualification from the
type addressed by a
pointer.

AN89056_Protocol project:
uart_slave_message.c

Cast uint8
message[MAX_MESSAGE_SIZE] to
(uint8 *)

UART_Struct.message;

uart_master_message.c:
UART_Struct.crcnt,
UART_Struct.tcrc,
UART_Struct.rxptr

uart_slave_message.c:
UART_Struct.txptr,
UART_Struct.tcrc,
UART_Struct.rxcnt,

12.2 The value of an
expression shall be
the same under any
order of evaluation
that the standard
permits.

AN89056_Protocol project:
UART_master_message.c
UART_slave_message.c

uint8 * rxptr and uint8 * txptr is used as
an array.

uint8 crcnt, uint8 rxcnt and uint16 tcrc is
used as a structure element.

SelfTest_ConfigRegisters.c:
regPointer

SelfTest_UDB_CfgReg.c
udb_Register

SelfTest_CRC_calc.c:
regPointer

SelfTest_Flash.c:
Flash_Pointer

SelfTest_Stack.c: stack

uart_master_message.c:
UART_Struct.rxptr

uart_slave_message.c:
UART_Struct.txptr

17.4 Array indexing
shall be the only
allowed form of
pointer arithmetic.

AN89056_Ram project:
SelfTest_CRC_calc.c,
SelfTest_ConfigRegisters.c

SelfTest_UDB_CfgReg.c,
SelfTest_Stack.c,

AN89056_Ram project:
SelfTest_Flash.c

AN89056_Protocol project:
uart_master_message.c,
uart_slave_message.c

unit8 * regPointer is used as indexed
arrays to access the registers set.

reg8 * regPointer is used as indexed
arrays to access the registers set.

unit32 *flash_Pointer_FourBytes and
unit16 udb_Register is used as an array
of flash data and is indexed via a “++”
operation.

uint16 *stack is used as an array and is
indexed via a “++” operation.

uint8 * rxptr and uint8 * txptr is used as
an array and is indexed via a “++”
operation.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 51

Document History

Document Title: AN89056 -PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

Document Number: 001-89056

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4697425 GJV 03/23/2015 New application note

*A 5276478 GJV 05/18/2016 Updated included projects to included missing assembly and linker files.
Added IECEE test certificate
Updated template.

*B 5698503 AESATP12 04/26/2017 Updated logo and copyright.

*C 6098062 GJV 04/18/2018 Sunset review
Updated template

Replaced CY8C4124LQI-433 with CY8C4124LQI-443 in Appendix D

Updated the part numbers

*D 6616496 JOBI 08/21/2019 Updated associated libraries and projects to latest PSoC Creator version 4.2
and to latest PSoC 4 family devices and re-certified.
Added new I2C, SPI and UART self-tests.
Added new appendix for project migration to different PSoC 4 family.
Updated the IEC 60730 test compliance certificate.
Updated MISRA compliance report.

http://www.cypress.com/

PSoC 4 – IEC 60730 Class B and IEC 61508 SIL Safety Software Library

 www.cypress.com Document Number. 001-89056 Rev. *D 52

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training
| Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

