

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 001-86439 Rev.*M

www.infineon.com 2024-03-01

AN86439

PSoC™ 4 MCU - Using GPIO pins

About this document

Scope and purpose

AN86439 explains how to effectively use PSoC™ 4 MCU GPIO pins, with various use case examples to
demonstrate their features. Major topics in this application note include GPIO basics, configuration options,

mixed-signal use, interrupts, and low-power behavior.

Intended audience

This document is intended for anyone who uses the PSoC™ 4 MCU GPIO pins.

http://www.infineon.com/

Application note 2 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 4

2 PSoC™ Creator ... 5

2.1 PSoC™ Creator code examples ... 5

2.1.1 PSoC™ Creator help.. 7

2.2 ModusToolbox™ software ... 7

2.2.1 ModusToolbox™ code examples ... 7

2.3 Technical support.. 8

3 GPIO pin basics .. 9

3.1 Physical structure of GPIO pins ... 9

3.2 Pin routing ... 12

3.2.1 Digital routing ... 12

3.2.2 Analog routing .. 14

3.3 Startup and low-power behavior .. 22

3.4 GPIO interrupt ... 23

3.4.1 Limitations in GPIO interrupt ... 25

4 Overvoltage-tolerant (OVT) pins ... 26

5 GPIO pins in PSoC™ Creator .. 27

5.1 Pins Component symbols ... 27

5.2 Pins component customizer ... 27

5.3 Pins component interrupts ... 30

5.4 Manual pin assignments ... 33

5.5 PSoC™ Creator APIs ... 33

5.6 Debug logic on GPIO pins .. 34

5.7 Add multiple GPIO pins as a logical port .. 34

5.8 Represent 0ff-chip components ... 37

6 GPIO pins in ModusToolbox™ software .. 40

6.1 Configuring GPIO pins using ModusToolbox™ Device Configurator ... 40

6.1.1 Using the Device Configurator ... 40

6.1.2 Device Configurator code preview .. 43

6.2 GPIO using the peripheral driver library (PDL) ... 44

6.2.1 GPIO pin initialization-full .. 44

6.2.2 GPIO pin initialization- fast .. 45

6.2.3 GPIO port initialization .. 46

6.2.4 Reading from a GPIO pin .. 46

6.2.5 Writing to a GPIO pin .. 46

6.2.6 GPIO interrupt .. 47

7 GPIO tips and tricks in PSoC™ Creator.. 48

7.1 Toggle an LED .. 48

7.2 Read an input and write to an output .. 50

7.3 Drive an output from a digital logic gate .. 50

7.4 Using a bidirectional pin ... 51

7.5 Set the GPIO input/output synchronization ... 53

7.5.1 GPIO input synchronization ... 55

7.5.2 GPIO output synchronization .. 57

Application note 3 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Table of contents

7.6 Toggle GPIOs faster with Data registers ... 58

7.7 Configure GPIO output enable logic ... 61

7.8 Pin interrupt .. 63

7.9 Configure GPIO interrupt settings with firmware .. 66

7.10 Using both analog and digital on a GPIO .. 68

7.11 Gang pins for more drive/sink current ... 71

7.12 Control register handling in Deep Sleep .. 74

8 GPIO tips and tricks in ModusToolbox™ software .. 78

8.1 Read an input and write to an output .. 78

8.2 Pin interrupt .. 78

8.3 More code examples ... 78

9 Related application notes .. 79

10 PSoC™ 4 GPIO compared to PSoC™ 1, PSoC™ 3, and PSoC™ 5LP GPIO .. 80

11 PSoC™ 4 development boards ... 81

References .. 82

Revision history... 83

Disclaimer... 84

Application note 4 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Introduction

1 Introduction

PSoC™ has a flexible general-purpose I/O (GPIO) architecture that provides more features than traditional
MCUs. PSoC™ GPIOs are controlled not only by configuring the registers in firmware, similar to traditional

MCUs, but are also driven by custom digital logic and analog block signals. This application note explains the
basics of PSoC™ 4 GPIO pins and shows techniques for using them effectively for different functions.

This application note assumes that you are familiar with PSoC™ Creator or ModusToolbox™ and the PSoC™ 4
architecture. If you are new to PSoC™ 4, read AN79953 – Getting started with PSoC™ 4 MCU. If you are new to

PSoC™ Creator, visit the PSoC™ Creator. If you are new to ModusToolbox™, visit the ModusToolbox™ software.
For information on device packages or GPIO specifications, see the PSoC™ 4 datasheet. If you are already
familiar with the device and development environments, you can jump to the GPIO tips and tricks in PSoC™

Creator or ModusToolbox™ software GPIO tips and tricks section.

This application note describes how to use the PSoC™ peripheral driver library (PDL) and ModusToolbox™ to

develop with PSoC™ 4 devices. This is currently supported only when using PSoC™ 4 S-series devices.

Note: References to ‘PSoC™’ or ‘device’ henceforth refer to PSoC™ 4, unless specified otherwise.

https://www.infineon.com/AN79953
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/modustoolbox
https://www.infineon.com/cms/en/search.html?intc=searchkwr-return#!view=downloads&term=psoc%204&doc_group=Data%20Sheet

Application note 5 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ Creator

2 PSoC™ Creator

PSoC™ Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware

and firmware design of systems based on PSoC™ 3, PSoC™ 4, and PSoC™ 5LP(see Figure 1).

1. Drag and drop Components to build your hardware system design in the main design workspace

2. Codesign your application firmware with the PSoC™ hardware

3. Configure Components using configuration tools

4. Explore the library of 100+ Components

5. Review Component datasheets

Figure 1 PSoC™ Creator features

2.1 PSoC™ Creator code examples

PSoC™ Creator includes a large number of code example projects. These projects are available from the PSoC™

Creator start page, as shown in Figure 2. PSoC™ Creator code examples can also be downloaded from
infineon.com.

Example projects can speed up your design process by starting you off with a complete design, instead of a
blank page. The example projects also show how you can use PSoC™ Creator components for various

applications. The code examples and datasheets are included, as shown in Figure 3.

In the Find Code Example Project dialog shown in Figure 3, you have several options:

• Filter for examples based on device family (such as PSoC™ 3, PSoC™ 4, or PSoC™ 5LP); category; or keyword

• Select from the menu of examples offered based on the Filter options

• Review the datasheet for the selection (on the Documentation tab)

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/

Application note 6 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ Creator

• Review the code example for the selection. You can copy and paste code from this window to your project,
which can help speed up code development, or

Create a new project (and a new workspace, if needed) based on the selection. This can speed up your design

process by starting you off with a complete, basic design. You can then adapt that design to your application.

Figure 2 Code examples in PSoC™ Creator

Figure 3 Code example projects with sample code

Application note 7 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ Creator

2.1.1 PSoC™ Creator help

Visit the PSoC™ Creator to download the latest version of PSoC™ Creator. Then, launch PSoC™ Creator and
navigate to the following items:

• Quick start guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for
developing PSoC™ Creator projects.

• System reference guide: Choose Help > System Reference Guides. This guide lists and describes the
system functions provided by PSoC™ Creator.

• Component datasheets: Right-click a component and select “Open Datasheet.” Visit the PSoC™ 4

component datasheets page for a list of all PSoC™ 4 Component datasheets.

• Document manager: PSoC™ Creator provides a document manager to help you to easily find and review

document resources. To open the document manager, choose the menu item Help > Document Manager.

2.2 ModusToolbox™ software

ModusToolbox™ is a set of multi-platform development tools and a comprehensive suite of GitHub-hosted
firmware libraries. Together, they enable an immersive development experience for customers creating

converged MCU and wireless systems.

The firmware libraries comprise easily customizable board support packages (BSP) for Infineon PSoC™ 6 MCU,
PSoC™ 4, and Bluetooth® SoC (20xxx) kits and a comprehensive set of middleware libraries enabling industry-
leading features:

• CAPSENSE™

• Bluetooth® Low Energy and Mesh

• Lowest-power, most reliable Wi-Fi on the market

• Impressive set of thoroughly tested and helpful code example applications

Visit the ModusToolbox™ software to download the latest version of ModusToolbox™. The following are helpful

items for getting started with ModusToolbox™:

• Quick start guide: This is a short step-by-step guide specifically for using the Eclipse-based IDE to create and
build applications for ModusToolbox™.

• ModusToolbox™ tools package user guide: This guide focuses on the Eclipse IDE, covering more details

about the IDE and software features.

• Documentation: Refer to Quick Panel section in ModusToolbox™ IDE user guide.

Note: ModusToolbox™ is compatible with KitProg3 and MiniProg4 (CY8CKIT-005-A) programming
devices.

2.2.1 ModusToolbox™ code examples

ModusToolbox™ includes a growing number of code example projects. These code example projects are

available in the new application wizard in ModusToolbox™ or Infineon GitHub.

Example projects can speed up your design process by starting you off with a complete design instead of a
blank page.

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/
https://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserguide
https://www.infineon.com/MTBEclipseIDEUserguide
https://www.infineon.com/cy8ckit-005
https://github.com/infineon

Application note 8 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ Creator

In the New Application Wizard, as Figure 4 shows, you can choose your board support package (BSP). The BSP
corresponds to the specific kit that is being used. The code examples can be viewed when a BSP is chosen, as

shown in Figure 5.

Figure 4 New application wizard

Figure 5 Code examples

2.3 Technical support

For further assistance and clarification, create a support request on the Infineon technical support page.

• Use the support resources Self-help, for quick assistance

https://www.infineon.com/support
http://www.infineon.com/support

Application note 9 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

3 GPIO pin basics

The PSoC™ GPIO pins offer the following features:

• Analog and digital input and output capability

• LCD segment drive support (not available in PSoC™ 4000 and PSoC™ 4200DS)

• CAPSENSE™ support

• Interrupt on level, rising-edge, falling-edge, or both edges

• Slew-rate control

• Input threshold select (CMOS / LVTTL)

• Overvoltage-tolerant pins (available only in PSoC™ 4 Bluetooth® LE, PSoC™ 4 M-Series, and PSoC™ 4 L-

Series) with hot-swap capability

The GPIO functionality depends on the peripherals available in the PSoC™ 4 device. For a side-by-side
comparison of the features available in different PSoC™ 4 families, see Table1 in AN79953 – Getting started with
PSoC™ 4 MCU.

3.1 Physical structure of GPIO pins

Figure 6 shows the pin connections with the resources in the PSoC™ device.

Digital Output
Driver

Buffer

Digital
Input

Digital
Output

Analog

Pin

Figure 6 Simplified GPIO block diagram

A detailed block diagram of the GPIO structure is available in the “I/O System” chapter of the PSoC™ 4

architecture reference manual. Each pin can act as an input or an output to the CPU and the digital peripheral

such as the Timer, PWM, or I2C. It can also act as an analog pin for use with opamps and ADC. At any given time,
you can use a pin for only-digital input, only-digital output, only-analog, or even combinations of these three.
For example, if you enable both digital output and input, it provides a digital bidirectional pin. The input buffer

provides high impedance to the external input. It is configurable to CMOS, LVTTL.

For the input threshold values, see the device datasheet.

The digital output driver supports different drive modes and slew-rate control (see Figure 7).

https://www.infineon.com/AN79953
https://www.infineon.com/AN79953
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/cms/en/search.html?intc=searchkwr-return#!view=downloads&term=psoc%204&doc_group=Data%20Sheet

Application note 10 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

Digital
Logic

Slew
Control

In

PIN

Vdd

Vdd Vdd

Output
Enable

Drive
Mode

Figure 7 Digital output driver

Slew-rate control is provided to reduce EMI and cross-talk. There are two options – Fast and Slow. Slew rate is

set to Fast by default. Use the Slow option when the signals are not speed-critical.

The circuit shown in Figure 7 supports eight drive modes, as listed in Table 1.

Table 1 Drive modes and applications

Drive mode Application examples

1 High-impedance (High-Z)

analog

Analog input/output

2 High-impedance (HIGH-Z)

digital

Digital input

3 Resistive pull-up (~5 kΩ) Interface to open-drain LOW input, such as the tachometer output
from motors or a switch connected to ground. It can also be used to

drive LEDs.

4 Resistive pull-down (~5 kΩ) Interface to an open-drain HIGH input or a switch connected to VDD.

It can be used as an output to interface LEDs in current-sink mode.

5 Open drain, drives LOW Provides high impedance in the HIGH state and a strong drive in the
LOW state; this configuration is used for I2C pins. This mode works in

conjunction with an external pull-up resistor.

6 Open drain, drives HIGH Provides strong drive in the HIGH state and high impedance in the
LOW state. This mode works in conjunction with an external pull-

down resistor.

7 Strong drive CMOS output drive in both LOW and HIGH states

8 Resistive pull-up and

resistive pull-down (~5 kΩ)

Adds a series resistor in both HIGH and LOW states

Application note 11 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

Out

In Pin

Out

In
Pin

Out

In

Pin

Out

In

Pin

Out

In
Pin

Out

In

Pin

Out Pin

Out
In

Pin

1 . High-Impedance
Analog

2 . High-Impedance
Digital

3 . Resistive Pull Up 4 . Resistive Pull Down

5 . Open Drain,
 Drives Low

6 . Open Drain,
 Drives High

7 . Strong Drive 8 . Resistive Pull Up
& Pull Down

VDD VDD

VDD

VDD

VDD

Analog

~5 k

~5k

~5k

~5k

Analog Analog Analog

Analog Analog Analog Analog

In

Figure 8 Drive modes

Note: The resistor values for pull-up and pull-down drive modes, shown in Figure 8, are approximate

values; see the device datasheet for resistor value specifications. Use an external resistor if a

higher accuracy is required. In this case, the pin must be configured as Open Drain Drive High or
Open Drain Drive Low.

Note: At all times, avoid the device VDD getting powered from an external voltage at the pin through ESD
clamp diodes. This can happen if the PSoC™ 4 device is not powered and an external voltage is

applied at the GPIO or when an external voltage at the GPIO is greater than the device VDD. This is,
however, not applicable to the Overvoltage-tolerant (OVT) pins as there are no clamp diodes.

https://www.infineon.com/cms/en/search.html?intc=searchkwr-return#!view=downloads&term=psoc%204&doc_group=Data%20Sheet

Application note 12 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

3.2 Pin routing

3.2.1 Digital routing

A pin can be routed to different digital peripherals, such as universal digital block (UDB), Serial Communication

Block (SCB), Timer/Counter/Pulse-Width Modulator (TCPWM) block, LCD driver, CAN block, and interrupt
controller; as well as the data register which is read/written by the CPU. Figure 9 shows the routing for an input

pin and Figure 10 shows the routing for an output pin. As shown in these figures, peripherals are connected to
the pins using the high-speed I/O matrix (HSIOM). It multiplexes the signals from different peripherals to

connect to a particular pin.

In PSoC™, there are two routing possibilities: dedicated I/O routed through the HSIOM, and flexible routing

using digital system interconnect (DSI). DSI usage is not limited to routing the peripheral inputs and outputs to

pins; it is also used to route signals between digital resources. The Port Adapter connects the HSIOM and the
DSI. It also provides hardware to synchronize pin input and output signals.

SCB

TCPWM

UDB(2)

CPU
(Pin State Reg)

Interrupt
Controller

DSI(1)

From Input
Buffer

HSIOM

High
Speed

IO
Matrix

CAN(3)

Port
Adapter(1)

GPIO Edge
Detect

1. Not applicable to PSoC 4000, PSoC 4000S, PSoC 4100S, 4100S Plus, PSoC 4100PS
2. Not applicable to PSoC 4000, PSoC 4000S, PSoC 4100PS, PSoC 4100,
PSoC 4100S, PSoC 4100S Plus, PSoC 41xx-BL, or PSoC 4100M
3. Only available in PSoC 4200M , PSoC 4200L, and 4100S Plus devices

Figure 9 Digital pin input path

SCB (I2C, UART, and SPI) and TCPWM have dedicated routes to some I/Os. The flexible routing option is
available for UDB inputs and outputs, generating interrupts from the pins, and even for TCPWM. The LCD driver

is present in all I/Os of the PSoC™ parts (except PSoC™ 4000 and PSoC™ 4200DS), with any I/O acting as a
segment or a common driver for the LCD.

The GPIO Edge Detect block enables pin interrupts on rising-edge, falling-edge, and both edges. See the GPIO
interrupt section for details.

Application note 13 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

SCB

TCPWM

UDB(3)

CPU
(Data Reg)

DSI(2)

To Digital
Output
Driver

LCD(1)

HSIOM

High
Speed

IO

Matrix

CAN(4)

Port
Adapter(2)

1. Not applicable to PSoC 4000
2. Not applicable to PSoC 4000, PSoC 4000S, PSoC 4100S, PSoC 4100S Plus,
PSoC 4100PS
3. Not applicable to PSoC 4000, PSoC 4000S, PSoC 4100PS, PSoC 4100, PSoC 4100S,
PSoC 4100S Plus, PSoC 41xx-BL, or PSoC 4100M
4. Only available in PSoC 4200M, PSoC 4200L, and PSoC 4100S Plus.

Figure 10 Digital pin output path

Note: PSoC™ 4 has multiple ports with a maximum of 8 pins per port. For PSoC™ 4200L devices, Ports 7, 8,
and 9 pins do not have the port adapter; for other devices, Port 4 and higher ports do not have the

port adapter. These ports have the following restrictions:

• Cannot be routed through the DSI; thus UDB-based digital signals cannot be routed to the pins of these
ports

• Cannot be used for analog blocks such as SAR ADC, Opamp - Continuous Time Block mini (CTBm), Low-

Power Comparator (applicable only to PSoC™ 4100, PSoC™ 4100PS, and PSoC™ 4200), and Continuous Time
Block (applicable only to PSoC™ 4100PS)

• No input/output synchronization

However, these ports are useful in the following ways:

• As a GPIO controlled in firmware

• Direct connection to TCPWM, SCB, or CAN

• LCD and CAPSESNE™ pins

• Interrupt generation

Note: Pins of the PSoC™ device are shared for dedicated connections to different peripherals. To know

the functions possible at each pin, see the “Pinouts” section in the respective device datasheets.

https://www.infineon.com/cms/en/search.html?intc=searchkwr-return#!view=downloads&term=psoc%204&doc_group=Data%20Sheet

Application note 14 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

3.2.2 Analog routing

GPIO pins configured in the High-impedance analog (HIGH-Z) mode are connected to the analog resources by
direct connections or through the analog switches and the analog mux (AMUX) bus, as shown in Figure 11
through Figure 16 .

The following are the key highlights of the analog routing in the PSoC™ 4000 parts shown in Figure 11:

• All pins (except port 3) can connect to the AMUX buses, controlled by firmware. There are two buses:

AMUXBUS_A and AMUXBUS_B.

• CAPSENSE™ IDAC0 is connected to AMUXBUS_A, and IDAC1 is connected to AMUXBUS_B.

• CAPSENSE™ CMOD is connected to P0[4], and the shield tank capacitor is connected to P0[2].

• Any pin can be used for the capacitive touch sensors (except Port 3) as the CAPSENSE™ block connects to
the sensors using the AMUX bus.

Note: Place the CMOD capacitor close to the pin. See AN85951 - PSoC™ 4 CAPSENSE™ design guide for
layout guidelines.

The following are the key highlights of analog routing in other PSoC™ 4 parts — see Figure 13 through Figure 17.

• There are two AMUX buses. All pins have the capability to connect to AMUXBUS_A and AMUXBUS_B. AMUX

bus connection can be controlled by firmware or by using the DSI signal. Note that in the case of Port 4 and
higher port pins where the DSI connection is not available, AMUX can be connected only in firmware.

• Direct connections are available for opamp inputs and outputs, which provide better performance due to
lower trace resistance and parasitic capacitance. Direct connections are also available for low-power

comparator (LPCOMP) inputs without switches.

• There are dedicated pins for CAPSENSE™ CMOD and the shield tank capacitor. See Figure 13 through Figure

17 to know about the pins.

• CAPSENSE™ IDAC0 is connected to AMUXBUS_A; IDAC1 is connected to AMUXBUS_B.

• Any pin can be used for the capacitive touch sensors as the CAPSENSE™ block connects to the sensors using

the AMUX bus.

• AMUXBUS_A and AMUXBUS_B can be split using switches (marked in blue) as shown in Figure 14 through

Figure 17. This is useful if the AMUX buses are required for non-CAPSENSE™ applications such as
opamp/comparator input and output routing along with CAPSENSE™ in the system.

• The SAR sequencer connects the SAR ADC input to:

− Port 2 in PSoC™ 4100, PSoC™ 4100S, PSoC™ 4100S Plus, PSoC™ 4200, PSoC™ 4100M, PSoC™ 4200M, and

PSoC™ 4200L

− Port 3 in PSoC™ 41xx-BL, PSoC™ 42xx-BL, and PSoC™ 41xxPS

− CTBm, CTB outputs

− Temperature sensor output

Multiplexing is done by controlling the switches shown in red in Figure 11 through Figure 15. Note that the SAR
ADC can also take the input from any pin using AMUXBUS without the sequencer.

Note: The opamp output is connected to a dedicated pin without any switches. If the connection to AMUX
bus is required, the AMUX switch associated with the dedicated pin is activated. This also allows
other pins to act as opamp output pins if the corresponding AMUX switches are activated.

https://www.infineon.com/AN85951

Application note 15 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

Note: When the SAR ADC is operated with differential inputs in the sequencer mode, the positive input
can only be an even-numbered pin with the negative input as the adjacent odd-numbered pin. For

example, in PSoC™ 4200, P2[0] and P2[1] are pair pins with P2[0] as positive input and P2[1] as
negative input. This is shown using rings in analog routing diagrams.

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[2]

P3[1]

P3[0]

P
2[

0
]

P
1[

7
]

P
1[

6
]

P
1[

5
]

P
1[

4
]

P
1[

3
]

P
1[

2
]

P
1[

1
]

P
1[

0
]

CSIDAC1

iout

CSIDAC0

iout

CSD0
source

shieldcsh

cmod

Port0 Port1

P
o

rt3CAPSENSE

A
M

U
XB

U
S

_
A

A
M

U
XB

U
S

_
B

Firmware Controlled Switch

Port2

Switch Control Legend

Figure 11 PSoC™ 4000 analog routing diagram

C
S

ID
A

C
1

io
u

tC
S

ID
A

C
0

io
u

t

Firmware Controlled Switch

Switch Control Legend

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

Port0

AMUXBUS_A
AMUXBUS_B

P0[0], P0[1], P0[2], and P0[3] are directly
connected to LPCOMP0 and LPCOMP1 inputs
without switches.

P
4[

3
]

P
4[

2
]

P
4[

1
]

Port4

vr
ef

_e
xt

sh
ie

ld
_

p
a

d

cm
o

d

cs
h

sh
ie

ld

se
n

se C
S

D
0

P
3[

7
]

P
3[

6
]

P
3[

5
]

P
3[

4
]

P
3[

3
]

P
3[

2
]

P
3[

1
]

P
3[

0
]

Port3 Port2

P1[7]

P1[6]

P1[5]

P1[4]

P1[3]

P1[2]

P1[1]

P1[0]

P
o

rt1

P
2[

7
]

P
2[

6
]

P
2[

5
]

P
2[

4
]

P
2[

3
]

P
2[

2
]

P
2[

1
]

P
2[

0
]

CAPSENSE

P
4[

0
]

Figure 12 PSoC™ 4000S analog routing diagram

Application note 16 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]

P3[4]

P3[3]

P3[2]

P3[1]

P3[0]

P
2[

7
]

P
2[

6
]

P
2[

5
]

P
2[

4
]

P
2[

3
]

P
2[

2
]

P
2[

1
]

P
2[

0
]

P
1[

7
]

P
1[

6
]

P
1[

5
]

P
1[

4
]

P
1[

3
]

P
1[

2
]

P
1[

1
]

P
1[

0
]

P4[3]

P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1

iout

CSIDAC0

iout

SARADC0
vplus
vminus

ext_vref

CSD0
source

shield
csh

cmod

+-

~

1
x

10
x

+ -

~

1
x

10
x

Port0 Port1 Port2

P
o

rt3
P

o
rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAPSENSE

Firmware Only

Firmware + DSI

Firmware + DSI +
SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

u
s

sarbus0

sarbus1

P1[2] and P1[3] are directly connected to OPAMP 0
and OPAMP 1 outputs, respectively, without
switches.

P0[0], P0[1], P0[2] and P0[3] are directly
connected to LPCOMP0 and LPCOMP1 inputs
without switches.

Differential input
pairs

Figure 13 PSoC™ 4200/PSoC™ 4100 analog routing diagram

Application note 17 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

P
1[

0
]

P
1[

1
]

P
1[

2
]

P
1[

3
]

P
1[

4
]

P
1[

5
]

P
1[

6
]

P
1[

7
]

+-

~

1x 10
x

+ -

~

1x10
x

Port 1

CTBm

OA0 OA1

Firmware Only

Firmware + SAR-Sequencer

Switch Control Legend

Comp out Comp out

sarbus0

sarbus1

LPCOMP0

vplus
vminus

LPCOMP1

vplus
vminus

Available only in PSoC 4100S Plus Family

AMUXBUS_A
AMUXBUS_B

vp
lus

vm
inu

s

SARADC0

vplus
vminus
ext_vref

SAR

TEMP0
temp

Vssa_kelvin

S
A

R
M

U
X

P
o

rt 2

P2[7]

P2[6]

P2[5]

P2[4]

P2[3]

P2[2]

P2[1]

P2[0]

P
0[

0
]

P
0[

1
]

P
0[

2
]

P
0[

3
]

P
0[

4
]

P
0[

5
]

P
0[

6
]

P
0[

7
]

Port 0

P4[3]

P4[2]

P4[1]

P4[0]

CSIDAC0

iout

CSIDAC1

iout

CSD0

sense

shield

cmod

shield_pad

P
o

rt
 4

CAPSENSE

vref_ext

csh

P3[7]

P3[6]

P3[5]

P3[4]

P3[3]

P3[2]

P3[1]

P3[0]

P
o

rt
 3

P4[7]

P4[6]

P4[5]

P4[4]

P
5[0

]

P
5[1

]

P
5[2

]

P
5[3

]

P
5[5

]

P
5[6

]

P
5[7

]

Port 5

P
6[0

]

P
6[1

]

P
6[2

]

P
6[4

]

P
5[5

]

P
7[0

]

P
7[1

]

Port 6

AMUX Splitter (Firmware Only)

Port 7

Figure 14 PSoC™ 4100S/4100S Plus analog routing diagram

Application note 18 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

P
2
[7

]

P
2
[6

]

P
2
[5

]

P
2
[4

]

P
2
[3

]

P
2
[2

]

P
2
[1

]

P
2
[0

]
LPCOMP1

vminus

vplus

C
S

ID
A

C
1io
u

t

C
S

ID
A

C
0io
u

t

SARADC0
vplus

vminus

ext_vref

C
S

D
0

s
o
u

rc
e

s
h
ie

ld

c
s
h

c
m

o
d

+-

~

1
x

1
0
x

+ -

~

1
x

1
0
x

CTBm

SAR

OA1 OA0

TEMP0

temp

Vssa_kelvin

CAPSENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
1
[7

]

P
1
[6

]

P
1
[5

]

P
1
[4

]

P
1
[3

]

P
1
[2

]

P
1
[1

]

P
1
[0

]

+-
~

1
x

+ -

~

1
x

1
0
x

CTBm

OA3 OA2

AMUXBUS_A

AMUXBUS_B

Comp out to DSI Comp out to DSI
P

3
[7

]

P
3
[6

]

P
3
[5

]

P
3
[4

]

P
3
[3

]

P
3
[2

]

P
3
[1

]

P
3
[0

]

P
4
[1

]

P
4
[0

]

P0[7]

P0[6]

P0[5]

P0[4]

P0[3]

P0[2]

P0[1]

P0[0]

LPCOMP0

vminus

vplus

P
5
[1

]

P
5
[0

]

P
6
[1

]

P
6
[0

]

V
R

E
F

LPCOMP

P2[2] and P2[3] are

connected to OA0 and

OA1 OPAMP outputs

respectively

P1[2] and P1[3] are

connected to OA2 and

OA3 OPAMP outputs

respectively

P0[0], P0[1], P0[4] and

P0[5] are connected to

LPCOMP0 and

LPCOMP1 inputs

Firmware Only

Firmware + DSI

Switch Control Legend

AMUX Splitter - Firmware Only

Firmware + DSI + SAR-Sequencer

Differential input

pairs

1
0
x

Figure 15 PSoC™ 41xx-BL/PSoC™ 42xx-BL analog routing diagram

Application note 19 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

P
1[

7
]

P
1[

6
]

P
1[

5
]

P
1[

4
]

P
1[

3
]

P
1[

2
]

P
1[

1
]

P
1[

0
]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1iou

t

C
S

ID
A

C
0iou

t

SARADC0
vplus

vminus

ext_vref

C
S

D
0so

u
rce

shield

csh
cm

od

+-

~

1x 10
x

+ -

~

1x10
x

CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE

Firmware Only

Firmware + DSI

Firmware + DSI + SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
5[

5
]

P
5[

4
]

P
5[

3
]

P
5[

2
]

P
5[

1
]

P
5[

0
]

+-

~

1x 10
x

+ -

~

1x10
x

CTBm

OA3 OA2

Comp out to DSI Comp out to DSI

P
2[7

]

P
2[6

]

P
2[5

]

P
2[4

]

P
2[3

]

P
2[2

]

P
2[1

]

P
2[0

]

P0[7]

P0[6]

P0[5]

P0[4]

P0[3]

P0[2]

P0[1]

P0[0]

LPCOMP0

vminus

vplus

P
4[1

]

P
4[0

]

P
4[3

]

P
4[2

]

LPCOMP

P1[2] and P1[3] are
connected to OA0 and
OA1 OPAMP outputs
respectively

P5[2] and P5[3] are
connected to OA2 and
OA3 OPAMP outputs
respectively

P0[0], P0[1], P0[2] and
P0[3] are connected to
LPCOMP0 and LPCOMP1
inputs

P
4[5

]

P
4[4

]

P
4[7

]

P
4[6

]
CSIDAC2

iout

CSIDAC3

iout

CSD1

source

shield

csh
cmod

P7[2]

P7[1]

P7[0]

P6[5]

P6[4]

P6[3]

P6[2]

P6[1]

P6[0]

P
3[1

]

P
3[0

]

P
3[3

]

P
3[2

]

P
3[5

]

P
3[4

]

P
3[7

]

P
3[6

]

C
A

P
SE

N
SE

AMUX Splitter - Firmware Only

Differential input
pairs

Figure 16 PSoC™ 4100M/PSoC™ 4200M analog routing diagram

Application note 20 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

Firmware Only

Differential input
pairs

Figure 17 PSoC™ 4200L analog routing diagram

Application note 21 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

V
D

A
C

0
V

D
A

C
1

Firmware Only

Differential input
pairs

sarbus0

sarbus1

sarbus0

sarbus1

sar_vminus

sar_vplus

sar_vminus

sar_vplus

sar_
aro

u
te

_vre
f

External
reference

CTB0_Vout1

CTB0_Vout0

CTB1_Vout1

CTB1_Vout0

Vref[3:0]

Figure 18 PSoC™ 4100PS analog routing diagram

Note: The PSoC™ Creator IDE tool provides an analog routing diagram for a design similar to those
illustrated in Figure 11 through Figure 18. See the Analog tab in the .cydwr file of the project in
PSoC™ Creator.

Application note 22 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

3.3 Startup and low-power behavior

On reset/power-up, all GPIO pins start up in the high-impedance analog mode, that is, with the input buffer and
output driver disabled. These GPIO pins remain in this mode until the reset is released; then the initial
operating configuration of the associated registers of each GPIO pin is loaded during boot and takes effect at
that time. During run time, GPIOs can be configured by writing to the associated registers.

Note: In the PSoC™ 4000 parts, pin P1[6] is temporarily configured as XRES during power-up until the
device executes the start-up code. Do not pull this pin down during power-up as this keeps the
device in reset. Note that the reset provision via P1[6] is only for production test purpose and not
intended for user applications.

See I/O system restrictions in the PSoC™ 4000 family – KBA91258 for more information.

PSoC™ has up to four power modes as follows:

Table 2 Low power modes in PSoC™ 4 families

Device Sleep Deep Sleep Hibernate Stop

PSoC™ 4000 ✓ ✓  

PSoC™ 4000S ✓ ✓  

PSoC™ 4100/4200 ✓ ✓ ✓ ✓

PSoC™ 4100S ✓ ✓  

PSoC™ 4100S Plus ✓ ✓  

PSoC™ 4100S Max ✓ ✓  

PSoC™ 4100S Plus 256KB ✓ ✓  

PSoC™ 4200DS ✓ ✓  

PSoC™ 4500S ✓ ✓  

PSoC™ 4700S ✓ ✓  

PSoC™ analog coprocessor ✓ ✓  

PSoC™ 4 Bluetooth® LE ✓ ✓ ✓ ✓

PSoC™ 4 M ✓ ✓ ✓ ✓

PSoC™ 4 L ✓ ✓ ✓ ✓

PSoC™ 4100PS ✓ ✓  

In the Sleep mode, the GPIOs are active and can be actively driven by the peripherals; only the CPU is inactive in
this mode. In the Deep Sleep mode, the pins driven by the Deep Sleep peripherals such as I2C, LCD driver,
opamp, and comparator are functional. The I2C pins can wake the device up on an address match event. The
segment LCD, connected to the device pins, is periodically refreshed even in the Deep Sleep mode.

The PSoC™ 4 parts (except PSoC™ 4000) have an additional feature that freezes the GPIOs in Deep Sleep,
Hibernate, and Stop modes. Unfreezing of GPIOs also happens automatically when the low-power mode is

exited. However, note that the GPIOs driven by Deep Sleep peripherals are active in Deep Sleep mode and are

not frozen.

In the case of Hibernate and Stop modes, wakeup happens with a device reset. This clears the GPIO
configuration and the pin state. To retain the pin state, use the CySysPmFreezeIo() and
CySysPmUnfreezeIo() API functions. Note that you do not need to call CySysPmFreezeIo() for Stop mode

https://community.infineon.com/t5/Knowledge-Base-Articles/I-O-System-Restrictions-in-the-PSoC-4000-Family-KBA91258/ta-p/247826

Application note 23 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

because it is automatically called when the user invokes Stop mode using the CySysPmStop() API function.
However, you should call CySysPmFreezeIo() just before the function call to enter Hibernate mode. The

GPIOs are unlocked by calling CySysPmUnfreezeIo(). A call to this function is also required when the exit is
made from the Stop mode. Note that the frozen pin states and configurations are not maintained on an

external reset (XRES) event.

CySysPmFreezeIo() and CySysPmUnfreezeIo() are also useful in Deep Sleep mode. An example of use of
this feature is shown in the Control register handling in Deep Sleep section. UDB-based Components such as

control registers are not active and lose the data in Deep Sleep, Hibernate, and Stop modes. If the Control

Register is driving a pin, a glitch can occur when the PSoC™ device enters or exits these modes if the last state is
a ‘1’. To avoid this glitch, the GPIO should be frozen before entering a Low-power mode.

For information on Low-power modes, see AN86233 – PSoC™ 4 MCU low-power modes and power reduction
techniques.

3.4 GPIO interrupt

GPIO Edge
Detect

From
HSIOM

Port
Adapter(1)

DSI(1)

Rising Edge
Detect (1) To Interrupt

Controller

Interrupt Select

Interrupt Configuration

0

1

1

0

Interrupt Source
Multiplexer

DSI

Fixed Function

(1) Not applicable to PSoC 4000, PSoC 4000S, PSoC 4100S, PSoC 4100S Plus, PSoC 4100PS

Figure 19 GPIO interrupt signal routing to the interrupt controller

At each of the 32 interrupt lines of the Interrupt Controller in the processor core, there is an Interrupt Source
Multiplexer. This multiplexer block selects the source of the interrupt and provides an option of rising-edge

detection or direct connection to the Interrupt Controller. There are two sources of interrupts:

1. Fixed-function source

 DSI source

The Interrupt Select line selects the DSI or the fixed-function source. The Interrupt Configuration selects the

direct connection or the rising-edge detection logic route to connect to the Interrupt Controller.

A fixed-function interrupt source has a fixed interrupt vector; this means that the interrupt source has a

dedicated connection to one of the 32 interrupt lines of the Cortex® M0/Cortex® M0+ CPU. The interrupt source
on this route is directly connected to the Interrupt Controller. When the interrupt source is routed through the
DSI, the vector selection is not fixed. This routing also provides an option of rising-edge detection or direct
connection.

Note: The interrupt vector table is available in the Interrupts chapter of the Reference manual.

The use of Interrupt Source Multiplexer is not limited to the GPIO interrupts; it is also used for all other sources.
To know more about other interrupt sources, see the “Interrupt Sources” section of AN90799 - PSoC™ 4

interrupts.

https://www.infineon.com/AN86233
https://www.infineon.com/AN86233
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/AN90799
https://www.infineon.com/AN90799

Application note 24 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

The GPIO interrupt, in addition to the resources present in the Interrupt Source Multiplexer, uses its own GPIO
Edge Detect block as showin in Figure 19.

The GPIO interrupt signal from the HSIOM is routed in the following ways:

• Route 1: Fixed-function route through the GPIO Edge Detect block with the Interrupt Source Multiplexer
configured to direct connection

• Route 2: DSI route through the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to

rising-edge

• Route 3: DSI route through the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to
direct connection

• Route 4: DSI route bypassing the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to

rising-edge

• Route 5: DSI route bypassing the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to
direct connection

See Pins component interrupts to know how different routes are configured.

The following figure shows the GPIO Edge Detect block. This block detects rising-edge, falling-edge, and both

edges in the incoming GPIO signal. Individual GPIO interrupt signals within a port are ORed together to
generate a single interrupt request. Thus, there is one interrupt vector for each port.

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

To Interrupt
Source
Multiplexer

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

Figure 20 GPIO edge detect

As it is clear from Figure 20, when an interrupt is triggered, the interrupt source is required to be identified.

PSoC™ 4 provides a status register to identify the interrupting pin. After reading the status register, it is

important to clear it whenever the GPIO Edge Detect logic is used, to avoid the following:

1. Single interrupt trigger and nonresponsive to further interrupts when the Interrupt Source Multiplexer is
configured to rising-edge. This scenario occurs if Route 2 is used.

2. Repetitive interrupts for a single request when the Interrupt Source Multiplexer is configured to direct
connection. This scenario occurs if Route 1 or Route 3 is used.

3. When the GPIO interrupt takes the route without the GPIO Edge Detect block, there is no need to clear the
interrupt. However, when the rising-edge detection logic in the interrupt source multiplexer is also

bypassed, it results in a level type interrupt (Route 5). In this case, the interrupt is triggered repeatedly as

long as the pin signal is HIGH. Thus, it is recommended to configure the interrupt source multiplexer to a

rising-edge interrupt when the GPIO Edge Detect block is bypassed (Route 4).

Application note 25 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pin basics

Note: The GPIO interrupt logic continues to function in Sleep, Deep Sleep, and Hibernate modes; thus,
any pin can be used as a wakeup source. A dedicated wakeup pin, P0[7], is available to wake the

device from Stop mode in PSoC™ 4200 / PSoC™ 4100, PSoC™ 4M, and PSoC™ 4L parts. For a
PSoC™ 4 Bluetooth® LE device, the wakeup pin is P2[2].

3.4.1 Limitations in GPIO interrupt

• Port 4 and higher ports do not have a port adapter. Thus, pin interrupt via DSI routing is not possible for

these port pins.

• PSoC™ 4000 and PSoC™ 4100/PSoC™ 4200 have one interrupt vector for each port. PSoC™ 4 Bluetooth® LE
does not have a dedicated interrupt vector for the ports beyond Port 5, while PSoC™ 4M does not have one

for the ports beyond Port 4. However, a common port interrupt vector is allocated, which gets triggered
when any port interrupt becomes active. See the Pins component datasheet to understand how to use this
common port interrupt.

• See the "Interrupts" chapter in the respective device architecture reference manual to learn about ports that

have a common interrupt vector.

An example project is shown in the Pin interrupt section, which explains how to use the GPIO interrupt. To

understand interrupts in general, see the application note AN90799 – PSoC™ 4 interrupts.

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/AN90799

Application note 26 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Overvoltage-tolerant (OVT) pins

4 Overvoltage-tolerant (OVT) pins

Pins P5[0] and P5[1] in PSoC™ 4 Bluetooth® LE, and Port 6 in PSoC™ 4M are the OVT pins. For PSoC™ 4L, Port 6

and Port 8 have OVT pins. These are similar to regular GPIOs with the following additional features:

1. Overvoltage-tolerant: There is no ESD clamp diode between OVT pin and the supply rail. This enables the

OVT pin to withstand an external voltage higher than VDDIO, VDDD, or VDDA voltage, up to 5.5 V.

2. Provides better pull-down drive strength compared to a regular GPIO

3. Serial Communication Block (SCB): When configured as I2C and its lines routed to OVT pins, an SCB meets

the following I2C specifications:

a) Fast Mode Plus LOW-level output current (IOL) specification

b) Fast Mode and Fast Mode Plus hysteresis and minimum fall-time specifications

For more details on the I/O hardware, see the I/O system chapter of the Reference manual.

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all

Application note 27 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

5 GPIO pins in PSoC™ Creator

This section describes how to use PSoC™ Creator to configure and use GPIO pins.

5.1 Pins Component symbols

The Pins Component is the recommended method for connecting internal PSoC™ resources to a physical pin. It
allows PSoC™ Creator to automatically place and route the signals within the PSoC™ device-based on the
chosen pin configuration.

The standard Infineon Component Catalog contains four predefined GPIO configurations in the Ports and Pins
class of symbols: analog, digital bidirectional, digital input, and digital output. Drag one of these components

to the schematic to add a pin to the project, as follows:

Figure 21 Pins component symbol types in PSoC™ Creator

5.2 Pins component customizer

Each component in PSoC™ Creator comes with a customizer to configure the component. Figure 22 shows the

Pin component customizer, which is accessed by double-clicking the component.

Application note 28 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Figure 22 Pin component customizer

The following table describes some of the parameters in the Pin component customizer. For details of all the

parameters, see the Pins component datasheet.

Table 3 Pin component settings

Setting Description

General Tab >

Type

This setting configures the pin type. Possible options are:

• Analog

• Digital input with or without hardware (HW) connection

• Digital output with or without HW connection and output enable

• Bidirectional pin

When the digital input or output is configured with no HW connection, it means that the

pin state is controlled by the CPU. Note that more than one selection can be made at

once. For example, a pin can be configured for both analog and digital input at the same

time.

General Tab >

Drive Mode

This setting configures the pin with one of the eight drive modes described in the GPIO

pin basics section. Figure 23 shows the drive mode options in the pin customizer.

General Tab >

Initial Drive State

The Initial drive state parameter sets the data register value. This value is reflected at
the pin if it is software-driven, given that the pin is set with an appropriate drive mode. If

the pin is in the output mode with HW connection enabled and Output enable disabled,
the initial drive state acts as the enable control. Setting the initial state to ‘1’ enables the
pin, which is done as the default value by PSoC™ Creator, as shown in Figure 23. If the

pin is configured as input, initial drive state can still be useful. For example, if resistive
pull-up is required at the input pin, then the drive mode should be configured to

Resistive pull up with initial state as HIGH in order to turn on the pull-up path through

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/

Application note 29 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Setting Description

the resistor. Likewise, for resistive pull down, the initial drive state should be set to LOW

to enable the pull-down path.

Input Tab >

Threshold

CMOS and LVTTL input threshold setting is for an entire port. There are three options as

shown in Figure 24. The “CMOS or LVTTL” option allows the PSoC™ Creator tool to select

CMOS or LVTTL depending on the threshold setting for other pins in the port.

Input Tab >

Interrupt

This setting configures the GPIO Edge Detect block described in the GPIO interrupt

section. For more details on this setting, see Pins component interrupts.

Figure 23 Pin Drive mode setting and initial drive state

Figure 24 Pin input threshold selection

Application note 30 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

5.3 Pins component interrupts

The Interrupt parameter in the pin customizer configures the GPIO Edge Detect block described in the GPIO
interrupt section.

Figure 25 Interrupt configuration in PSoC™ Creator

The Pins Component symbol changes when interrupts are enabled, as shown in Figure 26.

Figure 26 Pins component symbol with interrupts enabled

Note that you can use only one Pin Component with each physical GPIO port if the interrupt is enabled. The

reason for this limitation is that all pin interrupts in a port are ORed together, as described in the GPIO interrupt
section. Therefore, only one IRQ signal can be shown on the schematic per port. For example, consider two Pin
Components with interrupts enabled. These components cannot be mapped to pins in the same physical port.

Figure 27 Two pins components with interrupts enabled

Application note 31 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

PSoC™ Creator will not allow you to assign the two Components to the same port. The accepted method is to
assign multiple pins to the same component. This ensures that there is only one IRQ signal in the schematic for

that physical port. You can still assign each pin its own interrupt edge type. The only limitation is that the pins
must be contiguous in the same port. The interrupt source should be identified in the ISR; see the Pin interrupt.

Figure 28 Multiple pins in the same port with interrupts enabled

The IRQ of the Pin Ccomponent should be connected to the interrupt component. This routes the GPIO

interrupt signal to the interrupt controller.

Figure 29 Interrupt component in the catalog

The interrupt component configures the interrupt source multiplexer to either direct connection (shown as

“level” in the Interrupt component customizer) or rising-edge. The GPIO interrupt architecture is described in
the GPIO interrupt section along with the different routes available for the interrupt signal. Different routes are
configured with the help of the pin component and the interrupt component customizer settings summarized

as follows:

Table 4 GPIO interrupt configurations

Schematic Interrupt setting

in pin component

Interrupt
component

setting

Route Details

Rising-edge or
falling-edge or

both edges

Level Route 1 Interrupt on edges depending on
the pin component setting. It
uses a fixed interrupt vector
depending on the selected port.

In this configuration GPIO
interrupt status register should

be cleared; otherwise, interrupts
are triggered repeatedly on a
single interrupt request. This

Application note 32 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Schematic Interrupt setting

in pin component

Interrupt

component

setting

Route Details

configuration can be used to
wake up the device from any low-

power mode. However, note that

wakeup from Stop mode requires
the use of a specific pin
depending on the selected

device.

Rising-edge or

falling-edge or

both edges

Rising-

edge

Route 2 Interrupt on edges depending on

the pin component setting. In
this configuration GPIO interrupt
should be cleared; otherwise,

interrupt is triggered only once.
Interrupt vector is not fixed. This

configuration can wake up the

CPU only from Sleep mode; it will

not work in other Low-power

modes.

Rising-edge or
falling-edge or

both edges

Level Route 3 This is similar to Route 1.
However, Route 3 is taken only if

the interrupt vector is forced on

to a desired DSI vector line. See

the application note AN90799 –
PSoC™ 4 interrupts to know how

to force the interrupt vector. This
configuration can wake up the

CPU from only Sleep mode; it will
not work in other Low-power

modes.

Disabled Rising-

edge

Route 4 This configuration provides
rising-edge interrupt. In this case,

there is no need to clear the

interrupt. This configuration can
wake up the CPU only from Sleep

mode; it will not work in other

Low-power modes.

Disabled Level Route 5 This configuration provides Level
interrupt. Note that the interrupt
is triggered repeatedly as long as
the pin signal is high. In this case
also, there is no need to clear the

interrupt. This configuration can
wake up the CPU from only Sleep
mode; it will not work in other

Low-power modes.

https://www.infineon.com/AN90799
https://www.infineon.com/AN90799

Application note 33 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

5.4 Manual pin assignments

You can use the Pins tab of the Design-Wide Resources (DWR) window to assign a Pin Component to a physical
pin. PSoC™ Creator automatically assigns pins if the user does not choose any but this may lead to a pin
placement that is more difficult to route on a PCB.

Figure 30 shows three assigned pins. The pins highlighted in dark blue are manually assigned and the pin
highlighted in light blue is automatically assigned. Selecting the Lock option prevents the pin from being
reassigned by PSoC™ Creator.

PSoC™ Creator makes it simple to reassign pins as needed, but you should consider pin selection before the
boards are designed.

Figure 30 Pin assignment in DWR window

Note: PSoC™ Creator can use the unused pin switches for routing the analog signals. This is configured
using the Unused Bonded I/O parameter in the System tab of the .cydwr file. See PSoC™ Creator

Help for more details.

5.5 PSoC™ Creator APIs

Infineon provides a set of API functions that you can use to control GPIOs dynamically through firmware. The
API for the pins component enables access on both a Component-wide and per-pin basis. See the “API” section

of the Pins datasheet for more details.

Per-pin API functions, which are provided as part of cy_boot in the cypins.h file, are documented in the “Pins”
section of the PSoC™ Creator system reference guide (Help > Documentation > System Reference). You can

use these functions to control the configuration registers for each physical pin.

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/

Application note 34 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

5.6 Debug logic on GPIO pins

The PSoC™ 4 serial wire debug (SWD) pins are shared on the port pins. See the respective device datasheet for
more information on the debug port pins. The debug function, however, can be disabled and the pins can be
used as regular GPIOs by setting the “Debug Select” option to “GPIO” in the System tab of the DWR window.

Figure 31 Debug port disabled

Note that disabling the debug interface does not affect the ability to program the device.

5.7 Add multiple GPIO pins as a logical port

In PSoC™ Creator, you can organize a group of as many as 36 pins into a logical port, which can then be
referenced in code by the port’s defined name. All the pins may be part of the same physical port, or they may

form separate physical ports. In the Pin Component customizer, set the Number of Pins required in a port. The

pins appear in the list below the field as shown in Figure 32. Each pin can be configured independently. Select
[All Pins] to configure every pin in the component with the same settings.

https://www.infineon.com/cms/en/search.html?intc=searchkwr-return#!view=downloads&term=psoc%204&doc_group=Data%20Sheet

Application note 35 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Figure 32 One of four pins configured as a digital input

If the number of pins is configured to ‘4’ with three digital inputs and one digital output, the schematic symbol

appears as shown in Figure 33.

Figure 33 Pins Component in port configuration

There is an option to display the port with a bus instead of individual pin terminals. Select Display as Bus in the

Mapping tab of the Pin Configuration window to display the port as a bus. Note that all pins must be of the
same type to display as a bus.

Application note 36 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Figure 34 Display as bus option

If the Number of Pins is configured to four digital outputs, the schematic symbol appears:

Figure 35 Four pins displayed with bus

The pins with the bus terminal can be forced to map to adjacent pins by enabling Contiguous in the Mapping

tab.

Application note 37 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Figure 36 Contiguous pin placement option

When you select Contiguous, PSoC™ Creator modifies the list of available pin options to match the port’s

configuration. When the Contiguous option is disabled, any pin can be selected. When the Contiguous option is
enabled, only adjacent pins can be selected.

Contiguous Disabled Contiguous Enabled

Figure 37 Pin placement with contiguous disabled/enabled

These features are described in more detail in the Pin Configuration window and the Pins Component
datasheet.

5.8 Represent 0ff-chip components

The off-chip components catalog provides a way to mix external and internal components on the same
schematic. This makes it possible to improve documentation and convey clearly how the internal schematic fits

in the entire design. Off-chip components serve the same function as comments in the code – they do not
change the functionality of the PSoC™ design but, instead, provide a clearer picture of the entire system.

Application note 38 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

Figure 38 Design with off-chip components

In the design shown above, PWM_1 and Opamp_1 are internal blocks of the device. These blocks are connected

to the external components using pins Pin_1 through Pin_4. Green and orange wires are the internal
connections (green for digital signals and orange for analog signals); whereas blue wires and components are

external to the device. To make the connections with the external components in the schematic, enable the
“External terminal” parameter in the Pin Component customizer. This brings out an additional terminal on the

schematic.

Figure 39 Enabling external terminal

External Connection

Internal Connection

External Connection

Internal Connection

Application note 39 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in PSoC™ Creator

External Terminal Internal Terminal

Figure 40 Pin component with internal and external terminal

The components, to connect to the external terminals on the schematic, are available in the off-chip tab in the
components catalog.

Figure 41 Off-chip Component Catalog

The components in this catalog cover those that are most likely to be connected to the pins of a PSoC™ device

on the board. These components consist of resistors, capacitors, transistors, inductors, switches, and others.

Drag the component and place it on the schematic as it is done in the case of internal components.

Application note 40 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

6 GPIO pins in ModusToolbox™ software

This section describes how to use ModusToolbox™ to configure and use GPIO pins.

6.1 Configuring GPIO pins using ModusToolbox™ Device Configurator

6.1.1 Using the Device Configurator

Initialization of GPIO pins can be done using two methods: using the Device Configurator as shown in this

section or using GPIO using the peripheral driver library (PDL) in the next section. If you are familiar with PSoC™
Creator, the Device Configurator is similar to the configurations that can be made to components in PSoC™
Creator Top Design. The Pins tab in the Device Configurator allows the user to initialize GPIO pins and set the

parameters for individual pins.

The Device Configurator is accessed by right-clicking on the project in ModusToolbox™ , selecting

ModusToolbox™ and then Device Configurator 2.20. The Device Configurator can also be accessed in the
ModusToolbox™ Quick Panel in the bottom left.

Figure 42 Accessing the Device Configurator

The Pins section in the Device Configurator allows the configuration of individual GPIO pins on the device. The

left panel shows the pins separated by their respective ports. To configure a pin, check the box next to the pin;
this will create the initialization code. The parameters for the pin can be configured on the right of the Device
Configuration window.

Application note 41 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

Figure 43 Device Configurator

Table 5 Pin component settings

Setting Description

General > Drive

Mode

This setting configures the pin with one of the eight drive modes as shown in Figure 44.

For a more detailed description of these drive modes, see the GPIO pin basics section.

General > Initial

Drive State

The Initial drive state parameter sets the data register value. This value is reflected at
the pin if it is software-driven, and the pin is set with an appropriate drive mode, as
shown in Figure 44. If the pin is configured as an input, the initial drive state can still be

useful. For example, if resistive pull-up is required at the input pin, the drive mode
should be configured to Resistive pull up with initial state as HIGH in order to turn on
the pull-up path through the resistor. Likewise, for resistive pull down, the initial drive

state should be set to LOW to enable the pull-down path.

Input > Threshold CMOS and LVTTL input threshold setting is for an entire port. Note that an error will be
displayed in the Notice List of the Device Configurator if all the pins on a port are not

configured the same way. For more information, see the Pins datasheet.

Input > Interrupt

Trigger Type

This setting configures the GPIO Edge Detect block described in the GPIO interrupt. For

more details on interrupts, see the AN90799 – PSoC™ 4 Interrupts.

Output > Slew Rate The slew rate parameter determines the rise and fall ramp rate for the pin as it changes

output logic levels. For more details on this setting, see Physical structure of GPIO pins.

Internal
Connection >

Analog

This setting allows connecting of the pin to an analog signal.

Internal
Connection >

Digital Output

This setting allows connecting to a digital output signal.

Internal
Connection >

Digital InOut

This setting allows connecting to a digital input signal. Input signals are primarily used

for I2C interfaces.

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/
https://www.infineon.com/AN90799

Application note 42 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

Setting Description

Advanced > Store

Config in Flash

This setting controls whether the configuration structure is stored in flash (const, true)

or SRAM (not const, false).

Figure 44 Drive modes

The Device Configurator sets up configurations of the pins, peripherals, and other device configurations. When
closing the Device Configurator, go to File > Save to save the updates to the current project. After configuring

the resources using the Device Configurator, PDL is used to interact with the pins and any interrupts. See the
GPIO using Peripheral Driver Library (PDL) section and the PSoC™ 4 PDL API reference for more information on

using GPIO pins after initialization.

Note: The name of a GPIO pin can be changed from the default name provided by the BSP. This is helpful

for naming the pins to correspond to their purpose in your design. The name of a pin can be
changed by selecting the pin and typing the custom name into the text input in the “Name(s)”

column as shown in Figure 43.

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/modules.html

Application note 43 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

6.1.2 Device Configurator code preview

Figure 45 Device Configuration code preview

The Device Configurator features a Code Preview window that displays the PDL defines and functions that are
created to configure the GPIO pin as shown in Figure 45. When the Device Configurator settings are saved, this
code is automatically added to your project. This code can also be manually added to your projected by

copying the definitions from this window.

Application note 44 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

6.2 GPIO using the peripheral driver library (PDL)

The PDL integrates device header files, startup code, and peripheral drivers into a single package. The PDL
supports the PSoC™ 4 Series device family. The drivers abstract the hardware functions into a set of easy-to-use
APIs. These are fully documented in the PSoC™ 4 PDL API reference. The PDL reduces the need to understand
register usage and bit structures, thus easing software development for the extensive set of peripherals in the

PSoC™ 4 series. You configure the driver for your application, and then use API function calls to initialize and

use the peripheral.

The peripheral driver library (PDL) GPIO functions and other declarations used in this driver are located in

cy_gpio.h. You can optionally include cy_pdl.h (ModusToolbox™ only) to get access to all the functions and
declarations in the PDL.

Initialization can be performed either at the port level or by configuring the individual pins. See the product
device header files for the list of supported ports and pins. It is recommended to use the Device Configurator
for initialization of pins and other device resources. This reduces the risk of improper initialization and overflow

of resources.

Single pin configuration is performed by using Cy_GPIO_Pin_FastInit (provide specific argument values) or

Cy_GPIO_Pin_Init (provide a filled cy_stc_gpio_pin_config_t structure).

An entire port can be configured using Cy_GPIO_Port_Init by providing a filled

cy_stc_gpio_prt_config_t structure. The values in the structure are bit fields representing the desired

value for each pin in the port.

For the following example, the names defined in the device configurator can be used. For “base” use
“user_defined_name”_PORT and for the “pin_num” use “user_defined_name”_NUM. The user-defined

name can be easily configured and viewed by using the ModusToolbox™ Device Configurator.

6.2.1 GPIO pin initialization-full

Individual GPIO initialization starts with defining all pin configuration values in the format as shown below. This

initialization is not needed if a pin is already configured using the ModusToolbox™ Device Configurator.

Code Listing 1 GPIO pin configuration structure

cy_stc_gpio_pin_config_t pinConfig = {

/*.outVal */ 1UL, /* Output = High */

/*.driveMode */ CY_GPIO_DM_PULLUP, /* Resistive pull-up, input buffer on */

/*.hsiom */ P0_3_GPIO, /* Software controlled pin */

/*.intEdge */ CY_GPIO_INTR_RISING, /* Rising edge interrupt */

/*.vtrip */ CY_GPIO_VTRIP_CMOS, /* CMOS voltage trip */

/*.slewRate */ CY_GPIO_SLEW_FAST, /* Fast slew rate */

/*.vregEn */ 0UL, /* SIO-specific setting - ignored */

/*.ibufMode */ 0UL, /* SIO-specific setting - ignored */

/*.vtripSel */ 0UL, /* SIO-specific setting - ignored */

/*.vrefSel */ 0UL, /* SIO-specific setting - ignored */

/*.vohSel */ 0UL /* SIO-specific setting - ignored */

};

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/modules.html
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/structcy__stc__gpio__pin__config__t.html
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__drive_modes.html#ga822f7d73072811b69a754d70806247b9
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__interrupt_trigger.html#gafbaa3f5dff9b5689cdb43bb07c7c6fef
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__vtrip.html#ga0eb9d3f41338feae28103e8a8c302ba0
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__slew_rate.html#gabb43620358101afd1663376cb3ba19b4

Application note 45 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

This pin configuration defines all the parameters for a GPIO pin. This is the third argument when initializing a
pin.

To initialize a pin use Cy_GPIO_Pin_Init(base,pinNum,config) with the following arguments as shown

below:

base Pointer to the pin's port register base address

pinNum Position of the pin bit field within the port register

config Pointer to the pin config structure base address

Code Listing 2 Single GPIO pin initialization-full example

/* Initialize pin P0.3 */

if(CY_GPIO_SUCCESS != Cy_GPIO_Pin_Init(P0_3_PORT, P0_3_NUM, &pinConfig))

{

 /* Insert error handling */

}

6.2.2 GPIO pin initialization- fast

The GPIO Pin fast initialization Initializes the most common configuration settings for all pin types. These
include, drive mode, initial output value, and HSIOM connection. Initialize a pin with

CY_GPIO_PIN_FastInit(base, pinNum, driveMode, outVal, hsiom) using the following arguments
as shown below This initialization is not needed if a pin is already configured using the ModusToolbox™ Device

Configurator.

base Pointer to the Pin's Port register base address

pinNum Position of the pin bit field within the Port register

driveMode Pin drive mode. Options are detailed in Pin drive mode macros.

outVal Logic state of the output buffer driving the pin (1 or 0)

hsiom HSIOM (High-Speed input output multiplexer) input selection

Code Listing 3 Single GPIO pin initialization- fast example

/* Quickly initialize pin P0.3 (e.g. quickly set up a test LED) */

Cy_GPIO_Pin_FastInit(P0_3_PORT, P0_3_NUM, CY_GPIO_DM_PULLUP, 1UL, P0_3_GPIO);

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__init.html#gad61553f65d4e6bd827eb6464a7913461
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__enums.html#gga0ba12c6f18fa9e356ceea0218beb7259ac12fe3dac92e654617ce1a0cda34c0b0
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__init.html#gad61553f65d4e6bd827eb6464a7913461
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__init.html#gac0c0ed22816c4bcedfb642202f91ba72
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__drive_modes.html#ga822f7d73072811b69a754d70806247b9

Application note 46 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

6.2.3 GPIO port initialization

Initialize a complete port of pins from a single init structure.

The configuration structure used in this function has a 1:1 mapping to the GPIO and HSIOM registers shown

below. See the device technical reference manual (TRM) for the register details on how to populate them.

Code Listing 4 GPIO port configuration structure example

cy_stc_gpio_prt_config_t portConfig = {

/*.dr =*/ 0x00000008u, /* PX.3 output = 1 */

/*.intrCfg =*/ 0x00000080u, /* PX.3 rising edge interrupt */

/*.pc =*/ 0x00000400u, /* PX.3 resistive pull-up */

/*.pc2 =*/ 0x00000000u, /* PX.3 input buffer on */

/*.sio =*/ 0x00000000u, /* PX[7:0] ignored */

/*.selActive =*/ 0x00000000u, /* PX[7:0] software controlled */

};

/* Initialize GPIO port 0 */

if(CY_GPIO_SUCCESS != Cy_GPIO_Port_Init(GPIO_PRT0, &portConfig))

{

/* Insert error handling */

}

6.2.4 Reading from a GPIO pin

Reading from a GPIO pin is the same if a pin is configured using the Device Configurator or PDL. The port and
pin are arguments when using the CY_GPIO_Read function as shown in below.

Code Listing 5 Reading GPIO pin

/* Scenario: P0.3 was initialized and input buffer enabled */

/* Read the input state of P0.3 */

if(1UL == Cy_GPIO_Read(P0_3_PORT, P0_3_NUM))

{

/* Insert logic for High pin state */

}

else

{

/* Insert logic for Low pin state */

}

6.2.5 Writing to a GPIO pin

Writing a value to a GPIO pin is the same if a pin is configured using the Device Configurator or PDL. The port
and the pin are arguments when using the CY_GPIO_Write function as shown below.

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/structcy__stc__gpio__prt__config__t.html
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__enums.html#gga0ba12c6f18fa9e356ceea0218beb7259ac12fe3dac92e654617ce1a0cda34c0b0
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__init.html#gaece2166923613cf7abb536d8a05bfd45
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__gpio.html#ga2aee7ad6dd3a3b533f491ebe528d8edb

Application note 47 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO pins in ModusToolbox™ software

Code Listing 6 Writing to GPIO pin

uint32_t pinState = 0UL;

/* Control P0.3 based on the pinState variable */

Cy_GPIO_Write(P0_3_PORT, P0_3_NUM, pinState);

6.2.6 GPIO interrupt

The GPIO interrupt for a pin is configured using one of two methods: using the Device Configurator as seen in
Figure 43, or using PDL. If the device configurator is used to set up the pin, the interrupt type can be selected in
the side panel as shown in Figure 43. The interrupt type can also be configured in the GPIO PDL configuration

structure. See the PSoC™ 4 PDL API reference for how to configure the interrupt trigger type.

For more details of using Interrupts with PSoC™ 4 S series devices in ModusToolbox™, see the CE230654 -
PSoC™ 4: GPIO interrupt code example on GitHub. This code example can also be found in the New Application

Wizard in ModusToolbox™; for more information, see the ModusToolbox™ code examples section.

https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/group__group__gpio__functions__gpio.html#ga849c813d6771bf8d3c59b89b28a07bca
https://infineon.github.io/psoc4pdl/pdl_api_reference_manual/html/modules.html
https://github.com/Infineon/mtb-example-psoc4-gpio-interrupt
https://github.com/Infineon/mtb-example-psoc4-gpio-interrupt

Application note 48 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

7 GPIO tips and tricks in PSoC™ Creator

This section provides practical examples of how to use GPIO pins when using PSoC™ Creator.

Table 6 PSoC™ Creator projects

Section PSoC™ 4000,
4000S, 4100S,
4100S Plus,
4100PS, 4500S,

4700S

PSoC™
4100_BLE,

4100, 4100M

PSoC™ 4200,
4200M, 4200L,

4200-BLE

1 Toggle an LED ✓ ✓ ✓

2 Read an input and write to an output ✓ ✓ ✓

3 Drive an output from a digital logic gate ✓

4 Using a bidirectional pin ✓ ✓

5 Set the GPIO input/output synchronization ✓ ✓

6 Toggle GPIOs faster with Data ✓ ✓ ✓

7 Configure GPIO output enable logic ✓

8 Pin interrupt ✓ ✓ ✓

9 Configure GPIO interrupt settings with

firmware

✓ ✓ ✓

10 Using both analog and digital on a GPIO ✓ ✓

11 Gang pins for more drive/sink current ✓

12 Control register handling in Deep Sleep ✓

The Infineon development kits, listed in PSoC™ 4 development boards, can be used for testing these projects.

7.1 Toggle an LED

The simplest use of a GPIO is to set the output of a pin HIGH or LOW in firmware. This example demonstrates
how to set the output to toggle an LED using Pins Component API functions.

1. Place a Digital Output Pin Component in the project schematic.

2. Name the Component “Pin_LED” and disable the hardware connection.

Application note 49 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 46 Pin_LED configuration

3. Enable the external terminal to connect to the external components on the schematic.

4. Assign it to a physical pin (this example uses P1[6]) in the Pins tab of the DWR window).

5. Connect the physical pin to an LED. Note that the LED and resistor ‘R’ are off-chip components.

Figure 47 Toggle an LED example schematic

6. In main.c, use the Component API functions to set the output as follows:

for(;;)

{

 /* Set LED output to logic HIGH */

 Pin_LED_Write(1u);

 /* Delay of 500 ms */

 CyDelay(500u);

 /* Set LED output state to logic LOW */

Application note 50 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 Pin_LED_Write(0u);

 /* Delay of 500 ms */

 CyDelay(500u);

}

7. Build the project and program the PSoC™ 4 device.

The result is an LED blinking at a frequency of 1 Hz.

7.2 Read an input and write to an output

This example demonstrates how to read from and write to a GPIO pin using Component API functions. The

output pin drives the inverse of the input pin state.

1. Place two pins in the project schematic—one digital input pin and one digital output pin with hardware
connection disabled.

Figure 48 Input and output example schematic

 Assign the pins for Pin_Input and Pin_Output in the .cydwr window.

3. Use the Component APIs to set the state of Pin_Output based on Pin_Input as follows:

 for(;;)

 {

/* Set the output pin with an inverted value of input pin */

 Pin_Output_Write(~Pin_Input_Read());

 }

4. Build the project and program the PSoC™ 4 device.

You can test this project by feeding a square wave from a signal generator to Pin_Input. The signal at

Pin_Output will be an inverted form of the signal at Pin_Input.

7.3 Drive an output from a digital logic gate

The previous example showed the use of the processor core to read a pin and set another pin with an opposite
of the read value. This example demonstrates the same task but with the use of configurable digital resources

known as Universal Digital Blocks (UDBs). In this example, an input pin signal is routed to a NOT gate and the
output of the NOT gate is routed to another pin. Follow these steps to create the project:

1. Place two pins in the project schematic—one Digital Input Pin and one Digital Output Pin with hardware
connection enabled.

Application note 51 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 49 Input and output pins with HW connection enabled

 Place a NOT gate and connect to the pins as shown in Figure 50.

Figure 50 NOT gate connection

3. Assign the pins for Pin_Input and Pin_Output in the .cydwr window.

4. This project does not require any code. Build the project and program the PSoC™ 4 device.

5. Similar to the previous project, you can test this project by feeding a square wave from a signal generator to
Pin_Input. The signal at Pin_Output will be an inverted form of the signal at Pin_Input.

7.4 Using a bidirectional pin

This example demonstrates the use of a pin in the bidirectional mode, that is, with both digital input and digital

output active. PSoC™ Creator provides a Pin Component in bidirectional configuration - “Digital Bidirectional
Pin”.

Figure 51 Pin_Bidrectional

This Pin Component, however, shows a single terminal for both input and output. Its use is limited to the I2C

SDA and SCL lines. In many applications, it is useful to have two terminals – one for input and one for output.
This can be done by enabling both the Digital Input and Digital Output options in the Pin Component

customizer. An example is shown for configuring such a pin, where a switch is connected at the input side to
pull the pin to logic LOW. This pin is configured to resistive pull-up with logic ‘1’ driven continuously. To check
the bidirectional pin status, the pin signal is routed to another pin. Follow the steps below to create the project:

1. place a digital input pin on the schematic.

 Enable digital output with Drive mode as resistive pull up:

Application note 52 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 52 Pin_Bidirectional configuration

 Ensure that the Component looks like as follows on the schematic.

Figure 53 Pin_Bidirectional on the schematic

 Connect a logic HIGH to drive the pin with resistive pull-up continuously.

Figure 54 Logic HIGH to Pin_Bidirectional

Now, the pin status is seen using another pin (Pin_Status) connected at the input side.

 Place a Digital Output Pin and connect at the input buffer side of the Pin_Bidirectional.

Figure 55 Pin_Status connection to Pin_Bidirectional

With the external connections enabled, schematic looks like as follows:

Application note 53 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 56 Complete schematic

 Assign the pins in the .cydwr window.

The project does not require any user code. Build the project and program the PSoC™ 4 device.

The LED connected to Pin_Status shows the input buffer state of Pin_Bidirectional. When the switch is not

pressed, logic ‘1’ drives Pin_Bidirectional with a resistive pull-up. This turns OFF the LED (as the LED is
connected in active LOW mode). When the switch is pressed, strong logic ‘0’ appears at Pin_Bidirectional. This

turns ON the LED. Thus, this project demonstrates two drivers on the same pin (Pin_Bidirectional) – one
internal (logic 1), and other external (switch) with an input.

7.5 Set the GPIO input/output synchronization

For digital input and output signals, the GPIO provides synchronization with an internal clock, HFCLK, or a

digital signal as a clock in the PSoC™ 4 parts (except PSoC™ 4000). In addition, it provides the configuration for
clock enable and synchronization logic reset. Port adapter logic is used for input and output synchronization,
as show in Figure 57 and Figure 58.

From
Input Pin

Selected
Reset

Selected
Sync Clock

2

PACFGx
IN SYNC[1:0]

To DSI

00: Transparent
01: Single Sync
10: Double Sync
11: Reserved

Figure 57 Input synchronization in PSoC™ 4

As shown in Figure 57, the input synchronization circuit provides the options of transparent, single sync, and
double sync.

Application note 54 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

From DSI

Selected
Reset

Selected
Sync Clock

2

PACFGx
OUT SYNC[1:0]

To Pin

00: Transparent
01: Single Sync
10: Clock
11: Clock Inverted

Figure 58 Output synchronization in PSoC™ 4

The output synchronization circuit provides the options of transparent, single sync, clock, and clock inverted,

as shown in Figure 58. Clock and clock inverted route the sync clock to the output pin. These are set in the Pins

Component customizer, as shown in Figure 59.

The synchronizer clock can be configured as HFCLK, an external signal (from DSI), or one of the pin signals. The
synchronizer block reset signal can be an external signal (from DSI) or one of the pin signals. These are

configured in the pins component customizer from the Clocks tab, as shown in Figure 60.

For more information on the parameters in the Clocking tab of the pins component customizer, see the Pins
component datasheet.

Figure 59 Sync mode setting

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-4-components/pins/

Application note 55 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 60 Clock setting

The pin signals are synchronized using a combination of the UDB port adapter and GPIO blocks. Also, the clock

is common for all the pins of a port for internal clock synchronization. For more information, see the PSoC™ 4

architecture reference manual.

Note: The signals at Port 4 and higher port pins cannot be synchronized because these ports do not have
a UDB port adapter. Therefore, these port pins should always be used in the Transparent mode to

avoid an error during build.

The next two examples demonstrate how to set the input/output synchronization.

7.5.1 GPIO input synchronization

1. Place one digital input pin, two digital output pins, and one clock component in the project schematic.

Configure them as follows:

Table 7 Components configuration

Component Name Configuration

Digital input pin Pin_Input_DoubleSync Drive mode: Resistive pull-up

Sync mode: Double-sync

In clock (for input sync): External

Digital output pin Pin_Output_LFCLK_1 Output mode: Transparent

Digital output pin Pin_Output_Transparent_1 Output mode: Transparent

Clock LFCLK Clock type: Existing

Source: LFCLK

 Connect the pins and add the off-chip components:

Application note 56 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 61 GPIO input synchronization example schematic

Note: Clocks in PSoC™ 4 cannot be directly connected to a pin terminal, except for SYSCLK and LFCLK.

See the "Clocking System" section of the PSoC™ 4 architecture reference manual for more
information.

 Assign the pins, and connect the Pin_Input_DoubleSync pin to a switch connected to GND.

4. Build the project and program the PSoC™ 4 device.

5. When the button connected to Pin_Input_DoubleSync is pressed, the signal waveforms occur. The
Pin_Output_Transparent_1 pin becomes LOW at the second rising edge of LFCLK because the input is

double synchronized with LFCLK.

Figure 62 Input/output signal waveforms

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all

Application note 57 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

7.5.2 GPIO output synchronization

1. Place one digital input pin, three digital output pins, and one Clock Component in the project schematic,

and configure them per Table 8.

Figure 63 GPIO output synchronization example schematic

Table 8 Pins configuration

Component Name Configuration

Digital input pin Pin_Input_Transparent Drive mode: Resistive Pull-Up

Sync mode: Transparent

Digital output pin Pin_Output_LFCLK_2 Output mode: Transparent

Digital output pin Pin_Output_SingleSync Output mode: Single-Sync

Out Clock (for output sync): External

Digital output pin Pin_Output_Transparent_2 Output mode: Transparent

Clock LFCLK Clock type: Existing

Source: LFCLK

2. Connect the pins as shown in Figure 63.

3. Assign the pins and connect the Pin_Input_Transparent to a switch connected to GND. Note that you cannot

select Port 4 and higher port pins for Pin_Output_SingleSync as they do not support synchronization.

4. Build the project and program the PSoC™ 4 device.

Figure 64 shows the waveforms corresponding to a button press.

The Pin_Output_SingleSync pin becomes LOW at the next rising-edge of LFCLK because the output is

synchronized with LFCLK. The Pin_Output_Transparent_2 pin becomes LOW at the same time as the
Input_Transparent pin because there is no synchronization.

Application note 58 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 64 Input/output signal waveform

7.6 Toggle GPIOs faster with Data registers

Calling the component API functions is the easiest way to control GPIO pins; however, it is not the fastest way.

Take an example of writing logic ‘1’ to Pin_1 mapped to pin P5[2]. Here is the API function call:

Pin_1_Write(1);

The equivalent assembly code can be seen in the listing file (main.lst) in the Results tab of the project

workspace.

mov r0, #1 ;load the value in r0

bl Pin_1_Write ;call Pin_1_Write

The assembly code of the Component API Pin_1_Write function can also be seen in the listing file-

ldr r3,.L2 ;load the address of Pin_1_DR into r3

ldr r1,[r3] ;load the value of Pin_1_DR into r1

mov r2,#251 ;load 251 into r2 (value depends on location of pin

 ;in 8 bit wide port, in this case, Pin_1 is on port P5[2])

and r2, r1 ;AND the values of r2 and r1 and load result back in r2

lsl r0, r0, #2 ;left shift r0 by two bits and load the result back in

 ;r0(this instruction is not present for the pin on LSB)

mov r1, #4 ;load value of 4 into r1 (depends on the location of

 ;pin in 8 bit wide port)

and r0, r1 ;and the value of r0(contains "value")and r1 and load

 ;the result in r0

orr r0, r2 ;or the value of r0 with r2 and load the result back in

 ;r0

Application note 59 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

str r0, [r3] ;store the result back in Pin_1_DR

bx lr ;return to calling function

This code takes 20 CPU cycles to write logic ‘1’ to Pin_1.

Alternatively, you can use the register definitions and masks in the <pin_name>.h file that is created for each
pins component to update the pins quickly.

The following statement sets logic ‘1’ at Pin_1 mapped to P5[2]. Pin_1_DR is the data register of Pin_1.

Pin_1_DR |= Pin_1_MASK

In the listing file (main.lst), the above instruction translates into an assembly code as follows:

ldr r3, .L3 ;load the address of Pin_1_DR into r3

ldr r1, [r3] ;load value of Pin_1_DR into r1

mov r2, #4 ;move value of 4 (Pin_1_MASK) into r2

orr r2, r1 ;Set the bit in Pin_1_DR

strb r2, [r3] ;Store it back into Pin_1_DR

This code takes eight cycles as against 20 cycles used by the component API function.

The component API function has firmware overhead for the following actions, which are not required in direct
register writes:

• Function call

• Checking the function argument to set the pin to logic ‘1’ or logic ‘0’

• Return from the function

To set, reset, and read the pin using direct register writes, the following macros are provided in PSoC™ Creator:

Macro Description

CY_SYS_PINS_SET_PIN(portDR, pin) Sets the output value for the pin to logic HIGH portDR is

the address of the port data register pin is the pin number

(0 to 7)

CY_SYS_PINS_CLEAR_PIN(portDR, pin) Clears the output value for the pin to logic LOW portDR is

the address of the port data register pin is the pin number

(0 to 7)

CY_SYS_PINS_READ_PIN(portPS, pin) Reads the pin value portPS is the address of the port

status register pin is the pin number (0 to 7)

See System Reference Guide (available from the PSoC™ Creator Help menu) for more details on these macros.

Follow these instructions to create a PSoC™ Creator project that can be used to compare the performance of

the API function call and direct register write:

1. Place two digital output pins, with hardware connection disabled, in the project schematic and name them
“Pin_Test” and “Pin_Index,”.

Application note 60 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 65 Toggle GPIOs with Data registers example schematic

2. Assign the pins in the .cydwr window.

3. Add the following code to the main.c file. The code sets Pin_Index HIGH and toggles Pin_Test using

Component API functions. It then sets Pin_Index LOW and toggles Pin_Test using the Data register (DR).

 for(;;)

 {

 /* Set IndexPin */

 Pin_Index_Write(1);

 /* Set TestPin */

 Pin_Test_Write(1u);

 /* Clear TestPin */

 Pin_Test_Write(0u);

 /* do it again */

 Pin_Test_Write(1u);

 Pin_Test_Write(0u);

 /***/

 /* Clear IndexPin */

 Pin_Index_Write(0);

 /************* Direct Register Writes **************/

 /* Set TestPin */

 CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /* Clear TestPin */

 CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /* do it again */

 CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /***/

 }

Note: Pin_Test__DR is the address of the data register, whereas Pin_Test_DR is the value of the

data register. See the Pin Component .h file in the Source Files folder of the project workspace (in
this case, Pin_Test.h) to know about the macro for the data register address.

Application note 61 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

The code that writes to the data register is also portable similar to the API function call, so that if the pin
assignment changes during development, you do not have to change the code.

4. Observe the waveform of the two pins using an oscilloscope.

A. Pin_Test_Write(1u)

B. Pin_Test_Write(0u)

C. CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT)

D. CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT)

A

B

C

D

Figure 66 Output signals waveform

Figure 66 shows that a pin can toggle faster by directly writing to the data register, as opposed to calling API

functions.

To know about coding techniques to achieve time efficiency, see the application note, AN89610 – PSoC™ 4 and

PSoC™ 5LP Arm® Cortex® code optimization.

7.7 Configure GPIO output enable logic

This example demonstrates how to configure and use the output enable logic of a GPIO pin. This project is

applicable only for PSoC™ 4200, PSoC™ 4200 Bluetooth® LE, PSoC™ 4200M, and PSoC™ 4200L parts.

1. Place two Digital Output Pins in the project schematic.

2. Open the configuration dialog for each pin and select the Output Enable option.

https://www.infineon.com/AN89610
https://www.infineon.com/AN89610

Application note 62 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 67 Output enable selection

3. Place a Control register in the schematic.

4. Configure the Control register for two outputs.

Figure 68 Control register configured with two outputs

5. Add one Logic Low ‘0’ Component.

6. Connect the Logic Low to the pins and add the Off-Chip Components for the LEDs.

Application note 63 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 69 Control register driving pins' output enable

7. Assign the pins and connect the pins to LEDs.

8. Add the following code to the main.c file.

uint8 count;

for(;;)

{

 for(count = 0u; count < 4u; count++)

 {

 /* Set Control_Reg Value */

 Control_Reg_Write(count);

 /* Delay for 500ms */

 CyDelay(500u);

 }

}

9. Build the project and program the PSoC™ 4 device.

The result is the output of the two pins gated by the state of Control_Reg, which causes the LEDs to “count” to

3.

7.8 Pin interrupt

This example demonstrates how to use an interrupt generated from two pins in the same port, using
Component API functions. These two pins can use only one IRQ terminal. Thus, the interrupt source must be

identified in the ISR.

1. Place two pins in the project schematic: one Digital Input Pin named “Pin_Button” and one Digital Output

Pin named “Pin_LED”.

2. Set Pin_Button’s number of pins to 2, Drive mode as Resistive Pull Up, and Interrupt as Falling-Edge. This
exposes the IRQ terminal.

3. Connect the Interrupt Component to the irq terminal.

Application note 64 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 70 Pin interrupt example schematic

4. Assign the pins in the .cywdr window.

5. Use the Component API functions to set the state of the LED Pin based on Pin_Button. Copy the following
main.c code:

#define LED_ON (0u)

#define LED_OFF (1u)

/* The flag to enter ISR_Button */

uint8 isrFlag = 0u;

/* The LED state */

uint8 ledState = LED_OFF;

/* ISR for ISR_Button */

CY_ISR(INT_ISR_Button)

{

 /* Set the flag */

 isrFlag = 1u;

/* Check which pin caused interrupt by reading interrupt status register */

if(Pin_Button_INTSTAT & (0x01u << Pin_Button_SHIFT))

 {

 /* Triggered by Pin_Button_0 */

 ledState = LED_OFF;

 }

 else

 {

 /* Triggered by Pin_Button_1 */

 ledState = LED_ON;

 }

Application note 65 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 /* Clear interrupt */

 Pin_Button_ClearInterrupt();

}

int main()

{

 /* Start Pin ISR */

 isr_Button_StartEx(INT_ISR_Button);

 /* Enable global interrupt */

 CyGlobalIntEnable;

 for(;;)

 {

 /* Check the flag */

 if(0u != isrFlag)

 {

 /* Clear the flag */

 isrFlag = 0u;

/* Drive the LED with ledState. Led State is updated in ISR */

 Pin_LED_Write(ledState);

 }

 /* Delay 1ms */

 CyDelay(1u);

 }

}

In the main.c code, CY_ISR(INT_ISR_Button) is the interrupt service routine for the pin interrupt.

6. Build the project and program the PSoC™ 4 device.

The result is that the LED turns OFF when you press the button connected to Pin_Button_0 and turns ON when

you press the button connected to Pin_Button_1, but not when you release the buttons. (Note that the switch
bounce in the buttons may cause several interrupts on a single button press; see AN60024 – Switch debouncer
and glitch filter with PSoC™ 3, PSoC™ 4, and PSoC™ 5LP for more details).

In the main.c code, Pin_Button_INTSTAT and Pin_Button_SHIFT are the functions and constant macros

provided by the Pins component. These are used to check which pin caused an interrupt.

The function Pin_Button_ClearInterrupt() clears the interrupt status register.

Note: Not all ports have dedicated interrupts. For higher ports, a common interrupt signal is generated.

Application note 66 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

See the "Interrupts" chapter in the respective device Architecture reference manual

For more information on interrupts and writing interrupt handlers, see AN90799 – PSoC™ 4 interrupts.

7.9 Configure GPIO interrupt settings with firmware

The GPIO interrupt is configured dynamically by writing to the two bits of the Interrupt Configuration register.

• For PSoC™ 4000: GPIO_PRTx_INTR_CFG[2y+1:2y]

• For other PSoC™ 4 parts: PRTx_INTCFG[2y+1:2y]

where “x” corresponds to the port number and “y” corresponds to the pin number per the following table. You
can change the configuration at any time to enable or disable pin interrupts.

Table 9 GPIO interrupt types and bit settings

PRTx_INTCFG [2y+1:2y] Edge type Description

0 Disable Interrupts disabled

1 Rising-Edge Trigger on rising-edge

2 Falling-Edge Trigger on falling -edge

3 Both Edges Trigger on either edge

In this example, Pin_Button is configured with a rising-edge interrupt. Once the interrupt occurs, it is
configured as a falling-edge interrupt. An LED is toggled whenever the interrupt is triggered.

1. Place a digital input pin and a digital output pin in the project schematic. Add the Off-Chip Components for

the LED and button:

Figure 71 Example schematic

2. Assign the pins to Pin_Button and Pin_LED in the cydwr window.

3. Configure Pin_Button as a resistive pull-up pin and connect it to a button.

4. Configure Pin_LED as a strong drive pin and connect it to an external LED.

5. Add the following code to the main.c file. Note that instead of using the device register name, this project
uses Pin_Button__INTCFG, provided by PSoC™ Creator (in the cyfitter.h file) for interrupt configuration. You
do not need to worry about the exact register name in the selected device. This helps to port the project to a

different PSoC™ 4 device without changing anything in the code.

#define INTERRUPT_MASK 0x03

#define RISING_EDGE 0x01

#define FALLING_EDGE 0x02

int main()

{

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/AN90799

Application note 67 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 /* Variable to save temporary data */

 uint32 regVal = 0x00u;

 /* Flag to switch interrupt type */

 uint8 edgeFlag = 0x00u;

 for(;;)

 {

/* Get value of port interrupt configuration register */

regVal = CY_GET_REG32(Pin_Button__INTCFG);

/* Clear the configuration bits for the Pin_Button. Pin_Button_SHIFT is multiplied

by 2 as two bits of the interrupt configuration register sets the configuration for

one pin */

 regVal &= ~(INTERRUPT_MASK << (Pin_Button_SHIFT * 2));

if(edgeFlag)

{

/* Set P0[7] to GPIO interrupt rising-edge trigger. Pin_Button_SHIFT is multiplied

by 2 as two bits of the interrupt configuration register sets the configuration for

one pin */

 CY_SET_REG32(Pin_Button__INTCFG, regVal | (RISING_EDGE << (Pin_Button_SHIFT

* 2)));

}

else

{

/* Set P0[7] to GPIO interrupt falling-edge trigger. Pin_Button_SHIFT is multiplied

by 2 as two bits of the interrupt configuration register sets the configuration for

one pin */

 CY_SET_REG32(Pin_Button__INTCFG, regVal | (FALLING_EDGE << (Pin_Button_SHIFT

* 2)));

}

/* Toggle edgeFlag */

edgeFlag ^= 0x01u;

/* Wait for Interrupt */

while(!(CY_GET_REG32(Pin_Button__INTSTAT) & (0x01u << Pin_Button_SHIFT))) {;}

/* Clear interrupt */

CY_SET_REG32(Pin_Button__INTSTAT, (0x01u << Pin_Button_SHIFT));

/* Toggle LED */

Pin_LED_Write(~Pin_LED_Read());

Application note 68 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 }

}

6. Build the project and program the PSoC™ 4 device.

The LED toggles whenever the button is pressed or released. When the button is pressed, the falling-edge
triggers the interrupt, and when it is released, the rising-edge triggers the interrupt.

The PSoC™ 4 architecture reference manual contains more information about the GPIO interrupt, including
block diagrams and functional descriptions. Another good resource is the application note AN90799 – PSoC™ 4

interrupts.

7.10 Using both analog and digital on a GPIO

This example demonstrates how to configure and use a pin for analog and digital functions. In this example, an
output pin is controlled alternately by an IDAC and the firmware. When controlled by firmware, the LED blinks.

When controlled by the IDAC, the LED gradually brightens.

This type of multiplexing is useful when you need analog and digital functionality from a single pin. It can also
reduce the number of GPIOs used in a design.

You can use a hardware connection instead of firmware to control the digital output. See the description at the
end of this section for the required modifications to the project.

To configure the pin signal source, the HSIOM_PORT_SELx register is updated. Like the previous example, this

project uses the register name as defined in the Pins Component for easy portability across the PSoC™ 4 device
family.

Follow these steps to create the schematic and firmware:

1. Place an Analog Pin and a Current DAC in the schematic.

2. Assign the Pins Component to a physical pin (this example uses P0[2]).

3. Configure the pin with both Analog and Digital Output settings.

Figure 72 LED pin configured as both analog and digital

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/AN90799
https://www.infineon.com/AN90799

Application note 69 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

4. Set the IDAC’s Polarity as Negative (Sink), as shown in Figure 73. Connect the IDAC to the analog terminal,
as shown in Figure 74.

Figure 73 IDAC setting

5. Build the project to create the necessary APIs.

Figure 74 PSoC™ Creator schematic of analog and digital switching scheme

6. Add the following code to the main.c file and build the project again. Program the device with the hex file
generated. Note that in this code, the macros defined in the Pins Component and Cyfitter.h are used.

#define HSIOM_SW_GPIO 0x00

#define HSIOM_AMUX_BUS_A 0x06

int main()

{

 uint32 i = 0u;

 uint32 regVal = 0x00u;

 /* Disable Input Buffer */

 Pin_LED_INP_DIS |= (0x01u << Pin_LED_SHIFT);

 /* Start IDAC */

Application note 70 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 IDAC_Start();

 for(;;)

 {

 /* Get the current value of HSIOM_PORT_SEL0 register */

 regVal = CY_GET_REG32(Pin_LED__0__HSIOM);

 regVal &= ~Pin_LED__0__HSIOM_MASK;

 /* Set LED Pin as GPIO controlled by firmware */

 regVal = CY_SET_REG32(Pin_LED__0__HSIOM, regVal |(HSIOM_SW_GPIO <<

Pin_LED__0__HSIOM_SHIFT));

 /* Set LED Pin to Strong Drive Mode */

 Pin_LED_SetDriveMode(Pin_LED_DM_STRONG);

 for(i= 0u; i < 5u; i++)

 {

 /* Toggle LED with 100-ms delay */

 Pin_LED_Write(0u);

 CyDelay(100u);

 Pin_LED_Write(1u);

 CyDelay(100u);

 }

 /* Get the current value of HSIOM_PORT_SEL0 register */

 regVal = CY_GET_REG32(Pin_LED__0__HSIOM);

 regVal &= ~Pin_LED__0__HSIOM_MASK;

 /* Connect LED Pin to AMUXBUS-A */

 CY_SET_REG32(Pin_LED__0__HSIOM, regVal | (HSIOM_AMUX_BUS_A <<

Pin_LED__0__HSIOM_SHIFT));

 /* Set LED Pin to High Impedance-Analog Drive Mode */

 Pin_LED_SetDriveMode(Pin_LED_DM_ALG_HIZ);

 for(i = 0u; i < 0x7fu; i++)

 {

 /* Adjust LED brightness */

 IDAC_SetValue(i);

 /* Delay 20 ms */

 CyDelay(20u);

 }

Application note 71 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 }

}

The result is an output that alternates control by the firmware and IDAC.

You can easily modify this project to use a hardware connection for the digital output instead of the firmware
control. To do so, in step 3, enable the HW connection in the pin configuration window. You can then wire a

digital resource to the pin. To select this digital resource as the pin output, set the pin as a DSI-controlled GPIO

or a pin-specific digital resource connection, using the HSIOM_PORT_SEL register. See the PSoC™ 4
architecture reference manual for more details.

7.11 Gang pins for more drive/sink current

To increase the total source or sink capabilities of the circuit, GPIO pins can be ganged (shorted together). This
example demonstrates driving a PWM signal with four GPIO pins. Note that the project is applicable only for
PSoC™ 4200, PSoC™ 42xx_BL, PSoC™ 4200M, and PSoC™ 4200L parts.

1. Place and configure a PWM (TCPWM mode) and a Clock component in the schematic.

2. Place a single digital output pins component.

3. Connect the components.

Figure 75 PWM driven to single pin

4. Open the pins configuration dialog and set the number of pins accordingly. This example uses four GPIO
pins. Set the Output Mode to Single-Sync and Out Clock to External.

Note: Synchronize the output to avoid different output signal delays for the different pins.

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all
https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all

Application note 72 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 76 Configure multiple pins in the component

Figure 77 Output mode setting

Application note 73 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Figure 78 Out clock setting

5. (Optional) Set the pin mapping to Contiguous for easier PCB routing.

Figure 79 Enable contiguous mapping

6. Assign the Pins component to physical pins.

7. Place a sync component and connect the signal source (PWM, in this example) to each of the pin terminals
via the sync component. Place another clock component and set its source to high -frequency clock
(HFCLK). Connect the out_clk terminal of the pin component and the Clock terminal of the sync component

to the HFCLK.

Application note 74 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

It is important to select a high-frequency synchronization clock to reduce the difference in pin signal delays.
The sync component is required to synchronize the signal crossing from one clock domain to another. In this

case, the PWM output is going to cross from Clock (1 kHz) domain to HFCLK.

Figure 80 PWM driving four pins

8. Build the project and program the PSoC™ 4 device.

9. The output of the PWM is driven on all four GPIOs. The pins can be shorted externally on the PCB and

connected to the external circuit as needed.

7.12 Control register handling in Deep Sleep

This example demonstrates freezing of GPIO pins to avoid glitches at the output while using the Low-power
modes. As an example, consider a Control register driving a pin. When the device enters the Deep Sleep mode,
all I/Os are frozen without any user intervention. When the device wakes up, all the I/Os are automatically

restored to their original configuration. However, the Control register loses its data in the Deep Sleep mode. It
needs to be restored before the I/Os are unfrozen. Otherwise, there is a glitch at the output. PSoC™ 4 provides

alternate control to freeze and unfreeze the GPIOs using the CySysPmFreezeIo() and
CySysPmUnfreezeIo() API functions. Follow these steps to create the PSoC™ Creator project. Note that this
project is applicable only for PSoC™ 4200, PSoC™ 42xx_BL, PSoC™ 4200M, and PSoC™ 4200L.

1. Place one digital input pin, two digital output pins, a Clock, a Control register, and an interrupt component
in the schematic.

2. Configure the components as shown in Table 10. Connect the components as shown in Figure 81.

Table 10 Component configurations

Component Name Configuration

Digital Input Pin Pin_Button Drive mode: Resistive pull-up

Interrupt: Rising-edge

Digital Output Pin Pin_Clock Default configuration

Digital Output Pin Pin_CtrlReg Default configuration

Clock SYSCLK Source: SYSCLK

Interrupt isr_Buttton Default configuration

Control register Ctrl_Reg Output: 1

Application note 75 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

Component Name Configuration

Initial value: 1

Figure 81 Avoiding glitch while exiting Deep Sleep

3. Add the following code to the main.c file.

/* Set FREEZE_IO to 0x01 to avoid glitch by enabling the GPIO freeze */

/* else set it to 0 */

#define FREEZE_IO 0x01

/* The flag to enter ISR */

uint8 isrFlag = 0u;

CY_ISR(ISR_Handle)

{

 /* Set the flag */

 isrFlag = 1u;

 /* Clear pin interrupt */

 Pin_Button_ClearInterrupt();

}

int main()

{

 /* This variable is used as backup for Control register value */

 uint8 ctrlRegVal = 0u;

 /* Clear the flag */

 isrFlag = 0u;

 /* Start the ISR */

Application note 76 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

 isr_Button_StartEx(ISR_Handle);

 CyGlobalIntEnable;

 /* Set Control register output as high */

 Ctrl_Reg_Write(1u);

 for(;;)

 {

 /* If freeze flag is set */

 if(0u != isrFlag)

 {

 /* Clear isr flag set in GPIO Interrupt Handler */

 isrFlag = 0u;

 /* Rewrite the value */

 Ctrl_Reg_Write(ctrlRegVal);

 #if(FREEZE_IO)

 /* Unfreeze I/O */

 CySysPmUnfreezeIo();

 #endif

 }

 /* Delay 200us */

 CyDelayUs(200u);

 /* Store the value of Control register */

 ctrlRegVal = Ctrl_Reg_Read();

 #if(FREEZE_IO)

 /* Freeze I/O */

 CySysPmFreezeIo();

 #endif

 /* Enter Deep Sleep mode */

 CySysPmDeepSleep();

 }

}

To disable the freeze option, set FREEZE_IO to ‘0’. Build and program the device. When the button is pressed

and released, the glitch can be seen on Pin_CtrlReg as shown in Figure 82. To enable the freeze option, set

Application note 77 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in PSoC™ Creator

FREEZE_IO to ‘1’. Build and program the device. In this case, I/O is frozen and no glitch is observed, as shown in
Figure 83.

Note: Not all ports have dedicated interrupts. For higher ports, a common interrupt signal is generated.

See the "Interrupts" chapter in the respective device PSoC™ 4 architecture reference manual.

SYSCLK

Enter Deep-SleepWakeup

Pin_Button

Pin_CtrlReg

Figure 82 Output signal waveform (no freeze I/O)

Figure 83 Output signal waveform (freeze I/O)

https://www.infineon.com/cms/en/search.html#!term=psoc%204%20technical%20reference%20manual&view=all

Application note 78 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

GPIO tips and tricks in ModusToolbox™ software

8 GPIO tips and tricks in ModusToolbox™ software

This section provides practical examples of how to use GPIO pins when using ModusToolbox™.

8.1 Read an input and write to an output

Reading from an input and writing to an output are done using GPIO PDL functions.

PSoC™ 4 code examples can be accessed in the ModusToolbox™ new application wizard. Code example
CE231741 demonstrates multiple methods of configuring, reading, writing, and generating interrupts with

PSoC™ 4 General Purpose Input/Output (GPIO) pins.

8.2 Pin interrupt

For a code example of a GPIO interrupt project in ModusToolbox™, see the CE230654 - PSoC™ 4: GPIO interrupt
code example. This code example can also be accessed in the ModusToolbox™ new application wizard.

8.3 More code examples

More code examples for PSoC™ 4 developed with ModusToolbox™ that cover a wide array of topics can be
found on the Infineon GitHub or in ModusToolbox™. See the ModusToolbox™ code examples section for more

information on accessing code examples.

https://infineon.github.io/mtb-pdl-cat2/pdl_api_reference_manual/html/group__group__gpio__functions__gpio.html
https://github.com/infineon/mtb-example-psoc4-gpio/
https://github.com/Infineon/mtb-example-psoc4-gpio-interrupt
https://github.com/infineon

Application note 79 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Related application notes

9 Related application notes

• AN79953 – Getting started with PSoC™ 4 MCU

• AN86233 – PSoC™ 4 low-power modes and power reduction techniques

• AN72382 – Using PSoC™ 3 and PSoC™ 5LP GPIO pins

• AN90799 – PSoC™ 4 interrupts

• AN2094 – PSoC™ 1 getting started with GPIO

• AN89610 – PSoC™ Arm® Cortex® code optimization

https://www.infineon.com/AN79953
https://www.infineon.com/AN86233
https://www.infineon.com/AN72382
https://www.infineon.com/AN90799
https://www.infineon.com/AN2094
https://www.infineon.com/AN89610

Application note 80 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ 4 GPIO compared to PSoC™ 1, PSoC™ 3, and PSoC™ 5LP GPIO

10 PSoC™ 4 GPIO compared to PSoC™ 1, PSoC™ 3, and PSoC™ 5LP

GPIO

The PSoC™ 4 GPIO are different from that of PSoC™ 1, PSoC™ 3, and PSoC™ 5LP; see Table 11 for details.

Table 11 PSoC™ 4 GPIO versus PSoC™ 1, PSoC™ 3, and PSoC™ 5LP GPIO

GPIO features PSoC™ 1 PSoC™ 3 PSoC™ 4 PSoC™ 5LP

CAPSENSE™ √ √ √ √

LCD segment drive √ √ √* √

Eight drive modes √ √ √ √

POR state configuration × √ × √

Separate port DR and PS × √ √ √

Input/output synchronization × Bus_clk HFCLK, External* Bus_clk

* Not available in PSoC™ 4000.

Application note 81 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

PSoC™ 4 development boards

11 PSoC™ 4 development boards

You can test the PSoC™ Creator projects provided with this application note on the following Infineon

development boards.

Device Family Development board

PSoC™ 4000 CY8CKIT-040 PSoC™ 4000 Pioneer Development Kit

PSoC™ 4000S / 4100S CY8CKIT-041 PSOC™ 4 S-Seriesm Pioneer Kit

PSoC™ 4100S Plus CY8CKIT-149 PSoC™ 4100S Plus prototyping Kit

PSoC™ 4100PS CY8CKIT-147 PSoC™ 4100PS prototyping Kit

PSoC™ 4200 / PSoC™ 4100 CY8CKIT-042 PSoC™ 4 Pioneer Kit

PSoC™ 42x7_BL CY8CKIT-042-BLE-A PSoC™ 4 Bluetooth® Low Energy Pioneer Kit

PSoC™ 4200M CY8CKIT-044 PSoC™ 4 M-Series Pioneer Kit

PSoC™ 4200L CY8CKIT-046 PSoC™ 4 L-Series Pioneer Kit

PSoC™ 4200DS PSoC™ 4 CY8CKIT-146 4200DS Prototyping Kits

PSoC™ 4700S CY8CKIT-148 PSoC™ 4700S Inductive Sensing Evaluation Kit

https://www.infineon.com/cy8ckit-040
https://www.infineon.com/cy8ckit-041
https://www.infineon.com/cy8ckit-149
https://www.infineon.com/cy8ckit-147
https://www.infineon.com/cy8ckit-042
https://www.infineon.com/cy8ckit-042-ble-a
https://www.infineon.com/cy8ckit-044
https://www.infineon.com/cy8ckit-046
https://www.infineon.com/cy8ckit-146
https://www.infineon.com/cy8ckit-148

Application note 82 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

References

References
The wealth of information available on the Infineon webpage can help you select the right PSoC™ device and,
additionally, integrate the device into your designs efficiently and effectively. The following is an abbreviated
list for PSoC™ 4:

• Overview: PSoC™ portfolio

• Product selectors: PSoC™ 4. In addition, PSoC™ Creator includes a device selection tool.

• Datasheets describe and provide electrical specifications for each family.

• Application notes cover a broad range of topics, from basic to advanced level, and include the following:

− AN88619: PSoC™ 4 MCU hardware design considerations

− AN73854: PSoC™ Creator - Introduction to bootloaders

− AN89610: PSoC™ Arm® Cortex® code optimization

− AN86233: PSoC™ 4 MCU low-power modes and power reduction techniques

− AN57821: Mixed-signal circuit board layout considerations

− AN89056: PSoC™ 4 - IEC 60730 class B and IEC 61508 SIL Safety Software Library

− AN64846: Getting started with CAPSENSE™

− AN85951: PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

• Code examples demonstrate product features and usage

• Reference manuals: Provide detailed descriptions of the architecture and registers in each PSoC™ 4 device

family

• PSoC™ 4 programming specification provides the information necessary to program PSoC™ 4 nonvolatile

memory.

• Development tools:

− CY8CKIT-040, CY8CKIT-042, CY8CKIT-044, CY8CKIT-046, CY8CKIT-042-BLE, CY8CKIT-045S, and CY8CKIT-

041S-MAX PSoC™ 4 Pioneer kits are easy-to-use and inexpensive development platforms. These include

connectors for Arduino-compatible shields and Digilent Pmod daughter cards.

− CY8CKIT-043, CY8CKIT-145-40XX, CY8CKIT-147, and CY8CKIT-149 are very low-cost prototyping platforms
for sampling PSoC™ 4 devices.

− CY8CKIT-040T is a low-cost evaluation kit showing the low power CAPSENSE, low power wake on touch
and liquid tolerant features of the PSoC™ 4000T device.

− The MiniProg3 (CY8CKIT-002) or MiniProg4 (CY8CKIT-005)kit provides an interface for flash programming

and debug.

− Integrated Development Environment (IDE): There are two development platforms that can be used for

application development with PSoC™ 4 – ModusToolbox™ and PSoC™ Creator.

− PSoC™ 4 CAD libraries provide footprint and schematic support for common tools. IBIS models are also
available.

• Training videos are available in Infineon website on a wide range of topics including the PSoC™ MCUs

• Infineon community enables connection with fellow PSoC™ developers around the world, 24 hours a day, 7

days a week, and hosts a dedicated PSoC™ 4 MCU community.

https://www.infineon.com/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-4-32-bit-arm-cortex-m0-mcu/
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Data%20Sheet
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Application%20Notes
https://www.infineon.com/AN88619
https://www.infineon.com/AN73854
https://www.infineon.com/AN89610
https://www.infineon.com/AN86233
https://www.infineon.com/AN57821
https://www.infineon.com/AN89056
https://www.infineon.com/AN64846
https://www.infineon.com/AN85951
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Additional%20Technical%20Information
https://www.infineon.com/dgdl/Infineon-AN84858_PSoC4_Programming_Using_an_External_Microcontroller_(HSSP)-ApplicationNotes-v15_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07350eca5867
https://www.infineon.com/cy8ckit-040
https://www.infineon.com/cy8ckit-042
https://www.infineon.com/cy8ckit-044
https://www.infineon.com/cy8ckit-046
https://www.infineon.com/cy8ckit-042-ble-a
https://www.infineon.com/cy8ckit-045s
https://www.infineon.com/cy8ckit-041s-max
https://www.infineon.com/cy8ckit-041s-max
https://www.infineon.com/cy8ckit-043
https://www.infineon.com/cy8ckit-145-40xx
https://www.infineon.com/cy8ckit-147
https://www.infineon.com/cy8ckit-149
https://www.infineon.com/cy8ckit-040t
https://www.infineon.com/cy8ckit-002
https://www.infineon.com/cy8ckit-005
https://www.infineon.com/modustoolbox
https://www.infineon.com/psoccreator
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=PCB%20Design%20Data
https://www.infineon.com/cms/en/search.html#!view=downloads&term=PSoC%204&doc_group=Simulation%20Models
https://media.infineon.com/
https://media.infineon.com/search/psoc
https://community.infineon.com/
https://community.infineon.com/t5/PSoC-4/bd-p/psoc4

Application note 83 001-86439 Rev.*M

 2024-03-01

PSoC™ 4 MCU - Using GPIO pins

Revision history

Revision history

Document

revision

Date Description of changes

** 2014-03-27 New application note

*A 2014-05-16 Updated for PSoC™ 4000

*B 2015-07-02 Updated for PSoC™ 4 Bluetooth® LE and PSoC™ 4 M-Series

Updated component customizer screenshots

Added information on latency in GPIO update

Added example projects

Added Appendix B – PSoC™ 4 development boards

Updated information on GPIO architecture

*C 2016-01-05 Updated for PSoC™ 4 L-Series

Added Figure 17. PSoC™ 4200L analog routing diagram

Added section 7.4 to introduce Bidirectional Pin

Added an example project “Project04_BidirectionanlPin”

Updated Table 6

Updated the projects to PSoC™ Creator 3.3

*D 2016-03-22 Updated for PSoC™ 4000S, PSoC™ 4100S and PSoC™ analog coprocessor

Added Figure 12

Added Figure 18

Updated Table 6

Updated Appendix B: PSoC™ 4 development boards

*E 2017-04-19 Updated logo and copyright

*F 2017-12-13 Added support to PSoC™ 4100S Plus

Modified Figure 9, Figure 10, and Figure 14.

Added reference to TRM in section 3.4.1, 7.8 and 7.12.

Modified Section 4.

*G 2018-08-27 Updated for PSoC™ 4100PS

*H 2018-09-17 Updated Section 3.1 with respect to 1.8V CMOS

Updated note in section 3.3 on reset provision via pin P1[6] in PSoC™ 4000

Updated Table 4 to include information on wake up from low power modes

Updated components in the associated projects

*I 2018-11-28 Corrected section 4 on the higher voltage limit that the OVT pin can

withstand

*J 2020-10-16 Added in support for ModusToolbox™ and PDL for PSoC™ 4

Added Chapter 6 GPIO pins in ModusToolbox™

Added Chapter 8 GPIO tips and tricks in ModusToolbox™

*K 2020-12-17 Added in references to CE231741 in section 8.1.

*L 2023-02-04 Updated note in Section 3.2.1

*M 2024-03-01 Updated broken links.

Moved section PSoC™ resources to References.

https://github.com/infineon/mtb-example-psoc4-gpio/

 Important notice Warnings

Edition 2024-03-01

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

001-86439 Rev.*M

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 PSoC™ Creator
	2.1 PSoC™ Creator code examples
	2.1.1 PSoC™ Creator help

	2.2 ModusToolbox™ software
	2.2.1 ModusToolbox™ code examples

	2.3 Technical support

	3 GPIO pin basics
	3.1 Physical structure of GPIO pins
	3.2 Pin routing
	3.2.1 Digital routing
	3.2.2 Analog routing

	3.3 Startup and low-power behavior
	3.4 GPIO interrupt
	3.4.1 Limitations in GPIO interrupt

	4 Overvoltage-tolerant (OVT) pins
	5 GPIO pins in PSoC™ Creator
	5.1 Pins Component symbols
	5.2 Pins component customizer
	5.3 Pins component interrupts
	5.4 Manual pin assignments
	5.5 PSoC™ Creator APIs
	5.6 Debug logic on GPIO pins
	5.7 Add multiple GPIO pins as a logical port
	5.8 Represent 0ff-chip components

	6 GPIO pins in ModusToolbox™ software
	6.1 Configuring GPIO pins using ModusToolbox™ Device Configurator
	6.1.1 Using the Device Configurator
	6.1.2 Device Configurator code preview

	6.2 GPIO using the peripheral driver library (PDL)
	6.2.1 GPIO pin initialization-full
	6.2.2 GPIO pin initialization- fast
	6.2.3 GPIO port initialization
	6.2.4 Reading from a GPIO pin
	6.2.5 Writing to a GPIO pin
	6.2.6 GPIO interrupt

	7 GPIO tips and tricks in PSoC™ Creator
	7.1 Toggle an LED
	7.2 Read an input and write to an output
	7.3 Drive an output from a digital logic gate
	7.4 Using a bidirectional pin
	7.5 Set the GPIO input/output synchronization
	7.5.1 GPIO input synchronization
	7.5.2 GPIO output synchronization

	7.6 Toggle GPIOs faster with Data registers
	7.7 Configure GPIO output enable logic
	7.8 Pin interrupt
	7.9 Configure GPIO interrupt settings with firmware
	7.10 Using both analog and digital on a GPIO
	7.11 Gang pins for more drive/sink current
	7.12 Control register handling in Deep Sleep

	8 GPIO tips and tricks in ModusToolbox™ software
	8.1 Read an input and write to an output
	8.2 Pin interrupt
	8.3 More code examples

	9 Related application notes
	10 PSoC™ 4 GPIO compared to PSoC™ 1, PSoC™ 3, and PSoC™ 5LP GPIO
	11 PSoC™ 4 development boards
	References
	Revision history
	Disclaimer

