

 www.cypress.com Document No. 001-82072 Rev. *F 1

AN82072

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard HID Drivers

Author: Robert Murphy

Associated Project: Yes

Associated Part Family: All PSoC 3 and PSoC 5

Software Version: PSoC Creator™ 3.3 and higher

Related Application Notes: For a complete list of the application notes, click here.

AN82072 discusses how to use PSoC
®
 3 and PSoC 5LP devices to transfer generic data across USB using native

OS drivers included with Windows, Mac OS, and Linux. These drivers are part of the Human Interface Device (HID)

class, which is commonly used to support devices such as mice and keyboards, but can also be used for generic

data transfers. A PSoC project and a program for each operating system (with source code) demonstrating generic

data transfers are included with this application note.

Contents

1 Introduction .. 1
2 The HID Class ... 2
3 What is a Generic HID? ... 3
4 Generic HID Report Descriptor 4
5 Supporting 64-Byte HID Reports 9
6 Example Project: Generic Data Transfer via HID 10

6.1 PSoC Creator Configuration 10
6.2 Development Kit Configuration 22
6.3 Developing Desktop Applications 26
6.4 Microsoft Windows Host Application 27
6.5 Mac OS X Host Application 29
6.6 Linux PC Application ... 31

7 Writing Host Applications to Interface with HIDs 35
7.1 Windows Application Code 35
7.2 Mac OS X Application Code 42
7.3 Linux Application Code 49

8 Conclusion ... 55
9 Related Resources .. 55

9.1 Application Notes .. 55
9.2 Programming Language Books 55

Appendix A. (main.c) ... 56
Appendix B. Form1.cs for Windows 62
Appendix C. AppDelegate.c for Mac OS X 69
Appendix D. Linux_GenericHID_CLI.c for Linux 77

1 Introduction

When developing a USB device to communicate with a PC for general data transfer, consider three primary device

classes: Human Interface, Communication, and Vendor Specific. Many developers adopt the Communication Device

class because it creates an easy-to-use COM port interface (which many PSoC users will better recognize as a

USBUART). Others elect to use the Vendor Specific Device class due to its extreme configurability with limitations

based solely on the restrictions of the USB specification and a company's development resources.

The largest downside to Communication and Vendor Specific device types is that frequently, when you attach a

peripheral to a computer, regardless of the operating system, the computer prompts for a device driver in the form of

an INF and/or a SYS file. To support multiple operating systems, the developer must maintain multiple driver files.

This requirement not only adds effort and frustration to the end-user but also development time and cost to the

company that developed the device.

However, the requirement changes if your USB data transfer needs are simple, specifically in an instance where you

do not need to send a lot of data very quickly. In that case, you can use the USB Human Interface Device (HID) class

for simple data transfer. This is the same device class used for keyboards and mice. The advantage to a HID method

is that you can create a simple and reliable way to communicate with a PC, without the need to provide a driver file.

This implementation is multi-platform without adding additional USB descriptor code to the device firmware.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 2

Figure 1. HID and Operating System Synergy

Configuring a PSoC to accomplish a HID transfer is relatively simple if you follow a few instructions. It requires that

you configure a USBFS component, create a HID descriptor that defines two generic multiple byte containers to send

and receive data, and call several USB API functions in PSoC Creator to handle the data. This application note

explains the conceptual framework, describes how to configure PSoC 3 and PSoC 5LP devices as a generic HID,

and demonstrates how one PSoC device can communicate with a computer running Microsoft
®
 Windows

®
, Apple

®

Macintosh
®
, or Linux™.

Note: Some entry-level knowledge of USB and the HID class is recommended prior to reading this application note.

To prepare yourself for the concepts discussed in this document, see the Cypress application notes AN57294 – USB

101: An Introduction to Universal Serial Bus 2.0 and AN57473 – PSoC
®
 3 / PSoC 5LP USB HID Fundamentals.

2 The HID Class

The HID class is probably the most recognized of all the standardized USB classes available. It includes commonly

known devices such as mice, keyboards, and joysticks. In fact, AN57473 and AN58726 - PSoC
®
 3 / PSoC 5LP USB

HID Intermediate (with Keyboard and Composite Device) use these as examples for the HID class on PSoC 3 and

PSoC 5LP devices.

All HID data is transferred across the bus in a report. Reports are essentially containers of information in a structured

format sent and received by the host and device. Typically, in well-known HIDs such as a keyboard or mouse, the

host knows exactly what to do with the data it receives and what kind of data it should send. The host knows this

because the HID Report Descriptor has Usage labels that define specific data in the report as information about

button and switch state, LED status, or cursor position.

The greatest benefit of a HID is that for many years computer operating systems have included a standard class HID

driver to support various HID peripherals directly out of the box. This makes HID a great choice for any USB device

that contains a low data rate and can handle a limited latency. There are few additional considerations when

evaluating HID:

 All data transactions must use either control or interrupt transfers.

 The maximum transfer size is 64 bytes.

 The maximum transfer rate is one for every 1 ms frame, which limits the throughput to 64 KB/s.

 It supports only one Input Endpoint and one Output Endpoint.

 The host periodically polls the HID for data.

If all these constraints are acceptable, then HID may prove a viable option for your next USB design.

http://www.cypress.com/
http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=40103

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 3

3 What is a Generic HID?

Support for HID has been in computer operating systems for many years. Specifically, Windows 98 was the first

operating system to include support for the USB class. Because of this, many manufacturers with devices requiring

USB connectivity are considering HID for their generic data transfer needs. The term "Human Interface Device" does

not imply that you need to have some type of human interface to use this class. In fact, many devices, such as UPSs

and programmable remotes, use the HID class for cross platform support. A HID configured to transfer generic data

is known as a Generic HID. These devices use the integrated HID drivers that operating systems already contain to

send any data that fits into a packet up to 64 bytes.

Custom HIDs are very similar to the traditional vendor-specific devices discussed in AN56377 - PSoC 3 and

PSoC 5LP USB Transfer Types, which require a custom driver. Configuration of a generic HID is identical to the

configuration of a more traditional HID such as a keyboard. The difference is in the HID Report Descriptor. The HID

Report Descriptor has Usage labels, which define the data sent in the reports. However, rather than defining the data

as buttons, switches, or LEDs, the Usage labels define the data as Vendor Specific. This allows us to create a

generic container of data that does not contain a specific function or purpose. Undefined bytes of data are sent in the

HID Reports between the device and host. It is then the responsibility of the host application and device firmware to

know what to do with the data.

With a Generic HID, you can develop a single PSoC USB device that works on all computing platforms without the

need to issue firmware updates later in the project roadmap or to plan for the support in advance. It requires only the

development of a host software application interface for each supported operating system. Another way to

significantly reduce development time is to choose a common programming language and USB library to interface

with the USB device. This reduces development time primarily by creating a common ground that can easily be

ported to the various operating systems.

Figure 2. Examples of HID and Generic HIDs

http://www.cypress.com/
http://www.cypress.com/?rID=39553
http://www.cypress.com/?rID=39553

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 4

4 Generic HID Report Descriptor

A report descriptor describes each piece of data that the device generates and receives as well as what that data

represents. For example, the report descriptor may define items that relate to button status or position information

such as the cursor movement of a mouse. For a Generic HID, the report descriptor creates generic data structures

that are used as containers to transmit data between the device and the host. The content of the data inside the

container is irrelevant. As a result, it is the responsibility of the device and the host application to know what the data

is, where to store it in the report, and determine proper endianness.

Note: With a HID, the configuration of the report descriptor is independent of the host computer operating system.

One Report Descriptor functions across multiple operating systems.

For the example project in this application note, we configure the Report Descriptor to address several requirements.

First, there are two reports: one to send data to the host (Input Report) and another to receive data from the host

(Output Report). Additionally, we send and receive only 8 bytes of data, although it is possible to expand this to 64

bytes. Figure 3 is a conceptualization of the container based on those requirements.

Figure 3. Input and Output Data Container

Input Byte 1

Input Byte 2

Input Byte 4

Input Byte 3

Input Byte 5

Input Report Data

Output Byte 1

Output Byte 2

Output Report Data

Input Byte 6

Input Byte 7

Input Byte 8

Output Byte 3

Output Byte 4

Output Byte 5

Output Byte 6

Output Byte 7

Output Byte 8

For the project, we also define the data sent to and received from the host. Table 1 lists the function and data

requirements of this project. MM

Table 1. Project Functions and Data Requirements

Report Function Bytes

Input Push button status (asserted vs. de-asserted) 1

Input ADC measurement result 4

Output LED control signal (on vs. off) 1

Output PWM duty cycle 1

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 5

Knowing the data size and direction, we can now choose our organization scheme for the containers. Because the

definition is for a generic data container, it does not matter where in the container we place the data. Figure 4 shows

the structure of the data. In Figure 4, the bytes of the report used in the example application are shaded in white while

the unused bytes are shaded in gray. The unused bytes represent data used by neither the PSoC nor the host

application. All the unused areas of the report are available to transfer additional data if you wish to expand the

example application.

Figure 4. Data Format for Input and Output

The next step is to define the HID Report Descriptor used to implement these reports. While the structure used to

format the data is important, note that we do not care about the organization structure when defining the HID Report

Descriptor. Figure 5 shows a HID Report Descriptor that creates 8-byte Input and Output Reports.

Figure 5. Report Descriptor for Generic HID

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 6

Next, we step through the HID Report Descriptor to better understand it. From an initial glance, it appears that most

of the information is just for bi-directional communication. Because our device does not conform to a specific,

predefined HID class, we must create a descriptor for a generic, vendor-defined HID. In previous HID examples such

as those in AN57473 and AN58726, we relied on a Usage Page of Generic Desktop Control whose function is for

applications such as mice, keyboards, joysticks, controllers, and so on. However, for a device whose only purpose is

to move data via the HID class, we use the Vendor Defined Page. We assign a Usage value of „01‟ to indicate a

Vendor Usage label (Figure 6).

Figure 6. Vendor Defined Usage Page

Because this application sends data to a PC host and receives data from the PC, there are two sections of the HID

report descriptor: a portion that configures the Output Report and another portion that configures the Input Report.

Figure 7 outlines the sections responsible for the Output and Input.

Figure 7. Output and Input Sections of Report Descriptor

We start with configuration of the Usage Minimum and Maximum of the report descriptor. AN57473 describes these

parameters as follows:

http://www.cypress.com/
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=39404

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 7

“Usage Minimum and Maximum: Used to link Usage IDs to the data in an array or bitmap. The Usage Minimum

defines the starting point and the Usage Maximum defines the ending point.”

Therefore, we use the Usage Minimum and Usage Maximum to give each element (each byte) in the Input Report

and Output Report a vendor-defined usage (as opposed to a usage that defines the element as a button). To assign

all 8 bytes in each report, we set the Usage Minimum value to 1 and the Usage Maximum value to 8. Figure 8 shows

this configuration of the HID report descriptor. The red outline (upper box) indicates the configuration for the Output

Report, and the blue outline (lower box) indicates the configuration for the Input Report.

Figure 8. Usage Maximum/Minimum Configuration

Next, we configure the Logical Minimum and Maximum for the generic HID. AN57473 describes these parameters as

follows:

“Logical Maximum and Minimum: Determines the limits for reported values in an array or variable. For example, a

mouse that reports position values from 127 to -127 has a logical maximum of 127 and a logical minimum of -127."

Because each element is one byte in length, we define a Logical Minimum of „0x00‟ and a Logical Maximum of „0xFF‟

to allow a full-scale range of 8 bits. Figure 9 shows this configuration of the HID report descriptor. The red outline

indicates the configuration for the Output Report, and the blue outline indicates the configuration for the Input Report.

http://www.cypress.com/
http://www.cypress.com/?rID=39404

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 8

Figure 9. Logical Maximum/Minimum for Output Report

Now, we configure the report descriptor Report Size and Report Count. These two parameters determine the size of

the Input and Output Reports. AN57473 describes these parameters as:

“Report Size: Determines the size in bits of a field in an Input, Output, or Feature item.

“Report Count: Specifies number of data fields for an Input, Output, or Feature item.”

Figure 10 on page 6 shows the Report Size and Report Count for both the Input and the Output Reports. Based on

the definitions, the Report Size defines that each report field is 8 bits in length. To elaborate, if each report was an

array, the Report Size parameter would define each array element as 8 bits in size. Additionally, the Report Count

indicates that there are eight reports (also known as data fields). The result is an Input Report comprised of eight,

8-bit values. The Output Report is the same.

Figure 10. Report Size and Report Count Configuration

The final step for the HID Report Descriptor is to configure the Input and Output Items. Until now, all the parameters

for the Input and Output Reports are the same. It is the Item parameter that distinguishes between input and output

as shown in Figure 11.

http://www.cypress.com/
http://www.cypress.com/?rID=40103

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 9

Figure 11. Input and Output Item Configuration

Normally with non-generic HIDs, we make specific configuration settings to the Input and Output Items. Because this

application only creates containers for data, we can ignore these adjustments. Figure 12 demonstrates the lack of

adjustments to the Input and Output Items. It shows the configuration window as it appears in PSoC Creator. The bit

fields are all set to their default value of 0'b. Any change to these parameters does not affect the overall functionality

of the project.

Figure 12. OUTPUT/INPUT Item Bit Configuration

5 Supporting 64-Byte HID Reports

It only requires four edits to the HID report descriptor in order to expand from 8-byte reports to 64-byte reports.

Change the Usage Maximum and the Report Count items from a value of 8 to a value of 64 for both the Input and

Output portion of the descriptor (Figure 13). Additionally, you need to change the Input and Output Endpoint

Maximum Packet Size to 64 (from its default configuration of 8). We will look at how to accomplish this later.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 10

Figure 13. How to Edit the Report Descriptor for 64-Bytes

6 Example Project: Generic Data Transfer via HID

This example project demonstrates both sides of the application. It demonstrates how to use and create a host

application to communicate between a computer running the Windows, Mac, or Linux operating system. It also

demonstrates how to use and configure the USBFS component in PSoC Creator to use the HID protocol. We transfer

information such as an ADC measurement and the status of a push button to the host via an Input transfer. The host

uses an Output transfer to send data to the PSoC to control the ON/OFF state of an LED along with the duty cycle of

a PWM connected to another LED. We demonstrate the process with the user interfaces for all three operating

systems.

6.1 PSoC Creator Configuration

6.1.1 Create the Project

1. Open PSoC Creator.

2. Create an empty project, selecting either PSoC 3 or PSoC 5LP, and name it MyFirstGenericDevice.

3. Place the following components from the PSoC Creator Component Catalog on to the schematic entry page

(TopDesign.cysch):

 USBFS

 Character LCD

 Delta Sigma ADC

 PWM

 Pin Components

 Analog Pin (Quantity 1)

 Digital Input Pin (Quantity 1)

 Digital Output Pin (Quantity 2)

4. Use the wiring tool to arrange and connect the components as shown in Figure 14.

The gray boxes and annotation components are for clarification and not required for functionality. In addition, we

changed default names of the components. Modify the component names to ensure proper building and functionality

of the PSoC Creator project.

Increase Report

Count to 64

Increase Usage

Maximum to 64

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 11

Figure 14. PSoC Creator Project Schematic Layout

After arranging and placing all the components appropriately, the next step is to configure them so that they function

properly in our application. We start by configuring the USBFS component because it is the core component and

most important component in this design.

6.1.2 Configure the USBFS Component

1. Right-click the USBFS component and select Configuration.

The Configuration dialog box appears displaying the Device Descriptor tab.

2. In the Descriptor tree, click Device Descriptor. Configure options for the Device Attributes as follows and

shown in Figure 15:

 Vendor ID: 0x04B4

 Product ID: 0xE177

 Device Release: 0x100

 Manufacturing String: Cypress Semiconductor

 Product String: PSoC Generic HID Data Transfer

In this descriptor, the only hard requirement is to change the Vendor ID (VID) and Product ID (PID). The VID

used (0x04B4) is a specific Cypress Semiconductor VID. It is acceptable to use it in this example. However, you

must use a VID assigned to your company when you develop an application for production. The PID chosen is

unique to this application. You can optionally change the various strings such as the Product String and the

Manufacturing String.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 12

Figure 15. USBFS Device Descriptor Configuration

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 13

3. In the Descriptor tree, click Configuration Descriptor. Configure options for Configuration Attributes as

follows and shown in Figure 16:

 Configuration String: Example Project

 Max Power (mA): 20

 Device Power: Bus Powered

Figure 16. USBFS Configuration Descriptor Configuration

The key settings in this section are to define the USB device as Bus Powered and to request a power budget of

20 mA from the host. Less than 20 mA for the application is acceptable, but we cannot exceed this requirement.

Because we do not require Remote Wakeup functionality, we disable it.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 14

4. In the Descriptor tree, click Alternate Setting 0. Configure options for Interface Attributes as follows and

shown in Figure 17:

 Interface String: USB Data Interface

 Class: HID

 Subclass: No subclass

Each interface can have multiple Alternate Settings to allow for multiple endpoint configurations. In this

application, we only have one alternate setting (the default one). If we had more, we would configure all the

Alternate Settings via the Interface Descriptor. Here, we specify that the device conforms to the HID class. Notice

that as you change the Class from Undefined to HID, an additional Descriptor appears in the Descriptor Root

tree: the HID Class Descriptor.

Figure 17. USBFS Interface Descriptor Configuration

5. Click the Add Endpoint button. The location of this button is shown in Figure 18.

An additional Endpoint Descriptor appears in the Descriptor tree.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 15

Figure 18. USBFS Adding Additional Endpoint Descriptor

6. Use the following steps to use the HID Descriptor to create a report descriptor. The layout of the HID descriptor

tool is shown in Figure 19.

Figure 19. USBFS HID Descriptor Creation

a. Click the HID Descriptor tab.

b. Click the Add Report button.

c. Select an item from the HID Item List.

Step 1

Step 2

Step 3

Step 4

Step 5

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 16

d. Select a value from the Item Value list.

e. When the Item Value box contains a text field for a particular Item selected, click either the Decimal or

Hexadecimal radio option and enter the desired value in the field.

f. Repeat steps 3 to 5 for each item in the report descriptor until it resembles Figure 20.

Figure 20. USBFS Completed HID Descriptor

7. Click the Device Descriptor tab. In the Descriptor tree, click HID Class Descriptor. Configure options for

Device Attributes as follows and shown in Figure 21:

 Descriptor Type: Report

 Country Code: Not Supported

 HID Report: Generic HID

Because the project uses a Report Descriptor, we set the Descriptor Type to Report. Because the project is not

specific to any country, we set Country Code to Not Supported. Finally, the HID Class Descriptor must point to

the HID Report Descriptor. To create this link, we set the HID Report to the name of our HID Report Descriptor,

which in our example is Generic HID.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 17

Figure 21. USBFS HID Class Descriptor

8. In the Descriptor tree, click the first Endpoint Descriptor entry. Configure options for Endpoint Attributes as

follows and shown in Figure 22:

 Endpoint Number: EP1

 Direction: IN

 Transfer Type: INT

 Interval: 10

 Max Packet Size: 8

The first entry is for the IN Endpoint. It acts as a buffer for data sent to the host. First, we define this endpoint as

Endpoint 1 (EP1). Next, we set the direction of the endpoint as an Input. Because this application is an HID, the

specification requires that we use Interrupt (INT) transfers. We then set the frequency (or Interval) the host polls

the device to a value of 10 ms. Finally, we set our Maximum Packet Size to a value of 8 bytes.

Figure 22. USBFS IN Endpoint Descriptor

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 18

9. Repeat step 8 for the second endpoint to configure it as an OUT endpoint with the following attributes. The

purpose of this endpoint is to act as a buffer for data that is received from the host.

 Endpoint Number: EP2

 Direction: OUT

 Transfer Type: INT

 Interval: 10

 Max Packet Size: 8

10. Click the Apply button, and then click the OK button to close out the configuration wizard.

6.1.3 Configure Other Components

With the USBFS component fully configured, there are still configuration settings to enter for the other components in

the project to finalize the application. We start with the ADC component.

1. From the PSoC Creator schematic, double-click the ADC component.

2. Configure the ADC component as shown in the following screenshot (Figure 23). Click OK to save and close the

configuration for the ADC component.

What we primarily need is to max out the resolution to 20 bits, adjust the sample rate, set the ADC to function in

single-ended mode, and set the input range from VSSA to VDDA.

Figure 23. Delta Sigma ADC Configuration Wizard

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 19

3. Double-click the PWM component. Configure the PWM component as shown in the following screenshot. After

all changes are made, click OK to save and close the configuration for the PWM component.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 20

4. Double-click the input clock to the PWM and configure it so that its frequency is set to 100 kHz as shown in

Figure 24. Click OK to close the configure PWM_Clock dialog box.

Figure 24. PWM Clock Configuration

5. In our application, two of the digital pins, SW_In and LED_2, do not have hardware connections to other

components in the schematic. Therefore, we remove the hardware connection terminals to avoid generating an

error when the project builds. To remove the hardware connector from the pin, double-click the SW_In pin. On

the Type groupbox, clear the HW Connection check box as shown in Figure 25.

6. Since SW_In is a digital input, we must also change the drive mode. Use the Drive Mode drop list to select

Resistive Pull Up as shown in Figure 25. Click OK to close the dialog box.

Figure 25. SW_In Input Pin Configuration

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 21

7. Repeat step 5 for the LED_2 pin.

Note: The Character LCD component does not require any special configuration to ensure proper functionality.

The default configuration for the other digital output pin, LED_1, is also acceptable in this application. Do not

change these components.

6.1.4 Configure Pin and Clocking Resources

With all the PSoC Creator components configured, we now configure the clocking resources and pin placements.

1. In the Workspace Explorer window, locate and double-click MyFirstGenericDevice.cydwr.

The Pin Selection tab appears.

2. Change the pin placement to resemble Figure 26:

This project functions on a CY8CKIT-030/CY8CKIT-050 without any jumper wires. A CY8CKIT-001 requires

minimal jumper wires, as there are not any hardwired traces on the PCB to the various external components

required.

Figure 26. PSoC Project Pin Assignment

3. Click on the Clocks tab. Double-click one of the clocks to open the configuration window. If using a PSoC 3 or

PSoC 5LP device, adjust the clock settings so that the clock GUI appears as follows in Figure 27.

Figure 27. PSoC Clock Configuration

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 22

6.1.5 Place Code in main.c

With the PSoC internal hardware configured, we now configure the device firmware, specifically by adding code to

the main.c file. Locate the code in (main.c) and place it into the main.c file located in PSoC Creator. main.c is in the

Source Files folder in the Workspace Explorer.

With the code added to main.c and all the components configured, you can build the project. You should expect the

process to complete successfully with no errors or warnings. Use a MiniProg3 Programmer to program the hex file

into the PSoC 3 or PSoC 5LP device.

6.2 Development Kit Configuration

The project files included in this application note for PSoC 3 and PSoC 5LP devices work on two development kit

platforms: CY8CKIT-030/050 and CY8CKIT-001. The CY8CKIT-003/014, which are the PSoC 3 and PSoC 5LP First

Touch Kits, do not function with this project as the USB pins do not bond out to a USB connector. The USB connector

present on the boards is used solely to program the device. Table 2 summarizes the kits supported by this document.

Table 2. Supported PSoC 3/PSoC 5LP Kits

Kit Picture Supported

CY8CKIT-003

No

CY8CKIT-001

Yes

CY8CKIT-030/050

Yes

6.2.1 Using the CY8CKIT-030 /050

With CY8CKIT-030/050, the project does not require any external connections except for the USB cable. Verify that

the LCD is in the LCD port (Port 2) on the bottom of the board as shown in Figure 28.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 23

Figure 28. CY8CKIT-030/050 Configuration

Additionally, confirm that the following jumper settings are made to provide the proper power to the PSoC device. See

Figure 29 for additional details.

 J10 - Move jumper to 3.3 V position

 J11 - Move jumper to 3.3 V position

Figure 29. CY8CKIT-030/050 J10 and J11 Jumpers

 J30 - Add jumper to provide power to potentiometer (VR)

6.2.2 Using the CY8CKIT-001

With the CY8CKIT-001, you must complete some wiring on the board prior to testing the application. The following

changes are required for proper functionality. See Figure 30 for additional details:

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 24

 J8 - Move jumper to VBUS position

 SW3 - Move switch to 3.3 V position

 P6[1] - Connect to SW1 using jumper wire

 P6[2] - Connect to LED1 using jumper wire

 P6[3] - Connect to LED2 using jumper wire

 P6[5] - Connect to VR using jumper wire

Figure 30. CY8CKIT-0010 J8 and SW3

After these changes, the CY8CKIT-001 board should look similar to Figure 31. You must also verify that the

Character LCD is in the LCD port socket (Port 2) at the top of the DVK as shown in Figure 31. Additionally, verify that

the processor module is appropriate for evaluation with either PSoC 3 or PSoC 5LP.

Figure 31. CY8CKIT-001 Configuration

With your development kit (DVK) properly configured, attach a USB cable between a host computer and the USB

interface connecter on the DVK board. Note that for the CY8CKIT-030/050 boards, which contain two USB

connectors, the connector closest to the right side of the board is used to program the PSoC. The connector to the

left of that is for USB data communication.

SW3

J8

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 25

Figure 32. USB Connector Identification on CY8CKIT-030/050

USB Connector

for Programming

USB Connector

for Data Transfer

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 26

6.3 Developing Desktop Applications

The next step is to develop a PC application to interface with the device so that the two can communicate. There are

several decisions to make prior to development such as the selection of programming language, IDE, and USB

library.

Programming Language – Selection often depends on the operating system for which you are developing. For

example, Windows favors Microsoft .NET
®
 languages such as C#, C++, and Visual Basic

®
. Mac OS X

®
 favors its

native object-oriented C programming language, Cocoa
®
, but it also includes mainstream support for Java

®
. While

Linux
®
 does not seem to play favorites; C is the more native language.

USB Library – The USB library interfaces with the USB device. A library is a compiled set of function calls that make

it easy to interface with the device. While it is possible to write your own library to interface with the device, often this

is neither necessary nor practical. There are many libraries available. Some have specific programming language

requirements. Table 3 shows a list of some of the more popular USB libraries and the languages they support.

Table 3. List of Commonly Used USB Libraries

USB Library Operating System Support Programming Language Support

CyUSB Windows .NET Languages

LibUSB Linux, Mac, Windows C

IOKit Mac Objective-C

jUSB Windows, Linux Java

PyUSB Linux (PyUSB), Windows (PyWinUSB) Python
®

To simplify things, this application note includes host applications for each operating system. Additionally, the USB

library and programming language are dependent on the operating system. I chose the programming language based

on the most commonly used language for the respective operating system. Additionally, I kept all the languages in the

same C language family, using only C derivatives. Table 4 shows a list of each operating system and the

programming language and library chosen.

Table 4. Application Note Example Project Usage

OS Programming Language USB Library

Windows C# CyUSB

Mac OS X Cocoa (Objective-C) IOKit

Linux C LibUSB

IDE – Recall that each host application, regardless of the operating system, displays two Input variables and controls

two Output variables. With the Input Report, the application receives 20-bit ADC data and displays the decimal value

on the host application. At the PSoC, the LCD can display this value. The GUI on the host also displays the status of

a push button (asserted or de-asserted). With the Output Report, the host application controls the state of an LED (on

or off) on a PSoC development board based on the state of a checkbox or radio button. The application also controls

the Duty Cycle of a PWM; it reads a value from a text field and sends the value to the PSoC where the result appears

on an LED and on a character LCD.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 27

6.4 Microsoft Windows Host Application

I developed the Windows host application using the Microsoft Visual C#
®
 Express IDE. It was written in the C#

programming language using CyUSB as the USB library. The reason to select CyUSB for this project is its simplicity,

its basis off of the Win32 API, and the readily available documentation and support from Cypress on interfacing

CyUSB with Cypress products.

To run the application:

1. Verify that the Windows executable file (Generic HID UI.exe) and the CYUSB.dll are in the same folder.

The files are included in the project files associated with this application note. If the .dll and executable are not in the

same folder, the application fails to launch correctly.

2. Double-click the Windows executable file in the project files.

Figure 33 shows the application when a device is connected and when it is disconnected.

Figure 33. Generic HID Test Interface in Windows

3. By default, the application uses the VID and PID shown in Figure 33 (VID = 0x04B4 and PID = 0xE177). If you

use the USBFS configuration wizard in the PSoC to change the VID and PID, edit the values in the Settings

section to match your PSoC entries. Then click the Set button.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 28

4. To control the PWM duty cycle and the LED state on the PSoC, use the Output section. In the PWM Duty Cycle

text box, type a new value or use the arrows to increase or decrease the value as shown in Figure 34. Click the

Update button to perform the Output transfer. An acceptable range for this field is between 1 and 100. The

change takes effect on LED_3 on CY8CKIT-030/050 kits.

Figure 34. Host Tool Control of LED Duty Cycle

5. Underneath the PWM Duty Cycle field is the on/off control for LED_4 on the CY8CKIT-030. To turn the LED on,

check the LED check box. To turn the LED off, clear the LED check box. Refer to Figure 35 for more details.

Figure 35. Host Tool Control of LED State (On/Off)

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 29

6. There are two variables in the Input section: ADC Value and Switch Status. These are for observation only. You

cannot edit these fields in the host application. By default, the configuration of the ADC in the PSoC project is for

20-bits of resolution. The Switch Status indicator is a bar that is green when SW2 on the CY8CKIT-030/050 is

pressed and is red when the button is released, as shown in Figure 36.

Figure 36. Host Tool Display of Push Button Status

6.5 Mac OS X Host Application

We developed the Mac OS host application using XCode
®
 (Version 4.2.1), which is the integrated development

environment for Apple Mac and iOS
®
 devices. It is written in the Cocoa programming language, an Objective-C based

language, with IOKit as the USB library. Specifically, it uses a subset of IOKit called IOHIDLib.

To run the application:

1. Double-click the application file Generic HID Test Interface.app in the project files.

The file is included in the project files associated with this application note.

Figure 37 shows the application when the device is connected.

Figure 37. Generic HID GUI in Mac OS X

Switch Pressed Switch Not Pressed

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 30

2. By default, the application uses the VID and PID described earlier in this application note (VID = 0x0484 and

PID = 0xE177). If you use the USBFS configuration wizard in the PSoC to change the VID or PID, edit the values

in the Settings section to match your PSoC entries. Then click the Set button.

3. Use the Output section to control the PWM duty cycle and LED state. In the PWM Duty Cycle text box, type a

new value as shown in Figure 38. Click the Send button to perform the Output transfer.

An acceptable range for this field is between 1 and 100. Do not use the % symbol. The change takes effect on

LED_3.

Figure 38. Host Tool Control of LED Duty Cycle

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 31

4. Underneath the PWM Duty Cycle field is the on/off control for LED_4 on the CY8CKIT-030/50. To turn the LED

on, select the On radio option. To turn the LED off, select the Off radio option. Refer to Figure 39 for more

details.

Figure 39. Host Tool Control of LED State (On/Off)

5. There are two variables in the Input section: ADC Value and Switch Status. These are for observation only. You

cannot edit these fields in the host application. Use the PSoC application code to change these values.

By default, the configuration of the ADC in the PSoC project is for 20-bits of resolution. The Switch Status

indicator is a bar that is red when SW2 on the CY8CKIT-030/050 is pressed and is clear when the button is

released, as shown in Figure 40.

Figure 40. Host Tool Display of Push Button Status

6.6 Linux PC Application

For the Linux implementation, rather than an application similar to the Windows and Mac platforms, we use a

Command Line Interface (CLI) to ensure support across multiple Linux distributions (such as Ubuntu
®
, Gentoo™,

Slackware
®
, and so on) and desktop environments (such as Gnome™, KDE

®
, XFCE™, Fluxbox and so on).The

application runs entirely through the Linux terminal. To demonstrate how to stream data using a CLI, the host

application performs a total of ten reads, one every second, and display the results on the terminal window. You can

use the application code to change the interval between reads and the total number of reads.

Switch Pressed Switch Not Pressed

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 32

We developed the application initially using Ubuntu Linux. It is written in the C programming language using LibUSB

as the USB library. You must compile the C code on your machine prior to running the application. Included with this

application note is the C file Linux_GenericHID_CLI.c. See Linux_GenericHID_CLI.c for Linux for print copy of the

code.

1. There are two prerequisites to run the application in Linux: GCC Compiler and LibUSB. These are available via

your distributions package manager. Most distributions install a GCC compiler. On Ubuntu Linux, you can check

for this dependency with the command seen in Code 1. If a GCC compiler is installed, a message appears

similar to that seen in Figure 41.

Code 1. Command to Check for GCC Compiler

$ gcc –version

Figure 41. Checking for GCC Compiler in Linux

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 33

2. If not already on the host computer, you must install LibUSB. There are two methods to install LibUSB: download

a copy directly from the SourceForge project page located at http://sourceforge.net/projects/libusb/ or install

LibUSB via a package manager in the Linux distribution. Using Ubuntu Linux as a reference, install LibUSB with

the command seen in Code 2.

The actual terminal command varies based on the Linux distribution.

Code 2. Command to Install LibUSB

$ sudo apt-get install libusb-1.0-0-dev

Figure 42. Installing LibUSB in Ubuntu Linux

3. Use the Linux terminal to navigate to the Linux_GenericHID_CLI.c file. Compile the host application with the

command as seen in Code 3. All of Code 3 should be placed on a single command line.

If the code compiles correctly, a new executable file appears on the desktop as shown in Figure 43.

Code 3. Command to Compile Host Application

$ gcc Linux_GenericHID_CLI.c -o Linux_GenericHID_CLI –I/usr/local/include/libusb-1.0

–L/usr/local/lib –lusb-1.0

Figure 43. Compiled Linux Application

4. Run the host application from the terminal with the command as seen in Code 4.

Code 4. Command to Run Host Application

$ sudo ./Linux_GenericHID_CLI

http://www.cypress.com/
http://sourceforge.net/projects/libusb/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 34

Figure 44 shows the output of the CLI application. Use the Output Data section where you can view the data

transferred to the PSoC. Use the Input Data section, you can view the data received from the PSoC device. The

display also shows the multiple sequential reads which demonstrate the ability to stream continuous data.

Figure 44. Output from CLI Host Application in Linux

Note: If you prefer an IDE for the code and application development, I recommend Eclipse, a free and open-source

code editor. To add support for C, you can download an add-on from Eclipse and set up the dependencies for

LibUSB. It takes some extra effort; you can find out how to accomplish this by doing some Internet research.

http://www.cypress.com/
http://www.eclipse.org/
http://www.eclipse.org/downloads/?osType=linux

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 35

7 Writing Host Applications to Interface with HIDs

While this application note includes the source code for the PC applications on multiple operating systems, this

application note assumes a general understanding of the specific IDEs used along with their respective programming

languages. If you need information on how to use any of the IDEs or how to learn C, C#, or Objective-C, please

reference other resources. A list of books at the end of this application can assist you in learning these languages.

The next few sections describe the key components of the source code for the developed GUIs to interface with USB.

For simplification, we exclude portions of the code to handle button presses and to manipulate the data. Refer to the

sample code in the Appendices and accompanying projects for more details. The projects also include detailed

source code comments.

7.1 Windows Application Code

The CYUSB.dll makes interfacing with a PSoC HID very simple and requires minimal code from a developer‟s stand-

point. The developer just needs to place a few lines of code into a C# application project to create an interface to a

USB HID. Be aware that if opening the Windows application code provided with this application note, the files are

intended to be used with Windows Visual C# Express 2010.

7.1.1 Add the CyUSB Reference

For the application to function properly, you must add the CyUSB.dll reference to your project. You can find

CyUSB.dll either in the project files associated with this application note or in the Cypress SuiteUSB

(http://www.cypress.com/?rID=34870).

1. In the Solution Explorer of Microsoft Visual C# Express, right-click the References folder, and select Add

Reference.

2. Click the Browse tab, and then navigate to the location of the CyUSB.dll file. If you choose to use the DLL

included with the application note, it is in the ../Host Applications/Windows Application folder of the associated

project files.

3. Click to select CyUSB.dll, and then click OK.

The CyUSB reference appears in the Solution Explorer as shown in Figure 45.

Figure 45. CyUSB Reference in Solution Explorer

http://www.cypress.com/
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 36

4. To easily access the Cypress USB library, add the CyUSB namespace. The line of code “using CyUSB”, as

shown in Figure 46, directs the compiler to look for functions in the CyUSB DLL without inclusion of the library

name in each call. To add this, right click on the Form1.cs file in the Solution Explorer, click on View Code, and

add the namespace at the top of the file.

Figure 46. CyUSB in C# Application Code

7.1.2 Ini t ia l ize the USB HID Appl icat ion

After adding a reference to the CyUSB.dll to the project, you can initialize the USB HID application.

1. Define four variables with the commands as seen in Code 5:

 Vendor ID (integer)

 Product ID (integer)

 usbDevices (variable) – An instance of the USBDeviceList class and includes a dynamic list of USB devices

that are accessible via the HID class library

 myHidDevice – An instance of the CyHidDevice class used as a handle for devices attached to a HID driver

Code 5. Initialization Variables for Windows

Example (C#)

namespace WindowsFormsApplication1

{

 public partial class

GenericHidForm : Form

 {

 // Pointer to list of USB

devices

 USBDeviceList usbDevices =

null;

 // Handle of USB device

 CyHidDevice myHidDevice =

null;

 // Cypress Vendor ID (VID)

 int VID = 0x04B4;

 // Example Project Product

ID (PID)

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 37

2. Initialize the host application with the commands as seen

in Code 6. The code completes the following tasks:

 InitializeComponent() – A function call

generated by the Visual C# tool that loads the GUI

 usbDevices.DeviceAttached – A class instance

that populates with the list of all active USB devices that conform to the standard HID class

 EventHandler(usbDevices_DeviceAttached) – Creates an event handler for USB devices attached to

the host

 EventHandler(usbDevices_DeviceRemoved) – Creates an event handler for USB devices removed

from the host

 GetDevice – A function call that checks the Vendor ID and Product ID of attached devices to determine

whether or not they belong with the host application.

 int PID = 0xE177;

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 38

Code 6. Application Initialization Code (C#)

public GenericHidForm()

{

 //Initialize the main GUI

 InitializeComponent();

 // Create a list of CYUSB devices for this application

 usbDevices = new USBDeviceList(CyConst.DEVICES_HID);

 //Add event handler for device attachment

 usbDevices.DeviceAttached += new EventHandler(usbDevices_DeviceAttached);

 //Add event handler for device removal

 usbDevices.DeviceRemoved += new EventHandler(usbDevices_DeviceRemoved);

 //Connect to the USB device

 GetDevice();

}

7.1.3 Get the HID

The GetDevice function as shown in Code 7 looks through the usbDevices list for a device that matches the VID and

PID defined previously in Code 5. If it finds a matching device, then myHidDevice contains the handle to that specific

USB device, rather than a value of NULL. Be aware that the VID and PID are not the only way to identify a USB

device. Once myHidDevice is no longer set to NULL, we then turn on the background timer and create a text label

Status to say “Connected”. The purpose of the timer is to create an interrupt where the firmware can periodically poll

the device for data (typically every 10 ms based on timer configuration).

Code 7. Code to Acquire USB Device (C#)

public void GetDevice()

{

 //Look for device matching VID/PID

 myHidDevice = usbDevices[Vendor_ID, Product_ID]

 as CyHidDevice;

 if (myHidDevice != null)

 {

 InputTimer.Enabled = true;

 Status.Text = “Connected”;

 Status.ForeColor = Color.Green; }

 else

 {

 Status.Text = “Disconnected”;

 Status.ForeColor = Color.Red;

 InputTimer.Enabled = false;

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 39

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 40

7.1.4 Device Removal and At tachment Event Handlers

Code 8 shows the code for the event handler when a device is attached. The code checks to see if there is a device

already attached. If there already is an attached device, then nothing needs to be done and the function exits.

Otherwise, the system calls the GetDevice function to determine if the newly attached device matches the defined

VID and PID.

Code 8. Event Handler for Device Attachment (C#)

//Handler for Device Attach

void usbDevices_DeviceAttached(object sender, EventArgs e)

{

 if (myHidDevice == null)

 {

 GetDevice(); // Process device status

 }

}

Code 9 shows the code for the event handler when a device is removed. The code checks to determine whether or

not the device removal affects the application. This happens when the device removed is the application device. The

code casts the parameter “e” from EventArgs in the function prototype to USBEventArgs class and saves it as

usbEvent. After that, it queries the PID and VID for the device removed. If it determines that the removed device was

the application device, then the application no longer has a connection to the USB device and must take the

appropriate actions. The application does not close. Instead, it disables the timer, updates the GUI to say

“Disconnected” (by calling GetDevice), and resets the device handle to NULL.

Code 9. Event Handler for Device Removal (C#)

//Handler for Device Removal

void usbDevices_DeviceRemoved(object sender, EventArgs e)

{

 USBEventArgs usbEvent = e as USBEventArgs;

// Check that it was the expected device that was removed

if ((usbEvent.ProductID == PID) && (usbEvent.VendorID == VID))

 {

 // Disable interrupts for polling HID

 InputTimer.Enabled = false;

 // Set HID pointer to NULL

 myHidDevice = null;

 // Process device status

 GetDevice();

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 41

7.1.5 Send and Receive Data

The host application must request data from the device as it is not sent automatically. This application uses a timer to

trigger the host to send a request to the device for new data as shown in Code 10. The timer code performs a

ReadInput that requests an Input Report from the device. After an Input transfer, the bytes transferred from the

device are stored in the Inputs.DataBuf. DataBuf is a member of CyHidReport and serves as the data buffer for HID

transfers. RptByteLen defines the length of DataBuf in bytes. RptByteLen reflects the ReportByteLength defined by

the device report descriptor and is located in the XxxxReportByteLength field of the HIDP_CAPS structure reported

for the Features, Inputs, or Outputs.

Code 10. InputTimer Code (Input Request) (C#)

ReadInput uses the Win32 ReadFile() function to read RptByteLen bytes from the device. The endpoint for this

transaction is device dependent. It is also important to note that for most transfer operations DataBuf[0] contains the

ReportID for the transfer. Report data begins at DataBuf[1]. This applies to Input, Output, and Feature Reports. Code

11 shows an example of how to request an Input report and then store it in a one-byte variable called myVariable.

Code 11. Code to Request Data from Device (Input) (C#)

myHidDevice.ReadInput();

myVariable = myHidDevice.Inputs.DataBuf[1];

Sending data to the device is as simple as reading data from the device as shown in Code 12. Prior to transferring

data to the device, pre-load the desired bytes into Outputs.DataBuf, and then call WriteOutput. WriteOutput uses the

Win32 WriteFile() function to write RptByteLen bytes to the device. The endpoint for this transaction is device

dependent.

Code 12. Code to Send Data to Device (Output) (C#)

//Load data into Output Buffer

myHidDevice.Outputs.DataBuf[1] = 50;

//Function call to send data to device

myHidDevice.WriteOutput();

7.1.6 Closing Thoughts for Windows

Now you should have the general idea of how to interface a PSoC with a Windows application using C# and the

CyUSB driver. Be aware that the application code listed for Windows left out some of the code to handle the GUI

functionality such as button presses, text fields, and so on. For more information, please refer to the accompanying

C# project or the code shown in Form1.cs for Windows. To edit the project files, you must have a copy of Microsoft

Visual C# Express
®
.

private void InputTimer_Tick(object sender, EventArgs e)

{

 if (myHidDevice != null)

 {

 // Disable timer

 InputTimer.Enabled = false;

 //Query the device for new data

 myHidDevice.ReadInput();

 InputTimer.Enabled = true;

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 42

7.2 Mac OS X Application Code

Configuring an Xcode project to properly interface with an HID is a multiple step process, and it is a bit more involved

than with Windows. Upon loading the Xcode application, there are a few key steps required to interface with a HID.

Be aware that if opening the OS X application code provided with this application note, the files are intended to be

used with Xcode Version 4.3, which requires OS X 10.7 (Codename: Lion).

7.2.1 Add Toolki t L ibrary and Conf igure HID Manager

For the application to function properly, it must include a reference to the IO Toolkit, which will act as our USB library

for Mac OS X.

1. Presumably, we need to follow some simple steps here to open and begin configuring a new project in Xcode. To

start, open Xcode, and create a new Cocoa project for Mac OS X as shown in Figure 47.

Figure 47. Creating a New Cocoa Application

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 43

2. When the new project is created, a project configuration window appears. Verify that the Summary tab (located

on the top of Xcode) is selected. In the Linked Framework and Libraries section, click the + button and locate

IOKit.framework. Upon selecting the proper framework file, the Xcode window looks similar to Figure 48 below.

Figure 48. Linking Apple Framework to New Application

3. Once the IOKit framework has been added, the library needs to be included in the project file. To add this, click

on in AppDelegate.m of the Xcode project. The following code snippet, shown in Code 13, is an excerpt from the

application‟s .m file. Notice the inclusion of IOHIDLib from the IOKit library.

Code 13. Include Files for OS X Application

#import "AppDelegate.h"

#include <studio.h>

#include <CoreFoundation/CoreFoundation.h>

#include <IOKit/hid/IOHIDLib.h>

4. Setup a reference to the HID Manager with the commands in Code 14. Mac OS X includes the HID Manager to

support the following:

 HID Manager API – Provides definitions and functions an application can use to interface with HID class

devices

 Apple HID Drivers

 In-Kernel Infrastructure – The base classes, kernel-user space memory mapping and queuing code, and the

HID parser

For application code to interface a HID with the Mac OS X, the only important consideration is the HID Manager

API. The rest is handled behind the scenes by the Mac Kernel.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 44

Code 14. HID Manager Reference Setup Code (Obj-C)

/**** Setup Manager and schedule it with main run loop ****/

//Define an IOHID Manager Reference

IOHIDManagerRef tIOHIDManagerRef;

//Create the HID Manager reference

tIOHIDManagerRef = IOHIDManagerCreate(kCFAllocatorDefault, kIOHIDOptionsTypeNone);

//Schedule a HID manager with current run loop.

IOHIDManagerScheduleWithRunLoop(tIOHIDManagerRef, CFRunLoopGetCurrent(),

kCFRunLoopDefaultMode);

//Open the HID manager reference and return status

tIOReturn = IOHIDManagerOpen(tIOHIDManagerRef, kIOHIDOptionsTypeNone);

5. The matching dictionary restricts the access of the HID Manager to only certain devices. In this case, we restrict

access to only devices with a certain VID and PID. You can define a single matching dictionary or an array of

dictionaries to add a more intense filtering process. Set up a matching dictionary with the commands shown in

Code 15.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 45

Code 15. Device Matching Dictionary Setup (Obj-C)

// Variable Definition for VID/PID

unsigned long long VendorID = 0x04B4;

unsigned long long ProductID = 0xE177;

//Create a dictionary

myDictionary = [NSMutableDictionary dictionary];

//Configure dictionary with matching criteria for Product ID

[myDictionary setObject:[NSNumber numberWithLong:ProductID]forKey:[NSString

stringWithCString:kIOHIDProductIDKey encoding:NSUTF8StringEncoding]];

//Configure dictionary with matching criteria for Vendor ID

[myDictionary setObject:[NSNumber numberWithLong:VendorID]forKey:[NSString

stringWithCString:kIOHIDVendorIDKey encoding:NSUTF8StringEncoding]];

//Set matching criteria (Vendor ID & Product ID)

IOHIDManagerSetDeviceMatching(tIOHIDManagerRef, (CFMutableDictionaryRef) myDictionary);

Code 16. Define Buffer Pointers and Size (Obj-C)

//Pointers to Input and Output Buffers in Memory

char *inputBuffer;

char *outputBuffer;

size_t bufferSize = 8;

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 46

7.2.2 Get the HID

With the matching criteria defined, we can acquire the HID with the commands shown in Code 17.

Code 17. Acquire Matching Device (Obj-C)

/******** Acquire the Device *********/

//Determine devices that match current matching criteria

NSSet * allDevices = [((NSSet *) IOHIDManagerCopyDevices(tIOHIDManagerRef))autorelease];

NSArray *deviceRefs = [allDevices allObjects];

deviceRef = ([deviceRefs count])? (IOHIDDeviceRef)[deviceRefs objectAtIndex:0]:nil;

Note: This code references the first device it finds that matches the criteria in the DeviceRefs array. It ignores

subsequent devices with the same matching criteria (VID and PID). There is a way to handle the attachment of

multiple devices that match the criteria. However, discussion of this condition is outside the scope of this application

note.

1. Use the IOHIDManagerCopyDevices function to determine what devices attached to the host match the current

matching criteria.

2. Create an array list of all the devices attached that match the criteria.

3. If a device matches the criteria, set the deviceRef reference to that device.

4. The last line of code acts as an IF/ELSE statement to evaluate if any devices are detected with the matching

criteria. If so, then deviceRef points to the first element in the array. If no devices match the criteria, then

deviceRef points to nil (equivalent to null).

7.2.3 Create Buffers for Data

Now, we set up buffers for the Input and Output data.

1. Create a pointer to the buffers as shown in Code 16.

2. Use the malloc() function to allocate memory for buffers with the commands shown in Code 18.

The malloc() function allocates bytes of memory and returns a pointer to the allocated memory. The parameter

passed defines the size of the memory allocated.

Code 18. Allocate Input and Output Buffer Size (Obj-C)

/***** Allocate Memory Space for Buffers *****/

inputBuffer = malloc(bufferSize);

outputBuffer = malloc(bufferSize);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 47

7.2.4 Set Up Appl icat ion to Receive Data

Code 19 shows how to register a routine that is called when the HID receives an Input Report. This routine takes the

form of a callback function. Because this function will continuously be called automatically, we only need to call this

particular function shown below once in order to properly register it as a callback function. To aid in understanding

what the variables being passed in the callback register function, refer to Table 5.

Code 19. HID Get Report Callback Setup (Obj-C)

/** Configure Callback for Input Reports **/

IOHIDDeviceRegisterInputReportCallback(deviceRef,(uint8_t *)inputBuffer, bufferSize,

MyInputCallback, NULL);

Table 5. IOHIDDeviceRegisterInputReportCallback()

Parameter Name Purpose

1
st
 deviceRef The HID reference

2
nd

 inputBuffer The address of where to store the Input report

3
rd
 MyInputCallback The callback routine

4
th
 NULL A user context parameter passed to the callback routine

After the host receives data from an Input report, you can reference the data in the array inputBuffer[7..0] to use it.

The manipulation of the data is typically handled in the callback function.

7.2.5 Set Up Appl icat ion to Send Data

Code 20 shows how to configure for an Output report. We use a synchronous IOHIDDeviceSetReport() function. You

can also use the asynchronous IOHIDDeviceSetValueWithCallback(). To aid in the understanding of the variables

being passed in the SetReport function, refer to Table 6.\

Code 20. Sending a HID Report Code Example (Obj-C)

/***** Send the HID Report (Output) *****/

IOHIDDeviceSetReport(deviceRef, kIOHIDReportTypeOutput, 0, (uint8_t*)outputBuffer,

bufferSize);

Table 6. IOHIDDeviceSetReport()

Parameter Name Purpose

1
st
 deviceRef The HID reference

2
nd

 kIOHIDReportTypeOutput The IOHIDReportType object for the report

3
rd
 0 The Report ID

4
th
 outputBuffer The address of the Output report buffer

5
th
 bufferSize The size of the report being sent

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 48

7.2.6 Device Removal and At tachment Cal lbacks

While the initialization code works well for a device plugged in during the application launch, we must now implement

code to accommodate an HID attached or removed while the application runs.

1. Declare two functions called when one a device is attached or removed with the commands in Code 21. This can

be little tricky as it requires a mixture of C code with Objective-C. The first step is to create callback functions in C

that in turn call class functions in Objective-C.

Code 21. C Callback Function for Attach and Removal Events (Obj-C)

/* Function to execute initHID upon device matching */

static void Handle_DeviceMatchingCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef)

{

 /* Call the Class Method */

 [(AppDelegate *) inContext deviceMatchingResult:inResult sender:inSender

device:inIOHIDDeviceRef];

}

static void Handle_DeviceRemovalCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef)

{

 /* Call the Class Method */

 [(AppDelegate *) inContext deviceRemovalResult:inResult sender:inSender

device:inIOHIDDeviceRef];

}

2. Call the Objective-C class function that handles the appropriate action for attachment or removal with the

commands in Code 22.

Code 22. Objective-C Function for Attach and Removal Events

/* Function to execute initHID upon device matching */

- (void) deviceMatchingResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef

{

 [self initHID];

}

/* Function to execute termHID upon device removal */

- (void) deviceRemovalResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef

{

 [self termHID];

}

3. The Objective-C function initHID executes the code required to acquire a HID based on the matching criteria.

The function termHID executes the code required to clear deviceRef when a formally connected and matched

HID is removed. Once those functions are defined, the next step is to register the callbacks with the commands

in Code 23.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 49

Code 23. Register Callbacks for Attachment and Removal (Obj-C)

IOHIDManagerRegisterDeviceMatchingCallback(tIOHIDManagerRef, Handle_DeviceMatchingCallback,

self);

IOHIDManagerRegisterDeviceRemovalCallback(tIOHIDManagerRef, Handle_DeviceRemovalCallback, self);

7.2.7 Add and Respond to a Timer Event

The final step to develop a USB HID OS X application is to configure and use a timer. A timer in a USB application on

the host serves multiple purposes. Commonly, a timer periodically polls for available data on the HID and then reads

data from an endpoint if present. We adopted this method in our Windows application. Since we used a callback for

the input data in the Mac OS application, we use the timer to periodically update the GUI with input data. Our

example is set to refresh every 10 ms. Configure the timer with the commands in Code 24.

Code 24.Setup Timer Event Code Example (Obj-C)

//Start Timer

timer = [NSTimer scheduledTimerWithTimeInterval:0.01

 target:self

 selector:@selector(idleTimer

 userInfo:nil

 repeats:YES];

We must also define a function for the timer to jump to every time it ticks. Since we configured the timer to jump to

itself, we used the following function (idleTimer). We can see this function in Code 25. Inside the function, the various

GUI items that are to be updated, such as text fields and progress bars, would be placed here. Another key

configuration is to set “repeats” to “YES” which will ensure that this timer is continuous and not just a single shot.

Code 25. Function for Timer Ticks (Obj-C)

/**** Function for Timer Ticks ****/

- (void) idleTimer: (NSTimer *) inTimer

{

 //Place code to update GUI

}

7.2.8 Closing Thoughts for Mac OS X

For more information on the implementation on Mac OS X, including the source code, please see AppDelegate.c for

Mac OS X or take a look at the Xcode project included with the project files. You can also find additional resources in

Xcode such as documentation and example projects maintained by Apple

7.3 Linux Application Code

Unlike the Windows and Mac host applications, the Linux host application does not use an IDE. We use a standard

text editor to implement the C. When the time comes to build, compile, and run the application, we rely on the Linux

terminal.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 50

7.3.1 USB HID Appl icat ion In i t ia l izat ion

1. Prior to writing the main application code, we must add four includes to the C file. While stdio.h and stdlib.h are

standard for many commonly used C functions, the libusb.h is essential to this application. Access to the libusb

API makes this application function. The application uses time.h to add a delay between the multiple Input

transfers. Code 26 shows the include files used in the Linux application.

Code 26. Include Files for LibUSB Application

#include <stdio.h>

#include <stdlib.h>

#include <libusb.h>

#include <time.h>

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 51

2. Declare four constant values as shown in Code 27:

 INTERFACE_NUMBER – The interface number of the device we want to communicate with. On a composite

device, this can be one of a range of numbers. Since we only have a single interface on this device, the

Interface Number is 0.

 TIMEOUT_MS – The amount of time in milliseconds (after performing an Output or Input request) the

application waits for a response before giving up and moving on.

 NUMBER_INPUT_TRANSACTIONS – The number of times to perform an Input transaction before releasing

the device.

 TIME_DELAY – The delay interval in seconds between each Input request.

Code 27.Global Variables for Linux Application RECEIVING

static 51ons tint INTERFACE_NUMBER = 0;

static 51ons tint TIMEOUT_MS = 5000;

static 51ons tint NUMBER_INPUT_ITERATIONS = 10;

static 51ons tint TIME_DELAY = 1;

3. Next we need to define a few more key variables for our application. First, we need to define the VID and PID for

the application. These variables have been preset and configured as constants, rather than asking for a VID and

PID each time someone wants to run the application. We also need to define a device handle and a couple

status flags to be used in the application as shown in Code 28.

Code 28. Local Variables for Linux Application RECEIVING

/* Initialize and Set Default Vendor ID and Product ID */

const int VID = 0x04B4;

const int PID = 0xE177;

struct libusb_device_handle *devh = NULL;

int device_ready = 0;

int result = 0;

4. Use the Vendor ID and Product ID to initialize the device handler to a specific device. It returns a handle for the

first matching device found. After verifying that the device handler is no longer NULL, detach the device from the

kernel. Once the device is free from the kernel, the final step is to claim the device for our application. The

commands to complete this series of tasks is shown in Code 29.

Code 29. Acquiring Device for Linux Application RECEIVING

result = libusb_init(NULL);

devh = libusb_open_device_with_vid_pid(NULL, VID, PID);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 52

if (devh != NULL)

{

 libusb_detach_kernel_driver(devh, 0);

 result = libusb_claim_interface(devh, 0);

 if(result != 0)

 {

 device_ready = 1;

 }

}

5. Further in the main loop, check to see if LibUSB successfully acquired the device. If so, call the function

Perform_Input_and_Output_Transfers and pass the device handler so the application knows which device to

communicate with. After executing the function, release the interface. This sequence is shown in Code 30.

Code 30. Performing Input/Output Transfers RECEIVING

if(device_ready)

{

 //Send and receive data

 Perform_Input_and_Output_Transfers(devh);

 // Finished using the device.

 Libusb_release_interface(devh, 0);

}

6. Table 7 describes additional variables required by the Perform_Input_Output_Transfers() function. We must also

define a buffer to store the data prior to sending it to the device and after receiving it from the device. Finally,

there are variables to declare for status flags and to store information on the button status and ADC result.

Define these variables and buffers with the commands in Code 31.

Table 7. Variables Required by Perform_Input_and_Output_Transfers()

Variable Purpose Value

INTERRUPT_IN_ENDPOINT Address of the Input endpoint 0x81

INTERRUPT_OUT_ENDPOINT Address of the Output endpoint 0x02

MAX_INTERRUPT_IN_TRANSFER_SIZE Maximum packet size for data received 8 (bytes)

MAX_INTERRUPT_OUT_TRANSFER_SIZE Maximum packet size for data sent 8 (bytes)

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 53

Code 31. Linux Code for Variable Declarations of Transfers

// Assign Endpoint Addresses

static 53ons tint INTERRUPT_IN_ENDPOINT = 0x81;

static 53ons tint INTERRUPT_OUT_ENDPOINT = 0x02;

// With firmware support, transfers can be > the endpoint‟s max packet size.

Static 53ons tint MAX_INTERRUPT_IN_TRANSFER_SIZE = 8;

static 53ons tint MAX_INTERRUPT_OUT_TRANSFER_SIZE = 8;

unsigned char data_in[MAX_INTERRUPT_IN_TRANSFER_SIZE];

unsigned char data_out[MAX_INTERRUPT_OUT_TRANSFER_SIZE];

int bytes_transferred;

int result = 0;

int ADC_Result = 0;

int Switch_Status = 0

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 54

In Code 32, we load the OUT buffer based on code received from the CLI. With the buffer loaded, call

libusb_interrupt_transfer() to perform an output transaction based on the parameters passed. The buffer stores the

data in the data_out[] array prior to transfer.

Code 32. LibUSB Code for Out Transfer

data_out[0]= LED_State;

data_out[1] = PWM_DutyCycle;

result = libusb_interrupt_transfer(devh,

 INTERRUPT_OUT_ENDPOINT,

 data_out,

 MAX_INTERRUPT_OUT_TRANSFER_SIZE,

 &bytes_transferred,

 TIMEOUT_MS);

7. In Code 33, we can see a similar use of the libusb_interrupt_transfer function to perform an IN transaction. With

the buffer loaded, call libusb_interupt_transfer() to perform an input transaction based on the parameters passed.

The buffer stores the data after the transfer in the data_in[] array.

Code 33. LibUSB Code for In Transfer

result = libusb_interrupt_transfer(devh,

 INTERRUPT_IN_ENDPOINT,

 data_in,

 MAX_INTERRUPT_OUT_TRANSFER_SIZE,

 &bytes_transferred,

 TIMEOUT_MS);

Both the IN and OUT transfers use the function libusb_interrupt_transfer. The function prototype for

libusb_interrupt_tranfser is shown in Code 34. In this function, the parameters are as follows:

 dev_handle – A handle for the device to communicate with.

 endpoint – The address for a valid endpoint to communicate with.

 data - Data buffer for either input or output data.

 length – In the case of an Output, the number of bytes to transfer in the data buffer. In the case of an Input, the

number of bytes to receive in the data buffer.

 transfer – Output location for the number of bytes that were actually transferred.

 timeout – timeout in milliseconds that the function should wait before giving up due to no response being

received.

Code 34. LibUSB Code for In Transfer

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 55

8 Conclusion

This application note discusses the benefits of using the HID class for general data communication. After reading this

application note, you will be more comfortable using the various operating applications with the PSoC device. Users

who want to explore building upon the designs provided can adjust the maximum packet size to send more data.

Another option is to build upon the host applications provided and the available space in the Input and Output reports

to send data to perform additional functionality.

9 Related Resources

9.1 Application Notes

 AN57294 – USB 101: An Introduction to Universal Serial Bus 2.0

 AN57473 – PSoC
®
 3 / PSoC 5LP USB HID Fundamentals with Mouse and Joystick

 AN58726 – PSoC
®

3 / PSoC 5LP USB HID Intermediate (with Keyboard and Composite Device)

 AN56377 – PSoC
®

3 / PSoC 5LP USB Transfer Types

 AN023 – USB Compliance Testing Overview

 AN14557 – Introduction to CYUSB.dll Based Application Development Using C#

 AN61744 – Introduction to CYAPI.lib Based Application Development Using VC++

9.2 Programming Language Books

 C#:

 Head First C#: A Learners Guide to Real-World Programming with Visual C# and .NET

 C# Unleashed

 Visual C# 2012 How to Program

 C:

 The C Programming Language

 Objective-C:

 Cocoa Programming for Mac OS X

 Objective C Programming: The Big Nerd Ranch Guide

About the Author
Name: Robert Murphy

Title: Sr. Staff Systems Engineer

Background: Robert Murphy graduated from Purdue University with a Bachelor Degree in Electrical Engineering

Technology

http://www.cypress.com/
http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=39553
http://www.cypress.com/documentation/application-notes-obsolete/an023-usb-compliance-testing-overview
http://www.cypress.com/documentation/application-notes-obsolete/an14557-introduction-cyusbdll-based-application-development
http://www.cypress.com/documentation/application-notes-obsolete/an61744-introduction-cyapilib-based-application-development
http://www.amazon.com/Head-First-2E-Real-World-Programming/dp/1449380344/ref=sr_1_1?ie=UTF8&qid=1342824823&sr=8-1&keywords=Head+First+C%23
http://www.amazon.com/C-4-0-Unleashed-Bart-Smet/dp/0672330792/ref=sr_1_1?s=books&ie=UTF8&qid=1342824882&sr=1-1&keywords=C%23+Unleashed
http://www.amazon.com/Visual-2012-Program-Edition-Deitel/dp/0133379337/ref=dp_ob_title_bk
http://www.amazon.com/Programming-Language-2nd-Brian-Kernighan/dp/0131103628/ref=sr_1_1?s=books&ie=UTF8&qid=1342824976&sr=1-1&keywords=The+C+Programming+Language
http://www.amazon.com/Cocoa-Programming-Mac-OS-4th/dp/0321774086/ref=sr_1_1?s=books&ie=UTF8&qid=1342825040&sr=1-1&keywords=Cocoa+Programming+for+Mac+OS+X
http://www.amazon.com/Objective-C-Programming-Ranch-Guide-Guides/dp/0321706285/ref=sr_1_1?s=books&ie=UTF8&qid=1342825069&sr=1-1&keywords=objective+c+programming+for+mac+os+x

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 56

Appendix A. (main.c)

#include <device.h>

#include <stdio.h>

/* Declare defines for constant variables */

#define DEVICE_ID 0

#define IN_ENDPOINT 0x01

#define OUT_ENDPOINT 0x02

#define MAX_NUM_BYTES 8

#define UnassignedAddress 0

/* Array Positioning for IN Data */

#define Button_Status_Pos 0

#define ADC_Pos_1 1

#define ADC_Pos_2 2

#define ADC_Pos_3 3

#define ADC_Pos_4 4

/* Array Positioning for OUT Data */

#define LED_State_Pos 0

#define PWM_DC_Pos 1

/* Input and Output Data Buffers */

uint8 IN_Data_Buffer[8]; /* [0] = Button Status, [1..4] = ADC Result, [5..7] = Unused */

uint8 OUT_Data_Buffer[8]; /* [0] = LED State, [1] = PWM Duty Cycle, [2..7] = Unused */

/* Display buffer for Character LCD */

char ADC_Display_Data[10];

char PWM_Duty_Display_Data[5];

/* Various Application Variables */

int32 ADC_Result;

int8 PWM_DutyCycle;

uint8 OUT_COUNT;

uint16 LCD_Update_Timer = 0x00;

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 57

/* Function Prototypes */

void Process_EP2 (void);

void Process_EP1 (void);

void Update_LCD (void);

void main (void)

{

 /*Enable Global Interrupts */

 CYGlobalIntEnable;

 /*Initalize ADC */

 ADC_Start();

 ADC_StartConvert();

 /*Initalize LCD and place static text */

 LCD_Start();

 LCD_Position(0,0);

 LCD_PrintString("PSoC Generic HID");

 LCD_Position(1,0);

 LCD_PrintString("AD:");

 LCD_Position(1,11);

 LCD_PrintString("D:");

 /*Initalize PWM */

 PWM_Start();

 PWM_WriteCompare(10);

 /*Initalize LED Off */

 LED_2_Write(1);

 /* Start USBFS Operation for the DEVICE_ID and with 5V operation */

 USBFS_Start(0, USBFS_DWR_VDDD_OPERATION);

 /* Ensure device is configured before running code */

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 58

 while(USBFS_bGetConfiguration() == 0x00)

 {

 /* Waiting for device to be configured */

 }

 for(;;)

 {

 /* Prepare the push button and ADC data to be sent to the host */

 Process_EP1();

 /*Check to see if the IN Endpoint is empty. If so, load it with Input data to be tranfered */

 if(USBFS_GetEPState(IN_ENDPOINT) == USBFS_IN_BUFFER_EMPTY)

 {

 /* Load data located in IN_Data_Buffer and load it into the IN endpoint */

 USBFS_LoadEP(IN_ENDPOINT, IN_Data_Buffer, MAX_NUM_BYTES);

 /* Enable the OUT endpoint to recieve data */

 USBFS_EnableOutEP(OUT_ENDPOINT);

 }

 /* Check to see if the OUT Endpoint is full from a recieved transaction. */

 if(USBFS_GetEPState(OUT_ENDPOINT) == USBFS_OUT_BUFFER_FULL)

 {

 /* Get the number of bytes recieved */

 OUT_COUNT = USBFS_GetEPCount(OUT_ENDPOINT);

 /* Read the OUT endpoint and store data in OUT_Data_Buffer */

 USBFS_ReadOutEP(OUT_ENDPOINT, OUT_Data_Buffer, OUT_COUNT);

 /* Re-enable OUT endpoint */

 USBFS_EnableOutEP(OUT_ENDPOINT);

 }

 /* Process the data recieved from the host */

 Process_EP2();

 /* Impliment a perodic delay for updating the LCD */

 if(LCD_Update_Timer >= 0x08FF)

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 59

 {

 /* Call function to update Character LCD with ADC and PWM Duty Cycle value */

 Update_LCD();

 }

 /* Increment LCD Timer */

 LCD_Update_Timer ++;

 }

}

/**

* NAME: Process_EP2

*

* DESCRIPTION: Function to process the OUT data (data sent from the PC).

* This data includes the state of LED_2 (On or Off) and the duty cycle

* of the PWM attached to LED_1.

*

***/

void Process_EP2 (void)

{

 /* Update PWM Compare Value */

 if((OUT_Data_Buffer[PWM_DC_Pos] > 0) && (OUT_Data_Buffer[PWM_DC_Pos] <= 100))

 {

 PWM_DutyCycle = OUT_Data_Buffer[PWM_DC_Pos];

 PWM_WriteCompare(PWM_DutyCycle);

 }

 /* Check to see if LED_2 Should be on */

 if(OUT_Data_Buffer[LED_State_Pos] != 0)

 {

 LED_2_Write(1);

 }

 else

 {

 LED_2_Write(0);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 60

 }

}

/**

* NAME: Process_EP1

*

* DESCRIPTION: Function to process the IN data (data sent to the PC).

* This data includes the value read from the DelSig ADC and the current

* status of push button connected to SW_In.

*

***/

void Process_EP1 (void)

{

 /* Check Status of Switch 1 */

 if(SW_In_Read() != 0)

 {

 IN_Data_Buffer[Button_Status_Pos] = 0x00;

 }

 else

 {

 IN_Data_Buffer[Button_Status_Pos] = 0xff;

 }

 /* Check if ADC data is ready */

 if(ADC_IsEndConversion(ADC_RETURN_STATUS) != 0x00)

 {

 /* Read ADC Sample */

 ADC_Result = ADC_GetResult32();

 /* Load Bits 7-0 of ADC_Value into the Input Buffer */

 IN_Data_Buffer[ADC_Pos_1] = (int8) 0x000000FF & (ADC_Result >> 24);

 /* Load Bits 15-8 of ADC_Value into the Input Buffer */

 IN_Data_Buffer[ADC_Pos_2] = (int8) 0x000000FF & (ADC_Result >> 16);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 61

 /* Load Bits 23-16 of ADC_Value into the Input Buffer */

 IN_Data_Buffer[ADC_Pos_3] = (int8) 0x000000FF & (ADC_Result >> 8);

 /* Load Bits 31-24 of ADC_Value into the Input Buffer */

 IN_Data_Buffer[ADC_Pos_4] = (int8) 0x000000FF & ADC_Result;

 }

}

/**

* NAME: Update_LCD

*

* DESCRIPTION: Function periodically update the Character LCD with the

* ADC value and PWM duty cycle.

*

***/

void Update_LCD (void)

{

 /* Convert ADC Value to CHAR and display on Character LCD */

 sprintf(ADC_Display_Data, "%-7ld", ADC_Result);

 LCD_Position(1,3);

 LCD_PrintString(ADC_Display_Data);

 /* Convert PWM Duty Cycle to CHAR and display on Character LCD */

 sprintf(PWM_Duty_Display_Data, "%-3d", (int16)PWM_ReadCompare());

 LCD_Position(1,13);

 LCD_PrintString(PWM_Duty_Display_Data);

 /* Reset LCD Update Timer */

 LCD_Update_Timer = 0x00;

}

/* [] END OF FILE */

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 62

Appendix B. Form1.cs for Windows

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using CyUSB;

namespace WindowsFormsApplication1

{

 public partial class GenericHidForm : Form

 {

 // *********************** START OF PROGRAM MAIN ****************************** //

 //Constant variables for locations in Input and Output Data Arrays

 //Constants fro Input Buffer Array

 const uint Switch_Status_Position = 1;

 const uint ADC_Byte1_Position = 2;

 const uint ADC_Byte2_Position = 3;

 const uint ADC_Byte3_Position = 4;

 const uint ADC_Byte4_Position = 5;

 //Constants fro Output Buffer Array

 const uint LED_State_Position = 1;

 const uint PWM_DutyCycle_Position = 2;

 USBDeviceList usbDevices = null; // Pointer to list of USB devices

 CyHidDevice myHidDevice = null; // Handle of USB device

 uint AdcCounts_1 = 0; // READ: ADC count from PSOC, ADC_Result[7..0]

 uint AdcCounts_2 = 0; // READ: ADC count from PSOC, ADC_Result[15..8]

 uint AdcCounts_3 = 0; // READ: ADC count from PSOC, ADC_Result[23..16]

 uint AdcCounts_4 = 0; // READ: ADC count from PSOC, ADC_Result[31..24]

 uint DutyCycle = 0; // WRITE: Duty cycle to set PSOC PWM

 int VID = 0x04B4; // Cypress Vendor ID

 int PID = 0xE177; // Example Project Product ID

 NumericUpDown DutyCycleUpDown; // Handler for PWM up/down control

 /**

 * NAME: GenericHIDForm

 *

 * DESCRIPTION: Main function called initially upon the starting of the

 * application. Used to un-initialized variables, the GUI application, register

 * the event handlers, and check for a connected device.

 *

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 63

 ***/

 public GenericHidForm()

 {

 //Initialize the main GUI

 InitializeComponent();

 //Set initial values

 DutyCycleUpDown = new NumericUpDown();

 DutyCycleUpDown.Value = 10;

 DutyCycleUpDown.Minimum = 0;

 DutyCycleUpDown.Maximum = 100;

 //Callback to set numeric updown box value

 DutyCycleUpDown.ValueChanged += new EventHandler(DutyCycleUpDown_OnValueChanged);

 // Create a list of CYUSB devices for this application

 usbDevices = new USBDeviceList(CyConst.DEVICES_HID);

 //Add event handlers for device attachment and device removal

 usbDevices.DeviceAttached += new EventHandler(usbDevices_DeviceAttached);

 usbDevices.DeviceRemoved += new EventHandler(usbDevices_DeviceRemoved);

 //Connect to the USB device

 GetDevice();

 }

 /**

 * NAME: DutyCycleUpDown_OnValueChanged

 *

 * DESCRIPTION: Event Handler for the numeric up/down text field. This

 * function is called when the value in the next field is updated with

 * the arrows so that the value is the text field can be properly updated

 * to reflect the change.

 *

 ***/

 private void DutyCycleUpDown_OnValueChanged(object sender, EventArgs e)

 {

 Console.WriteLine(DutyCycleUpDown.Value);

 }

 /**

 * NAME: usbDevices_DeviceRemoved

 *

 * DESCRIPTION: Event handler for the removal of a USB device. When the removal

 * of a USB device is detected, this function will be called which will check to

 * see if the device removed was the device we were using. If so, then reset

 * device handler (myHidDevice), disable the timer, and update the GUI.

 *

 ***/

 public void usbDevices_DeviceRemoved(object sender, EventArgs e)

 {

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 64

 USBEventArgs usbEvent = e as USBEventArgs;

 if ((usbEvent.ProductID == PID) && (usbEvent.VendorID == VID))

 {

 InputTimer.Enabled = false; // Disable interrupts for polling HID

 myHidDevice = null;

 GetDevice(); // Process device status

 }

 }

 /**

 * NAME: usbDevices_DeviceAttached

 *

 * DESCRIPTION: Event handler for the attachment of a USB device. The function

 * first checks to see if a matching device is already connected by seeing

 * if the handler (myHidDevice) is null. If no device is previously attached,

 * the function will call GetDevice to check and see if a matching device was

 * attached.

 *

 ***/

 public void usbDevices_DeviceAttached(object sender, EventArgs e)

 {

 if (myHidDevice == null)

 {

 GetDevice(); // Process device status

 }

 }

 /**

 * NAME: GetDevice

 *

 * DESCRIPTION: Function checks to see if a matching USB device is attached

 * based on the VID and PID provided in the application. When a device is

 * found, it is assigned a handler (myHidDevice) and the GUI is updated to

 * reflect the connection. Additionally, if the device is not connected,

 * the function will update the GUI to reflect the disconnection.

 *

 ***/

 public void GetDevice()

 {

 //Look for device matching VID/PID

 myHidDevice = usbDevices[VID, PID] as CyHidDevice;

 if (myHidDevice != null) //Check to see if device is already connected

 {

 Status.Text = “Connected”;

 Status.ForeColor = Color.Green;

 SwStatus.Enabled = true;

 InputTimer.Enabled = true; //Enable background timer

 Update_LED(); //Initialize the LED based on current GUI configuration

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 65

 Update_PWMDutyCycle(); //Initialize the PWM based on current GUI configuration

 }

 else

 {

 Status.Text = “Disconnected”;

 Status.ForeColor = Color.Red;

 }

 }

 /**

 * NAME: Update_PWMDutyCycle

 *

 * DESCRIPTION: Function used to update the state of the PWM Duty Cycle

 * on the PSoC device end by reading the value on the PWM Duty Cycle text field

 * (DutyTextBox), applying the change to the Output Data Buffer, and

 * writing the OUT report.

 *

 ***/

 public void Update_PWMDutyCycle()

 {

 //Update the Output Buffer for PWM based on selected checkbox setting

 DutyCycle = Convert.ToUInt32(DutyTextBox.Text);

 myHidDevice.Outputs.DataBuf[PWM_DutyCycle_Position] = (byte)DutyCycle;

 myHidDevice.WriteOutput();

 }

 /**

 * NAME: Update_LED

 *

 * DESCRIPTION: Function used to update the state of the LED on the PSoC

 * device end by checking the current status of the LED check box,

 * applying the change to the Output Data Buffer, and writing the OUT report.

 *

 ***/

 public void Update_LED()

 {

 //Update the Output Buffer for LED based on selected checkbox setting

 if (LED_State_CheckBox.Checked)

 {

 myHidDevice.Outputs.DataBuf[LED_State_Position] = 0xFF;

 }

 else

 {

 myHidDevice.Outputs.DataBuf[LED_State_Position] = 0x00;

 }

 myHidDevice.WriteOutput();

 }

 /**

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 66

 * NAME: InputTimer_Tick

 *

 * DESCRIPTION: Function called by Timer (InputTimer) which is used to poll

 * for input data every 10ms. Function will check contents of Input Data

 * and change display of switch status and update the ADC Value field.

 *

 ***/

 private void InputTimer_Tick(object sender, EventArgs e)

 {

 if (myHidDevice != null)

 {

// Disable timer so we don‟t get another interrupt until we service this interrupt

 InputTimer.Enabled = false;

// This CyUSB.DLL method uses the Win32 ReadFile() function to read IN data transferred

to our application from the device

 myHidDevice.ReadInput();

// Check to see if Push Button is pressed. Update GUI based on results

 if (myHidDevice.Inputs.DataBuf[Switch_Status_Position] != 0x00)

 {

 SwStatus.BackColor = Color.Lime;

 SwStatus.Text = “ON”;

 }

 else

 {

 SwStatus.BackColor = Color.Red;

 SwStatus.Text = “OFF”;

 }

 //Unload the ADC Data from the Input Buffer to application variables

 AdcCounts_1 = myHidDevice.Inputs.DataBuf[ADC_Byte1_Position];

 AdcCounts_2 = myHidDevice.Inputs.DataBuf[ADC_Byte2_Position];

 AdcCounts_3 = myHidDevice.Inputs.DataBuf[ADC_Byte3_Position];

 AdcCounts_4 = myHidDevice.Inputs.DataBuf[ADC_Byte4_Position];

 //Compose the overall ADC value by shifting and adding the multiple ADC bytes

 String AdcValue = ((AdcCounts_1 << 24) + (AdcCounts_2 << 16) + (AdcCounts_3 << 8) +

AdcCounts_4).ToString();

 AdcValueBox.Text = AdcValue;

 //Re-enable the timer

 InputTimer.Enabled = true;

 }

 }

 /**

 * NAME: Update_PWM_Click

 *

 * DESCRIPTION: When “Update” button is pressed to update PWM value, function

 * checks to see if a matching USB device is currently connected. If so, function

 * calls another function to update the PWM Duty Cycle on the device.

 *

 ***/

 private void Update_PWM_Click(object sender, EventArgs e)

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 67

 {

 //Respond to user pressing “Update” button. Make sure device is connected before hand.

 If (myHidDevice != null)

 {

 Update_PWMDutyCycle();

 }

 }

 /**

 * NAME: Set_VidPid_Click

 *

 * DESCRIPTION: Updates the applications Vendor ID and Product ID based on

 * user input when the “Set” button is clicked. This will cause the default VID

 * and PID of 0x04B4 and 0xE177 to be overwritten. The function will then

 * call GetDevice() to check for matching USB device.

 *

 ***/

 private void Set_VidPid_Click(object sender, EventArgs e)

 {

 //Respond to update of VID and PID value by pressing the “Set” button

 VID = Convert.ToInt32(VidTextBox.Text, 16);

 PID = Convert.ToInt32(PidTextBox.Text, 16);

 GetDevice();

 }

 /**

 * NAME: LED_State_CheckBox_CheckedChanged

 *

 * DESCRIPTION: When state of the LED State check box is changed, function

 * checks to see if a matching USB device is currently connected. If so, function

 * calls another function to update the LED state on the device.

 *

 ***/

 private void LED_State_CheckBox_CheckedChanged(object sender, EventArgs e)

 {

 //Respond to change in LED checkbox state. Make sure device is connected before hand.

 If (myHidDevice != null)

 {

 Update_LED();

 }

 }

 private void VidTextBox_MaskInputRejected(object sender, MaskInputRejectedEventArgs e)

 {

 }

 private void AdcValueBox_TextChanged(object sender, EventArgs e)

 {

 }

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 68

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 69

Appendix C. AppDelegate.c for Mac OS X

#import “AppDelegate.h”

#include <stdio.h>

#include <CoreFoundation/CoreFoundation.h>

#include <IOKit/hid/IOHIDLib.h>

/**/

/* Function Prototype */

/***/

@interface AppDelegate (private)

- (void) initHID;

- (void) termHID;

- (void) idleTimer: (NSTimer *) inTimer;

- (void) deviceMatchingResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef;

- (void) deviceRemovalResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef;

@end

static void MyInputCallback (void *context, IOReturn result, void *sender,

IOHIDReportType type, uint32_t reportID, uint8_t *report, CFIndex reportLength);

static void Handle_DeviceMatchingCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef);

static void Handle_DeviceRemovalCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef);

@implementation AppDelegate

@synthesize window;

/**/

/* Variables for Application */

/***/

uint8 AdcCounts_1;

uint8 AdcCounts_2;

uint8 AdcCounts_3;

uint8 AdcCounts_4;

double AdcValue;

uint8 SwStatus;

uint8 LedStatus = 0x01;

double PWM_Duty = 10;

unsigned long long VendorID = 0x04B4;

unsigned long long ProductID = 0xE177;

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 70

size_t bufferSize = 8;

char *inputBuffer;

char *outputBuffer;

IOHIDDeviceRef deviceRef;

IOHIDManagerRef tIOHIDManagerRef;

NSMutableDictionary *myDictionary;

uint8 FirstTimeConfig = 0x00;

/**/

/* Functions */

/***/

- (void)dealloc

{

 [super dealloc];

}

- (void)applicationDidFinishLaunchingNSNotification *)aNotification

{

 // Insert code here to initialize your application

 [self initHID];

}

//Clean up application before closing

-(void)applicationWillTerminateNSNotification *)notification

{

 IOHIDManagerRegisterDeviceMatchingCallback(tIOHIDManagerRef, NULL, NULL);

 IOHIDManagerRegisterDeviceRemovalCallback(tIOHIDManagerRef, NULL, NULL);

 IOHIDManagerUnscheduleFromRunLoop(tIOHIDManagerRef, CFRunLoopGetCurrent(),

kCFRunLoopDefaultMode);

 if (myDictionary)

 {

 CFRelease(myDictionary);

 myDictionary = NULL;

 }

 [timer release];

}

//Timer Function. Executed each timer tick

- (void) idleTimer: (NSTimer *) inTimer

{

 //Update the GUI with INPUT data

 if(SwStatus != 0x00)

 {

 [SwStatusField setIntValue:1];

 }

 else

 {

 [SwStatusField setIntValue:0];

 }

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 71

 [ADCValueField setDoubleValue:AdcValue];

}

/**/

/* Function to Initialize the HID */

/***/

-(void) initHID

{

 IOReturn tIOReturn;

 //Only run this section if it is the first time the application has been opened

 if(FirstTimeConfig == 0x00)

 {

 /************* Setup Manager and schedule it with main run loop *********/

 //Create the HID Manager reference

 tIOHIDManagerRef = IOHIDManagerCreate(kCFAllocatorDefault,

kIOHIDOptionsTypeNone);

 //Schedule a HID manager with current run loop.

 IOHIDManagerScheduleWithRunLoop(tIOHIDManagerRef, CFRunLoopGetCurrent(),

kCFRunLoopDefaultMode);

 //Open the HID manager reference

 tIOReturn = IOHIDManagerOpen(tIOHIDManagerRef, kIOHIDOptionsTypeNone);

 /************ Configure Matching Criteria for Device Detection *************/

 //Create a dictionary

 myDictionary = [NSMutableDictionary dictionary];

 //Configure dictionary with matching criteria for Product ID

 [myDictionary setObject:[NSNumber numberWithLong:ProductID]forKey:[NSString

stringWithCString:kIOHIDProductIDKey encoding:NSUTF8StringEncoding]];

 //Configure dictionary with matching criteria for Vendor ID

 [myDictionary setObject:[NSNumber numberWithLong:VendorID]forKey:[NSString

stringWithCString:kIOHIDVendorIDKey encoding:NSUTF8StringEncoding]];

 //Set matching criteria (Vendor ID and Product ID)

 IOHIDManagerSetDeviceMatching(tIOHIDManagerRef, (CFMutableDictionaryRef)

myDictionary);

 //Set flag indicating the completion of initial configuration

 FirstTimeConfig = 0xFF;

 }

 /************* Acquire the Device ****************/

 //Determine the devices attached that meet the matching criteria

 NSSet * allDevices = [((NSSet

*)IOHIDManagerCopyDevices(tIOHIDManagerRef))autorelease];

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 72

 //Create an array list of matching devices

 NSArray *deviceRefs = [allDevices allObjects];

 //Set our device reference/handler to the first device detected that meets the

matching criteria

 deviceRef = ([deviceRefs count])? (IOHIDDeviceRef)[deviceRefs

objectAtIndex:0]:nil;

 //If device is now connected

 if(deviceRef != 0x00)

 {

 //Update GUI to reflect connected device

 [StatusLabel setTextColor:[NSColor greenColor]];

 [StatusLabel setStringValue:@”Connected”];

 [PWMDutyField setIntValue:PWM_Duty];

 //Allocate RAM for Input and Output buffer

 inputBuffer = malloc(bufferSize);

 outputBuffer = malloc(bufferSize);

 //Register callback routine for when an Input report is received

 IOHIDDeviceRegisterInputReportCallback(deviceRef, (uint8_t *)inputBuffer,

bufferSize, MyInputCallback, NULL);

 //Load initial Output data

 outputBuffer[0] = LedStatus;

 outputBuffer[1] = PWM_Duty;

 //Perform an Output transaction to the PSoC device

 IOHIDDeviceSetReport(deviceRef, kIOHIDReportTypeOutput, 0,

(uint8_t*)outputBuffer, bufferSize);

 }

 else

 {

 //Update GUI to reflect a device disconnect

 [StatusLabel setTextColor:[NSColor redColor]];

 [StatusLabel setStringValue:@”Disconnected”];

 }

 //Start Timer

 timer = [NSTimer scheduledTimerWithTimeInterval:0.01

 target:self

 selector:@selector(idleTimer

 userInfo:nil

 repeats:YES];

 //Register callback routines for when a device is attached or removed from Mac

 IOHIDManagerRegisterDeviceMatchingCallback(tIOHIDManagerRef,

Handle_DeviceMatchingCallback, self);

 IOHIDManagerRegisterDeviceRemovalCallback(tIOHIDManagerRef,

Handle_DeviceRemovalCallback, self);

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 73

- (void) termHID

{

 //Check to make sure a device was connected

 if (tIOHIDManagerRef)

 {

 //Update GUI to reflect disconnect

 [StatusLabel setTextColor:[NSColor redColor]];

 [StatusLabel setStringValue:@”Disconnected”];

 //Disable Timer

 [timer invalidate];

 timer = nil;

 //Reset device handler to nill

 deviceRef = nil;

 }

}

/**/

/* Function to execute initHID upon device matching */

/***/

- (void) deviceMatchingResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef

{

 [self initHID];

}//deviceRemovalResul

/**/

/* Function to execute initHID upon device removal */

/**/

 - (void) deviceRemovalResult: (IOReturn) inResult sender: (void *) inSender device:

(IOHIDDeviceRef) inIOHIDDeviceRef

{

 [self termHID];

}//deviceRemovalResult

/**/

/* Function to control LED ON/OFF */

/* Tiggered by change in radio button state */

/**/

- (IBAction)LED_Changeid)sender

{

 //Error catch to make sure device is connected before proceeding

 require(deviceRef, Oops);

 //Update Output buffer based on selected radio button (On or Off)

 switch ([[sender selectedCell] tag])

 {

 case 1:

 LedStatus = 0x01;

 outputBuffer[0] = LedStatus;

 break;

 case 0:

 LedStatus = 0x00;

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 74

 outputBuffer[0] = LedStatus;

 break;

 default:

 break;

 }

 //Perform Output transaction

 IOHIDDeviceSetReport(deviceRef, kIOHIDReportTypeOutput, 0, (uint8_t*)outputBuffer,

bufferSize);

//If no matching device is detected, do nothing.

Oops:;

}

/**/

/* Function to Update device VID and PID Matching */

/* Tiggered by pressing the “Set” button */

/**/

-(IBAction)USB_Updateid)sender

{

 //Read the string from the text field and convert to hex value.

 //Update Product ID from text field

 NSString *myPID = [PIDField stringValue];

 NSScanner* myPidScanner = [NSScanner scannerWithString:myPID];

 [myPidScanner scanHexLongLong: &ProductID];

 //Update Vendor ID from text field

 NSString *myVID = [VIDField stringValue];

 NSScanner* myVidScanner = [NSScanner scannerWithString:myVID];

 [myVidScanner scanHexLongLong: &VendorID];

 //Create a new matching 74ons tint74 for the new VID and PID values

 myDictionary = [NSMutableDictionary dictionary];

 [myDictionary setObject:[NSNumber numberWithLong:ProductID]forKey:[NSString

stringWithCString:kIOHIDProductIDKey encoding:NSUTF8StringEncoding]];

 [myDictionary setObject:[NSNumber numberWithLong:VendorID]forKey:[NSString

stringWithCString:kIOHIDVendorIDKey encoding:NSUTF8StringEncoding]];

 //Set single matching criteria

 IOHIDManagerSetDeviceMatching(tIOHIDManagerRef, (CFMutableDictionaryRef)

myDictionary);

 //Initalize new USB device

 [self initHID];

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 75

/***/

/* Function to update PWM duty cycle */

/* Triggered by pressing “Update” button */

/***/

-(IBAction)PWM_Updateid)sender

{

 //Error check to make sure device is connected before proceeding

 require(deviceRef, Oops);

 //Convert String in textfield to Double

 PWM_Duty = [PWMDutyField doubleValue];

 //Check to see if an out of range value receiving.

 //If so, change to closest acceptable value.

 If(PWM_Duty > 100)

 {

 PWM_Duty = 100;

 [PWMDutyField setIntValue:PWM_Duty];

 }

 if(PWM_Duty < 1)

 {

 PWM_Duty = 1;

 [PWMDutyField setIntValue:PWM_Duty];

 }

 //Update Output Buffer with PWM value

 outputBuffer[1] = PWM_Duty;

 //Perform Output transfer

 IOHIDDeviceSetReport(deviceRef, kIOHIDReportTypeOutput, 0, (uint8_t*)outputBuffer,

bufferSize);

//If no matching device is detected, do nothing.

Oops:;

}

@end

/**/

/* Call Back Functions */

/***/

/***/

/* Function to handle Input Reports */

/* Triggered by receiving an Input Report */

/***/

static void MyInputCallback (void *context, IOReturn result, void *sender,

IOHIDReportType type, uint32_t reportID, uint8_t *report, CFIndex reportLength)

{

 //Unload the inputBuffer into specific variables

 SwStatus = inputBuffer[0];

 AdcCounts_1 = inputBuffer[1];

 AdcCounts_2 = inputBuffer[2];

 AdcCounts_3 = inputBuffer[3];

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 76

 AdcCounts_4 = inputBuffer[4];

 //Reconstruct the ADC value from 4 8-bit values

 AdcValue = (AdcCounts_1 << 24) + (AdcCounts_2 << 16) + (AdcCounts_3 << 8) +

AdcCounts_4;

}

//Handle for the Device Matching Callback

static void Handle_DeviceMatchingCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef)

{

 /* Call the Class Method */

 [(AppDelegate *) inContext deviceMatchingResult:inResult sender:inSender

device:inIOHIDDeviceRef];

} // Handle_DeviceMatchingCallback

//Handle for the Device Removed Callback

static void Handle_DeviceRemovalCallback(void *inContext, IOReturn inResult, void

*inSender, IOHIDDeviceRef inIOHIDDeviceRef)

{

 /* Call the Class Method */

 [(AppDelegate *) inContext deviceRemovalResult:inResult sender:inSender

device:inIOHIDDeviceRef];

} // Handle_DeviceRemovalCallback

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 77

Appendix D. Linux_GenericHID_CLI.c for Linux

/* USB HID App for Linux */

#include <stdio.h>

#include <stdlib.h>

#include <libusb-1.0/libusb.h>

#include <time.h>

#include <unistd.h>

/* Array positioning for IN Data */

#define Button_Status_Pos 0

#define ADC_Pos_1 1

#define ADC_Pos_2 2

#define ADC_Pos_3 3

#define ADC_Pos_4 4

/* Array positioning for OUT Data */

#define LED_State_Pos 0

#define PWM_DC_Pos 1

/* Miscellaneous Result Defines */

#define PASS 0

#define FAIL -1

/* Miscellaneous variables for timing and interface referencing */

static const int INTERFACE_NUMBER = 0;

static const int TIMEOUT_MS = 5000;

static const int NUMBER_INPUT_ITERATIONS = 10;

static const int TIME_DELAY = 1;

/* Initialize and Set Default Vendor ID (VID) and Product ID (PID) */

static const int VID = 0x04B4;

static const int PID = 0xE177;

/* Endpoint Addresses defined in Endpoint Descriptor */

static const int IN_ENDPOINT_ADDRESS = 0x81;

static const int OUT_ENDPOINT_ADDRESS = 0x02;

/* Maximum Input and Output Transfer size */

static const int MAXIMUM_IN_TRANSFER_SIZE = 8;

static const int MAXIMUM_OUT_TRANSFER_SIZE = 8;

/* Function prototype to handle Input and Output transactions */

void Perform_Input_and_Output_Transfers(libusb_device_handle *MyHIDDevice, int LED_State, int

PWM_DutyCycle);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 78

int main (void)

{

struct libusb_device_handle *MyHIDDevice = NULL;

int Device_Status = 0;

int Result = 0;

int LED_State;

int PWM_DutyCycle;

/* Initialize LibUSB */

Result = libusb_init(NULL);

/* Ensure that the LibUSB initializing was successful */

if (Result == PASS)

{

 printf(“\n”);

 printf(“/******* PSoC 3 / PSoC 5LP Generic HID CLI *******/\n”);

 printf(“Product ID: 0x%.4x”, PID);

 printf(“\n”);

 printf(“Vendor ID: 0x%.4x”, VID);

 printf(“\n”);

 /* Finds matching device and assigns device handle */

 MyHIDDevice = libusb_open_device_with_vid_pid(NULL, VID, PID);

 /* Check to see if HID was detected and properly assigned a handle */

 if (MyHIDDevice != NULL)

 {

 /* Detach the Linux HID driver from the device to allow the use of libusb */

 Result = libusb_detach_kernel_driver(MyHIDDevice, INTERFACE_NUMBER);

 if(Result == PASS)

 {

 /* Claim USB interface for Application */

 Result = libusb_claim_interface(MyHIDDevice, INTERFACE_NUMBER);

 /* Ask user to provide parameters for Output Report */

 switch(Result)

 {

 case LIBUSB_SUCCESS:

 Device_Status = 1;

 fprintf(stderr, “Device Connected \n”);

 printf(“Enter a Desired State for LED_1 (0 or 1): “);

 scanf(“%d”, &LED_State);

 printf(“Enter a Desired PWM Duty Cycle for LED_2 (1-100): “);

 scanf(“%d”, &PWM_DutyCycle);

 break;

 case LIBUSB_ERROR_NOT_FOUND:

 fprintf(stderr, “The requested interface does not exist. \n”);

 break;

 case LIBUSB_ERROR_BUSY:

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 79

 fprintf(stderr, “Another program or driver has claimed the

interface. \n”);

 break;

 case LIBUSB_ERROR_NO_DEVICE:

 fprintf(stderr, “The device has been disconnected. \n”);

 break;

 default:

 fprintf(stderr, “An Error has occurred. Application cannot

continue. \n”);

 break;

 }

 }

 }

 else

 {

 fprintf(stderr, “Unable to locate an attached device that matches.\n”);

 }

 }

 else

 {

 fprintf(stderr, “Unable to initialize LibUSB. Please ensure that it is properly

Installed \n”);

 }

 if(Device_Status)

 {

 /* Send and receive data */

 Perform_Input_and_Output_Transfers(MyHIDDevice, LED_State, PWM_DutyCycle);

 /* Finished using the device */

 libusb_release_interface(MyHIDDevice, 0);

 /* Turn control of device back over to kernel HID driver */

 libusb_attach_kernel_driver (MyHIDDevice, 0);

 }

 return 0;

}

void Perform_Input_and_Output_Transfers(libusb_device_handle *MyHIDDevice, int

LED_State, int PWM_DutyCycle)

{

 /* Declare area in RAM for Input and Output Data Buffer */

 unsigned char In_Data_Buffer[MAXIMUM_IN_TRANSFER_SIZE];

 unsigned char Out_Data_Buffer[MAXIMUM_OUT_TRANSFER_SIZE];

 /* Various variables for application code */

 int ADC_Result = 0;

 int Switch_Status = 0;

 int Transfer_Count;

 int Result = 0;

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 80

 int In_Iteration_Count = 0;

 /* Check to ensure LED_State is either „1‟ or „0‟. If not, variable will be

adjusted. */

 if(LED_State > 1)

 {

 LED_State = 1;

 }

 if(LED_State < 0)

 {

 LED_State = 0;

 }

 /* Check to ensure PWM_DutyCycle is between 1 and 100. If not, variable will be

adjusted. */

 if(PWM_DutyCycle > 100)

 {

 PWM_DutyCycle = 100;

 }

 if(PWM_DutyCycle < 1)

 {

 PWM_DutyCycle = 1;

 }

 /* Store output data in output buffer prior to prior to transferring */

 Out_Data_Buffer[LED_State_Pos]= LED_State;

 Out_Data_Buffer[PWM_DC_Pos] = PWM_DutyCycle;

 /* Perform Output Transfer to PSoC */

 Result = libusb_interrupt_transfer(MyHIDDevice, OUT_ENDPOINT_ADDRESS,

Out_Data_Buffer, MAXIMUM_OUT_TRANSFER_SIZE,

&Transfer_Count, TIMEOUT_MS);

 /* Check to see if Output transaction was successful */

 if (Result == PASS)

 {

 printf(“\n”);

 printf(“/********** Output Data **********/\n”);

 if (LED_State == 0)

 {

 printf(“Turn LED_1 Off”);

 printf(“\n”);

 }

 else

 {

 printf(“Turn LED_1 On”);

 printf(“\n”);

 }

 printf(“Set PWM Duty Cycle of LED_2 to %d%%”, PWM_DutyCycle);

 printf(“\n”);

 printf(“\n”);

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 81

 }

 else

 {

 printf(“Error Has Occurred with Output Transfer \n”);

 printf(“\n”);

 }

 /* Request IN report from PSoC. Performs in a loop. Number of cycles dependent on

NUMBER_INPUT_ITERATIONS */

 printf(“/********** Input Data **********/\n”);

 for(In_Iteration_Count=0; In_Iteration_Count<NUMBER_INPUT_ITERATIONS;

In_Iteration_Count++)

 {

 Result = libusb_interrupt_transfer(MyHIDDevice,

 IN_ENDPOINT_ADDRESS,

 In_Data_Buffer,

 MAXIMUM_IN_TRANSFER_SIZE,

 &Transfer_Count,

 TIMEOUT_MS);

 /* Check to see if Input request was successful */

 if (Result == PASS)

 {

 /* Unload data from Input Buffer and format ADC Data */

 ADC_Result = (In_Data_Buffer[ADC_Pos_1] << 24) + (In_Data_Buffer[ADC_Pos_2] <<

16) + (In_Data_Buffer[ADC_Pos_3] << 8) +

In_Data_Buffer[ADC_Pos_4];

 Switch_Status = In_Data_Buffer[Button_Status_Pos];

 /* Print Input Data in the Terminal */

 printf(“ADC Value: %07d \n”, ADC_Result);

 if(Switch_Status == 0)

 {

 printf(“Switch is Not Pressed \n”);

 printf(“\n”);

 }

 else

 {

 printf(“Switch is Pressed \n”);

 printf(“\n”);

 }

 }

 else

 {

 printf(“Error Occurred with Input Transfer \n”);

 printf(“\n”);

 }

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 82

 /* Time is seconds to wait between Input requests */

 sleep(TIME_DELAY);

 }

}

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 83

Document History

Document Title: AN82072 - PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard HID Drivers

Document Number: 001-82072

Revision ECN Orig. of

Change

Submission

Date

Description of Change

** 3749838 RLRM 09/21/2012 New Spec.

*A 3819496 RLRM 11/22/2012 Updated for PSoC 5LP.

*B 4497191 KLMZ 09/09/2014 Updated title to include in PSoC USB HID AN Family, Updated screenshots for
Creator 3.0

*C 5067967 RLRM 01/06/2016 Updated Linux instructions, fixed typo in OS X application.

Updated to new template.

*D 5220391 RLRM 04/20/2016 Updated hyperlinks across the document.

Updated Related Resources:

Updated Application Notes:

Removed reference of AN52970.

Updated to new template.

*E 5445335 RLRM 09/28/2016 Updated PSoC Creator projects

Updated images in document

Fixed typo in Linux commands

Updated template

*F 5726423 BENV 05/04/2017 Updated logo and copyright

http://www.cypress.com/

PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard OS Drivers

 www.cypress.com Document No. 001-82072 Rev. *F 84

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find

the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |

Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress‟s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	The HID Class
	What is a Generic HID?
	Generic HID Report Descriptor
	Supporting 64-Byte HID Reports
	Example Project: Generic Data Transfer via HID
	PSoC Creator Configuration
	Create the Project
	Configure the USBFS Component
	Configure Other Components
	Configure Pin and Clocking Resources
	Place Code in main.c

	Development Kit Configuration
	Using the CY8CKIT-030/050
	Using the CY8CKIT-001

	Developing Desktop Applications
	Microsoft Windows Host Application
	Mac OS X Host Application
	Linux PC Application

	Writing Host Applications to Interface with HIDs
	Windows Application Code
	Add the CyUSB Reference
	Initialize the USB HID Application
	Get the HID
	Device Removal and Attachment Event Handlers
	Send and Receive Data
	Closing Thoughts for Windows

	Mac OS X Application Code
	Add Toolkit Library and Configure HID Manager
	Get the HID
	Create Buffers for Data
	Set Up Application to Receive Data
	Set Up Application to Send Data
	Device Removal and Attachment Callbacks
	Add and Respond to a Timer Event
	Closing Thoughts for Mac OS X

	Linux Application Code
	USB HID Application Initialization

	Conclusion
	Related Resources
	Application Notes
	Programming Language Books

	(main.c)
	Form1.cs for Windows
	AppDelegate.c for Mac OS X
	Linux_GenericHID_CLI.c for Linux
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

