

www.cypress.com Document No. 001-81828 Rev. *B 1

AN81828

PSoC® 1 - IEC 60730 Class B Safety Software Library
Author: Meenakshi Sundaram R

Associated Project: Yes

Associated Part Family: CY8C22x45, CY8C21x45

Software Version: PSoC Designer™ 5.4 CP1

Related Application Notes: AN75320, AN78175 and AN79973

AN81828 describes and includes the IEC 60730 Class B Safety Software Library. After reading this
application note, you should be able to understand and easily integrate the IEC 60730 Class B Safety
Software Library into your PSoC

®
1 design.

Contents

Introduction ... 2
Overview of Annex H ... 2
Class B Requirements ... 3
Class B Safety Software Library .. 3
API Functions for PSoC 1 ... 4

CPU Self-Test (Table 1 – 1.1) 4
Program Counter (Table 1 – 1.3) 4
Stack Overflow Test ... 4
WDT Test ... 5
Interrupt Handling and Execution (Table 1 – 2) 6
Clock (Table 1 – 3) ... 7
Flash (Invariable Memory, Table 1 – 4.1) 9
SRAM (Variable Memory, Table 1 – 4.2) 9
Digital I/O (Table 1 – 7.1) ... 11
A/D Converter (Table 1 – 7.2.1).................................. 11

Additional Safety Measures ... 12
Comparator .. 12
Communications UART (Table 1 – 6.1/6.2) 13
Communications SPI .. 14

CRC-8 for Communications Protocols 15
CSD .. 16
Checkerboard RAM Test .. 19
Redundant Inverse Storage of Safety Variable 19

Summary ... 20
References .. 20
About the Author ... 20
Appendix A: How to Obtain the Checksum of Flash
(Invariable Memory) .. 21
Appendix B: IEC 60730-1 Table H.11.12.7 23
Document History .. 26
Worldwide Sales and Design Support 27
Products .. 27
PSoC® Solutions .. 27
Cypress Developer Community....................................... 27
Technical Support ... 27

http://www.cypress.com/?rID=58639
http://www.cypress.com/?rID=61356
http://www.cypress.com/?rID=64057

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 2

Introduction

Today, the majority of automatic electronic controls for
home appliance products use single-chip microcontrollers.
Manufacturers develop real-time embedded firmware that
executes in the MCU and provides hidden intelligence to
control a home appliance. However, MCU damage caused
by overheating, static discharge, or other factors can
cause the appliance to enter an unknown or unsafe state.

This application note focuses on Annex H, “Requirements
for Electronic Controls,” of the IEC 60730-1 standard. This
portion of the standard details test and diagnostic methods
to ensure the safe operation of embedded control
hardware and software for home appliances. The PSoC 1
library files provided with this application note include self-
test routines for ROM, RAM, CPU registers, interrupts,
clocks, ADC, digital communication, comparator,
watchdog timer (WDT), and CapSense

®
.

The application note assumes that the user is familiar with
PSoC

®
 1 and PSoC

®
 Designer IDE. Please refer

Application note AN75320 - Getting Started with PSoC® 1
for getting started with PSoC

®
 1.

Refer IEC 60730 General Requirements document to
know more about the safety standards covered in the
application note.

Overview of Annex H

Annex H of the IEC 60730-1 standard classifies the
appliance software into the following categories (see
Appendix B: IEC 60730-1 Table H.11.12.7):

 Class A control functions, which are not required to
check/detect unsafe operation of the equipment.
Examples include humidity controls, lighting controls,
timers, and switches.

 Class B control functions, which are intended to
prevent unsafe operation of controlled equipment.
Examples are thermal cut-offs and door locks for
laundry equipment.

 Class C control functions, which are intended to
prevent special hazards (such as an explosion caused
by the controlled equipment). Examples include
automatic burner controls and thermal cutouts for
closed, unvented water heater systems.

Large appliances, such as washing machines,
dishwashers, dryers, refrigerators, freezers, and
cookers/stoves, tend to fall into Class B. An exception is
an appliance that might cause an explosion, such as a
gas-fired controlled dryer, which falls into Class C.

The software library and the example project described in
this application note implement the self-test and self-
diagnostic methods that are in the Class B category.
These methods use various measures to detect software-
related faults and errors and the responses to them.

According to the IEC 60730-1 standard, a manufacturer of
automatic electronic controls must design software using
one of the following structures:

 Single channel with functional test

 Single channel with periodic self-test

 Dual channel without comparison

In the single-channel structure with the functional test, the
software is designed using a single CPU to execute the
functions as required. The functional test is executed
before the application starts to ensure that all the critical
features are functioning reliably.

In the single-channel structure with the periodic self-test,
the software is designed using a single CPU to execute
the functions as required. The periodic tests are
embedded within the software, and the self-test occurs
periodically while the software is executing. The CPU is
expected to check regularly the critical functions of the
electronic control without conflicting with the normal
operation of the application.

In the dual-channel structure without a comparison, the
software is designed using two CPUs to execute the
critical functions, as Figure 1 shows. Before executing a
critical function, both CPUs are required to share the
information that they have completed their corresponding
tasks. For example, when a laundry door lock is released,
one CPU stops the motor spinning the drum, and the other
CPU checks the drum speed to verify that it has stopped.

Figure 1. Dual Channel Without Comparison Structure

CPU 1
Tasks/

Operations

CPU 2
Tasks/

Operations

Analysis
and

Application

The dual-channel structure implementation is more costly
because two CPUs (or two MCUs) are required. In
addition, it is more complex because the two devices need
to communicate regularly with each other. The single-
channel structure with the functional test is most
commonly implemented today. However, appliance
manufacturers are moving to the single-channel structure
with the periodic self-test implementation for ensuring
reliable operation during runtime.

http://www.cypress.com/?rID=58639
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/48788?OpenDocument

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 3

Class B Requirements

Table H.11.12.7 in Annex H of the IEC 60730-1 standard
specifies components that must be tested, depending on
their software classification. Generally, each component
offers various measures to verify or test the corresponding
component(s). As a result, manufacturers have flexibility in
selecting a suitable measure for their device.

To comply with Class B IEC 60730-1 for the single-
channel structures, manufacturers of electronic controls
are required to test the components listed in Table 1.

Table 1. Components Required to Be Tested for Single-
Channel Structures

Class B IEC 60730-1 Components
Required to be Tested on Electronic

Control (see Table H.11.12.7 in
Annex H)

Fault/Error

1.1 CPU registers Stuck at

1.3 CPU program counter Stuck at

2. Interrupt handling and execution No interrupt or too
frequent interrupts

3. Clock Wrong frequency

4.1 Invariable memory All single-bit faults

4.2 Variable memory DC fault

4.3 Addressing (relevant to
variable/invariable memory)

Stuck at

5.1 Internal data path— Data Stuck at

5.2 Internal data path —Addressing
(for expanded memory MCU systems
only)

Wrong address

6.1 External communications —Data Hamming distance 3

6.2 External communications—
Addressing

Hamming distance 3

6.3 Timing Wrong point in
time/sequence

7.1 I/O periphery Fault conditions
specified in

Appendix B: IEC
60730-1 Table
H.11.12.7

7.2.1 Analog A/D and D/A converters Fault conditions
specified in

Appendix B: IEC
60730-1 Table
H.11.12.7

7.2.2 Analog multiplexer Wrong addressing

Class B Safety Software Library

You can use the Class B Safety Software Library
described in this application note with CY8C22x45 and
CY8C21x45 PSoC 1 devices. This library includes APIs
that are intended to maximize application reliability
through fault detection.

There are self-tests—for RAM, ROM, CPUs, registers, and
so on—as mentioned in Table 1, that can be performed
independent of the end application. These tests are
provided as APIs that can be used as such or with minor
modifications. There are other tests that depend on end-
user applications, such as interrupt tests, communication
protocol tests, and I/O periphery tests. For these tests, the
concept and the implementation in the application are
explained in this application note.

To run most of the self-test APIs, invoke an appropriate
API function from the *.asm or *.c and *.h and *.inc files in
the Class B Safety Software Library. Other self-tests can
be applied by using an appropriate API function from the
*.asm or *.c and *.h and *.inc files along with an
appropriate user module placement in the project.

This application notes describes two types of self-test
functions:

 The self-test functions to help meet the IEC 60730-1
Class B standard compliance are as follows:

 CPU registers: Test on stuck bits.

 Program counter: Test on jumps to the right
address.

 Interrupt handling and execution: Test on proper
interrupt calling and periodicity.

 Clock: Test on wrong frequency.

 Flash (invariable memory): Test on memory
corruption.

 SRAM (variable memory): Test on stuck bits and
proper memory addressing.

 Digital I/O: Test on stuck bits.

 A/D convertor: Test on proper functionality.

 Communications (UART, SPI): Test on correct
data receiving possibility.

 Watchdog test: Test on chip reset possibility.

 Additional self-test functions that PSoC 1 can support
due to programmable interconnectivity. The user
application frequently needs these self-tests even
though they are not provided in Appendix B: IEC
60730-1 Table H.11.12.7:

 CapSense Sigma Delta (CSD): Test on sensor
shorts, sensor disconnect, and modulator
component (Cmod and Rb/IDAC) testing

 Comparator test

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 4

 Checkerboard RAM test and redundant inverse
storage test for global variable

All self-tests can be executed after device startup, before
the main loop, where the application code resides. The
self-tests can determine whether the chip is suitable to
function.

In addition, self-tests must be executed while the device is
functioning in a determined period of time. This lets you
ensure that the chip was not damaged while executing
application functions.

The following sections describe the self-tests and the
implementation details for each test according to IEC
60730-1 Class B Annex H. In addition, each section lists
the APIs provided with this application note to execute the
corresponding test for the supported architecture. Any
mention of PSoC 1 refers to the CY8C22x45 and
CY8C21x45 family of PSoC 1 devices.

API Functions for PSoC 1

CPU Self-Test (Table 1 – 1.1)

PSoC 1 relies on five registers for program execution:

 Accumulator (A)

 Index (X)

 Program counter (PC)

 Stack pointer (SP)

 Flags (F)

To check for stuck bits within these registers, perform a
checkerboard test. A checkerboard test writes alternate
‘1’s and ‘0’s to a register and verifies the value; then it
writes alternate ‘0’s and ‘1’s and verifies the value again.
This is done by first writing 0xAA and then 0x55 for each
register. The switching of these values resembles the
alternate-colored squares on a checkerboard, hence the
name. The checkerboard method is implemented for all
CPU registers except the program counter, for which
testing is covered in the next section.

Function

BYTE SelfTest_CPU_Registers(void)

Returns:

0 No error

1 Error in temporary register used for

RAM tests

x Does not return/Halts, if error in CPU

registers

Include:

Source file: selfTest.asm

Header file: selfTest.h, selftest.inc

If an error is detected, the PSoC should not continue to
function, because its behavior can be unpredictable and,
therefore, potentially unsafe.

Program Counter (Table 1 – 1.3)

The program counter register is part of the CPU register
set. To test these registers explicitly using a checkerboard
test, the addresses of 0x1555 and 0x2AAA must be
allocated exclusively for this test. Because it is only a few
bytes of flash, it appears to be a good investment of
resources. However, this breaks the flash into segments of
memory that are now smaller. This condition is not
favorable for efficient compilation and can inhibit some
programs from fitting into flash, although their absolute
size is smaller than the actual flash size. See the
ImageCraft C Compiler Guide, Section 7.2.1, or the
PSoC Designer help files located at Help >
Documentation > Compiler and Programming
Documents > C Language Compiler User Guide.pdf for
placing your code in absolute code location and avoiding
errors because of these reserved flash addresses.

Function

BYTE SelfTest_PC(void)

Returns:

0 No error

1 Error in PC

x Does not return, if error in PC

Include:

Source file: selfTest_pc.asm

Header file: selfTest_pc.h,

selftest_pc.inc

To avoid this code fragmentation and to ensure proper PC
functioning, use a watchdog timer (WDT), which can reset
the system in case of a stuck PC value. Also, you can use
a global variable with the WDT. This global variable is
incremented in the main code by a predefined value at
various places in the main code flow. The value is then
monitored in an interrupt, such as a sleep timer interrupt
service routine (ISR), for a proper increment/change from
its previous value. If the change is too small or is less than
expected, the code may be stuck somewhere. If this
condition is detected, an infinite loop, which does not clear
the WDT, can be entered to cause a soft watchdog reset.

Stack Overflow Test

The stack is one of the key components, especially when
there are many function calls, ISRs, and local variables in
the code. During code execution, take care to ensure that
the stack does not get full or overflow, or else it will lead to
undesired code behavior. When a function is called or an
interrupt occurs, the program counter value is pushed to
the stack space. Also, local variables in the code are

http://www.cypress.com/?docID=42039

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 5

typically used from the stack space. Therefore, an
overflow in the stack will result in data corruption of these
variables or registers and in erroneous behavior.

In CY8C22x45 or any PSoC 1 family, the stack is a part of
RAM, and by default, the last RAM page (one RAM page
in PSoC 1 is equal to 256 bytes) is used for the stack
(after execution of the boot code, when the stack resides
in Page 0 regardless of the device). The starting address
or offset of the stack in the RAM page on which it resides
can be set in compiler settings, as shown in Figure 2. This
setting is available at Project > Settings > Compiler.
Regardless of this offset, the last address of the stack
space is the address of the last byte in that particular RAM
page where the stack resides.

To detect overflow, the last two bytes of the stack are
reserved to hold special bytes of data. These special bytes
are compared periodically, for example, in a timer
interrupt, for any change in their value. If there is a
change, it can be asserted that there was a stack
overflow. At that point, stop code execution and reset the
device, either by watchdog or external trigger.

Figure 2. Stack Offset Under Project Settings

The following functions implement the stack overflow
check:

void SelfTest_StackOverflowChk_Init(void)

Returns: None

BYTE SelfTest_StackOverflowChk (void)

Returns:

0 No Error

1 Error detected

Include:

Source File: selftest_stackoverflow.asm

Header File: selftest_stackoverflow.inc

 ,

selftest_stackoverflow.h

You can modify the special bytes stored and the location
of the special bytes in the stack page in the
selftest_stackoverflow.inc header file, according to user
requirements. The SelfTest_StackOverflowChk_Init() API
initializes the last bytes of the stack to the user-specified
special bytes. The SelfTest_StackOverflowChk() API
checks the values stored in those bytes for any data
corruption or stack overflow.

WDT Test

This function implements the watchdog functionality test
(see Figure 3). The function starts the WDT and runs an
infinite loop. If the WDT is working fine, it generates a
reset. After the reset, the function analyzes the reset
source. If the watchdog is the source of reset, the function
returns to main code execution; otherwise, it waits for four
sleep clock timer intervals and then returns watchdog
fail/error. Because the WDT counter is three sleep timer
ticks, a fourth tick without a reset would mean either WDT
failure or a disabled state.

Function

BYTE SelfTest_WDT(void)

Returns:

0 - No Error

1 - WDT disabled/Error

Include:

Source File: SelfTest_WDT.c

Header File: SelfTest_WDT.h

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 6

Figure 3. WDT Self-Test

Power_ON

Execute Boot code

Is the reset due
to WatchDog?

No watchdog resetNo
Wait for 4 sleep

timer ISR to occur

Disable WDT.
Trigger WatchDog

failure FMEA.

Execute main code

Yes

End

Interrupt Handling and Execution
(Table 1 – 2)

Interrupts, which are integral to most embedded designs,
require attention to ensure proper operation. An interrupt
that occurs too often or too infrequently can compromise a
system’s safety and reliability. For instance a frequently
occurring interrupt can utilize the CPU completely without
giving the required/desired control to the main code.
Similarly an interrupt that occurs infrequently can cause
the system to lag or perform out of specification.

If interrupts occur frequently, enable the WDT. If the WDT
is not refreshed because code execution is stuck inside
the interrupt handler, then the WDT causes a reset.

In PSoC 1, Time-slot monitoring of the ISRs using one or
two independent interrupt sources can be used to
implement this safety feature. The VC3 divider ISR
derived from IMO and/or the sleep timer ISR derived from
an external crystal oscillator (ECO) or internal low-speed
oscillator (ILO) can be used for time-slot monitoring. All
the ISRs running in the system should have a count
variable associated with them. A limit (number of minimum
and maximum occurrence of each between two VC3 ISRs
and/or two sleep timer ISRs) for each is defined in the
form of macros. Whenever a VC3 or sleep timer ISR
occurs, the number of occurrences of all the ISRs is
checked for their limits and an error flag is raised, and/or
the ISR is disabled in case of any discrepancies. Figure 4
shows the flow chart for implementing the same in
PSoC 1.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 7

Figure 4. Interrupt Self-Test – No or Too Frequent Interrupt Check

VC3 ISR

Check ISRx0 for too
frequent or no

interrupt

Is it within
Limits?

Trigger FMEA ISR fail
for ISRx0

No

Check ISRxn for too
frequent or no

interrupt

Is it within
Limits?

Trigger FMEA ISR fail
for ISRxn

Yes

RETI

Sleep Timer ISR

Check ISRy0 for too
frequent or no

interrupt

Is it within
Limits?

Trigger FMEA ISR fail
for ISRy0

No

Check ISRym for too
frequent or no

interrupt

Is it within
Limits?

Trigger FMEA ISR fail
for ISRym

Yes

RETI

ISRxx

Clear all ISR counts
and process other

code in VC3 ISR

Clear all ISR counts
and process other

code in Sleep timer
ISR

Increment ISRxx
Count

Process the ISRxx
code

RETI

1. IMO is the primary
source
2. Can be used for fast/
more frequent ISRs

1. External Crystal oscillator,
32 KHz crystal is the source
2. Can be used for slow/less
frequent ISRs

Note:
ISRx - ISRs checked in VC3
‘n’ – Number of ISRs checked in
VC3 ISR

ISRy - ISRs checked in Sleep Timer
‘m’ – Number of ISRs checked in
Sleep Timer ISR

Clock (Table 1 – 3)

According to the IEC 60730 standard, failure modes
resulting in the clock oscillating at harmonics and
subharmonics of the set frequency need to be tested. To
ensure that the clock is not oscillating at a harmonic or
subharmonic, the clock accuracy limits are set to +/-10%.
The clock test implements the independent time slot
monitoring H.2.18.10.4 defined by the IEC 60730
standard. It verifies the reliability of the system clock
(specifically, that the system clock should be neither too
fast nor too slow). There are two types of implementation
for this type of test. One is based on firmware and the
other on hardware. The advantage of the firmware-based
test is that it consumes no hardware resource, although it

is less accurate than the hardware implementation. It is
recommended to use a hardware timer if one is available.
If not, use the firmware-based accuracy check.

Function (Firmware Based)

BYTE SelfTest_IMO_Check(void)

Returns: 0(SelfTest_IMO_OK) No error

1 (SelfTest_IMO_ERR) Error

Include:

Source File: SelfTest_Clock.asm

Header File: SelfTest_Clock.inc,

 SelfTest_Clock.h

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 8

Important Note

The clock limits are defined in the SelfTest_Clock.inc file.
The method to calculate the numbers is described in the
comment above the limits. You can accordingly calculate
the accuracy and replace the values with their
requirement.

Function (Hardware Based)

BYTE SelfTest_Clock_HW(void)

Returns: 0(SELF_TEST_CLK_OK) No error

1 (SELF_TEST_CLK_ERR) Error

Include:

Source File: selfTest_clock_hw.c

Header File: selfTest_clock_hw.h

The hardware-based function checks the IMO/ILO for
proper frequency using a 16-bit HW timer user module
named “IMO_Timer” with the following:

Period = 65535

Clock sync = Use Sysclk Direct

Interrupt = TerminalCount

Capture = Low

Other parameters are “Don't care.”

The limits for the clock accuracy are defined in
selftest_clock_hw.h with an explanation in the comment
defining them. The selftest_clock_hw.c file has function
definitions for sleep timer ISR and IMO_Timer ISR. These
ISRs must be placed in their respective locations in the
boot.tpl file. If you have already defined the sleep timer
ISR, then both of the ISRs need to be merged, and care
must be taken to ensure that the clock test part of the
code executes only when called from this function.

Important Note

Both the hardware- and firmware-based clock tests need
a 32.768-kHz ECO to be present for strong accuracy.

Figure 5 shows the PSoC implementation of the test in
firmware.

Figure 5. Clock Self-Test

Start

Disable all Interrupts

Clear pending Sleep
Timer ISR, if any and

stop it

 Back up sleep timer
interval and Set
Sleep timer ISR

interval to 1.95 ms

Increment Count16

Is Sleep timer
pending interrupt

bit set?

Enable Sleep timer

No

Is Count16 value
within limits?

Yes

Trigger IMO clock
failure FMEA

No

RET

Yes

Stop Sleep timer;
Clear Pending ISR;

Restore timer value;
Enable sleep timer;
Enable all interrupts

Details:
1.Disable all interrupts

2.Clear sleep timer ISR pending interrupts, if any

3.Enable sleep timer ISR @ 1.95 ms

4.Increment a count variable till the Sleep timer

ISR pending bit is set in INT_CLR0 register

5.Compare the value against predefined min and

max value for proper 24 MHz internal clock.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 9

Flash (Invariable Memory, Table 1 – 4.1)

PSoC 1 includes 4 KB to 16 KB of flash on-chip memory.
PSoC 1 flash memory is organized in blocks, with each
one containing 64 data bytes. According to the IEC 60730
standard, an acceptable measure for Class B compliance
is to detect all single-bit faults. A 16-bit checksum (sum of
all bytes in flash until the address is specified) of the entire
flash content is computed whenever requested and
compared against the stored checksum value for any data
corruption. The checksum is stored in last two bytes of the
flash area. (To learn how to obtain the checksum for a
program, see Appendix A.)

Function

BYTE SelfTest_ROM(WORD noOfBlocks)

Arguments: WORD noOfBlocks;

Number of ROM blocks to be appended to the

current checksum; the value is capped to

flash size. If greater than flash size,

checksum is calculated until the end of

flash, and function returns the result of

the test.

Returns: 0 No error

 1 Checksum not complete

 2 1-bit Error

Include:

Source File: selfTest.asm,

 selftest_ram_rom.c

Header File: selfTest.h,

 selftest_ram_rom.h

The selftest.asm,‘selftest.inc, and selftest.h files contain
the lower level API, which calculates the checksum for a
single block. The selftest_ram_rom.c and
selftest_ram_rom.h files contain the API, which does the
checksum verification for the entire flash by calling the
low-level API for all the flash blocks. During run time, the
user can call the function with a smaller number of bytes
every self-test cycle to reduce the time spent on ROM
calculation. The function return value can be monitored for
any error or checksum completion status.

SRAM (Variable Memory, Table 1 – 4.2)

All PSoC 1 devices include on-chip SRAM. All the families
offer devices that range from 512 bytes to 1 KB of RAM,
which includes the stack. The entire RAM is split into
pages of 256 bytes each, with the last 256 bytes or page
allocated for the stack.

The Variable Memory test implements the Periodic Static
Memory test H.2.19.6 defined by the IEC 60730 standard.
It detects the single-bit faults in the variable memory. The
variable memory contains data, which is intended to vary
during the program execution. The RAM memory test is
used to determine if any bit of the RAM memory is stuck at
1 or 0. The March Memory test is one of the widely used

static memory algorithms to check DC faults. You can
implement the following tests using the Class B Safety
Software Library provided with this application note:

 March C/C Minus test

 March B test

March Test

The March test performs a finite set of operations on every
memory cell in the memory array. Each operation
performs the following tasks:

1. Writes ‘0’ to a memory cell (w0).

2. Writes ‘1’ to a memory cell (w1).

3. Reads the expected value ‘0’ from a memory cell (r0).

4. Reads the expected value ‘1’ from a memory cell (r1).

March Test Notations

> Arrange address sequence in ascending order

< Arrange address sequence in descending order

<> Arrange address sequence in either ascending or
descending order

r0 Indicate read operation (reads ‘0’ from a memory
cell)

r1 Indicate read operation (reads ‘1’ from a memory
cell)

w0 Indicate write operation (writes ‘0’ to a memory cell)

w1 Indicate write operation (writes ‘1’ to a memory cell)

March C Test

The March C test is used to detect the following types of
fault in the variable memory:

 Stuck-at fault

 Addressing fault

 Transition fault

 Coupling fault

This test is destructive, which means that memory
contents are not saved. Therefore, it is designed to run at
the system startup before initializing the memory and the
runtime libraries.

March C Algorithm

The March C algorithm is implemented as follows:

1. Write ‘0’ to RAM cells being tested starting from first
(ascending) or last (descending) RAM address.

2. Read ‘0’ from and write ‘1’ to RAM cells being testing
starting from the first RAM address.

3. Read ‘1’ from and write ‘0’ to RAM cells being tested
starting from the first RAM address.

4. Read ‘0’ from the RAM cells starting from either the
first or the last RAM address.

5. Read ‘0’ from and write ‘1’ to RAM cells being tested
from the last (to the first) RAM address.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 10

6. Read ‘1’ from and write ‘0’ to RAM cells from the last
RAM address.

7. Read ‘0’ from RAM cells from the first RAM address.

An error is reported if any read operation returns an error
bit (‘1’ instead of ‘0’ and vice versa). The following notation
explains the steps.

{

 <> (w0); > (r0, w1); > (r1, w0);

 <> (r0); < (r0, w1); < (r1, w0); > (r0)

}

March C minus

{

 <> (w0); > (r0, w1); > (r1, w0);

 <> (r0); < (r0, w1); < (r1, w0);

}

The same functions used for March C can be conditional
compiled to perform the March C minus test. By clearing
the macro NOT_MARCH_C_MINUS available in the
selftest_ram_march_c.inc file and then calling, the function
will perform the March C minus test. Using the start
address and end address pointers, you can do runtime
March C/C minus tests by backing up the area of RAM
under test to other parts of RAM not included in the test
and then restoring the data. This test coves only the RAM
area, not the stack area. If the start or end address is
found to be out of the RAM boundary (excluding the stack
size), then the test returns 0xFF. If the start and end
address are equal, the test is done on the entire RAM area
(excluding the stack). If the end address is less than the
start address, the test rolls over to address ‘0’ at the end
of the RAM area and continues the test until it reaches the
end address.

Important Note

The test covers the RAM area from the start address to
the (end address – 1)th location.

Function

BYTE SelfTest_RAMMarchC_Periodic(BYTE

*startAddr, BYTE *endAddr);

Parameters:

BYTE *startAddr, BYTE *endAddr

Start and End address of the RAM area to

scanned

Returns:

0 (SelfTest_RAM_OK) No error

2 (SelfTest_ERR_RAM_FAILURE) Error

FFh (OUT_OF_BOUNDS)

Stack Page Test

BYTE SelfTest_bSTKPG_Test_March_C(BYTE)

Returns:

0 (SelfTest_RAM_OK) No error

2 (SelfTest_ERR_RAM_FAILURE) Error

Include:

Source File: selftest_ram_march_c.asm,
selftest_ram_march_c_periodic.c,
selftest_ram_march_low_lvl.asm;

Header File: selftest_ram_march_c.h,

 selftest_ram_march_c.inc,

selftest_ram_march_c_periodic.h,
selftest_ram_march_low_lvl.h;

March B Test

The March B is a nonredundant test that can detect the
following types of fault:

 Stuck-at

 Linked idempotent coupling

 Inversion coupling

March B Algorithm

MarchB

{

 <> (w0); > (r0, w1, r1, w0, r0, w1); > (r1, w0, w1);

 < (r1, w0, w1, w0); < (r0, w1, w0);

}

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 11

Function

BYTE SelfTest_bRAM_Test_March_B(void)

Returns:

0 (SelfTest_RAM_OK) No error

2 (SelfTest_ERR_RAM_FAILURE) Error

Stack Page Test

BYTE SelfTest_bSTKPG_Test_March_B(void)

Returns:

0 (SelfTest_RAM_OK) No error

2 (SelfTest_ERR_RAM_FAILURE) Error

Include:

Source File: selftest_ram_march_b.asm

Header File: selftest_ram_march_b.h

SelfTest_RAMMarchC_Periodic,
SelfTests_bRAM_Test_March_B—One or both of these
functions can be chosen and called immediately after the
PSoC start. These functions check the RAM destructively.
After passing the test, these functions reset the PSoC
RAM to ‘0’. The stack page in RAM is tested by storing the
top three bytes of the stack in temporary registers
(backing up the program counter value to return execution
properly). Because only the top three bytes of the stack
are saved, the user needs to take care that the function is
called from main. In other cases, the user needs to back
up the required amount of the stack depending on the
depth of the calling function. Also, it is recommended that
interrupts be disabled before calling the stack check
function, as interrupts use the stack page. If the function is
called in either case—interrupt enabled or called from a
function other than main—the stack test will clear the
entire stack except the first three bytes, which will result in
the calling function not returning at all. In the case of a
fault, the function returns ‘2’, or if the first three bytes are
corrupted, the function halts and does not return. A WDT
can be used as a reset mechanism in such scenarios.

Digital I/O (Table 1 – 7.1)

The PSoC I/Os provide the following:

 Digital input sensing

 Digital output drive

 Pin interrupts

 Connectivity for analog inputs and outputs

 Connectivity for LCD segment drive

 Access to internal peripherals:

 Directly for defined ports

 Through the global input/output bus inside PSoC

The I/Os are arranged into ports, with up to eight pins per
port. Some of the I/O pins are multiplexed with special
functions (USB, I

2
C port, crystal oscillator). Special

functions are enabled using control registers associated
with the specific functions.

The test goal is to ensure that I/O bits are not stuck at ‘1’
or ‘0’. The I/O test tests all the I/O. It is done by
successive writing, reading, and checking 0x55 and 0xAA
values into the I/O registers.

Important Note

This test is application-dependent and can be run only if
the hardware allows it.

Because writing to and reading from the I/O registers can
cause unwanted behavior on the I/O pin states, this test
needs to be application dependent. I/O states can be
periodically read and compared to the expected values
during runtime to do the plausibility check.

A/D Converter (Table 1 – 7.2.1)

This function tests the SAR ADC in the CY8C22x45 and
CY8C21x45 family of devices. In this test (see Figure 6),
the SAR input is temporarily connected to bandgap
reference (Vbg) and 2 times bandgap reference (2Vbg),
and the ADC result is tested for plausibility. The test is a
success if the digitalized input voltage value is equal to the
required reference voltage value to within the defined
accuracy. When the test is a success, the function returns
0; otherwise, it returns 0xFF.

Function

BYTE SelfTest_SAR_ADC(void)

Returns:

0 No error

0xFF Error detected

Include:

Source File: selftest_sar_adc.asm

Header File: selftest_sar_adc.h,

 selftest_sar_adc.inc

The ADC accuracy is defined in selftest_sar_adc.inc.
Based on supply voltage, the value changes as the SAR
ADC input range is fixed (it is from Vss to Vdd).

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 12

Figure 6. Self-Test SAR ADC

Start

Stop ADC,
Back Up channel

information.

Connect Bandgap
reference to the

ADC and enable ADC

Get 2 samples,
Discard first one

Is the value
within

tolerance?

Stop ADC.
Connect 2*Bandgap

reference to the
ADC and Enable ADC

Get 2 samples,
Discard first one

Yes

Is the value
within

tolerance?

Trigger ADC fault
FMEA

No

Restore ADC
channel information

Yes RET

Trigger ADC fault
FMEA

No

Note:
ADC output depends on Vdd supplied to the device, the
user needs to calibrate the reference digital data used for
tolerance comparison before calling this function.

Additional Safety Measures

The following routines are additional safety routines that
are not directly required by the IEC 60730 standard but
are useful to ensure reliable operation of the system.

Comparator

This function implements the comparator functionality test.
To execute it, connect the bandgap reference to one
terminal and Vss to another terminal (internally). Then
check that the comparator output is working properly. The
test is then repeated by swapping the inputs. When the
test is a success, the function returns 0,
SelfTest_COMP_OK; otherwise, it returns 1, SelfTest
_COMP_ERR.

Function

BYTE SelfTest_Comparator(void)

Returns:

0 No error

1 Error detected

Include:

Source File: SelfTest_comparator.c

Header File: SelfTest_comparator.h

The test requires you to place the comparator user module
with the name “CMP” in the project or change the
reference “CMP” name in the selftest_comparator.c and
selftest_comparator.h files to be able to use the function
properly. The CMP_BUS_BIT available in
selftest_comparator.h should be modified per the column
in which the comparator is placed.

The test function saves all the user module configurations
and nonretention registers before testing. They are
restored afterward. You have to call the CMP_Start() API

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 13

after the test is complete, because it stops the comparator
after completing the test.

Communications UART (Table 1 – 6.1/6.2)

This function implements the UART internal data loopback
test. The test is a success if the transmitted byte is equal
to the received 1. When the test is a success, the function
returns 0; otherwise, it returns 1.

Function

BYTE SelfTest_UART_LoopBack(BYTE parity)

Arguments: BYTE parity

Parity with which UART needs to

enabled after test; Pass 0xFF to

disable UART after test.

Returns:

0 No error

1 Error detected

2 Test not done

Include:

Source File: SelfTest_UART.c

Header File: SelfTest_UART.h

Figure 7 shows this test PSoC implementation. The UART
Tx and Rx lines are shorted internally during the test. If
there are any bytes in the receive buffer, the test is not
executed and it returns 2, indicating that the test was not
done because of a full Rx or Tx register.

The test function saves all the user module configuration
registers before testing and restores them afterward.
During the test, this function transmits two special
checkerboard bytes (0x55 and 0xAA) over the Tx line and
checks the data received over the Rx line. The function
requires you to provide details, such as the port global
select register and the port pin number of the Rx and Tx
pins. These details are used to connect and disconnect
the pins during the test and are available in the
selftest_uart.h file. This function can be called periodically
to ensure that the UART line is functioning properly.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 14

Figure 7. UART Loopback Self-Test

Start

Back up UART
setting registers

Disable UART
interrupt and UART

module

Disconnect Tx and
Rx pins from Global

nets

Connect Rx and Tx
pin internally

Enable UART and set
up TX buffer to
transmit Byte 1

Wait till Rx buffer is
full

Are Tx and Rx
buffer Empty?

Yes

End test and return
TEST_NOT_DONE

No

Is the received
BYTE same as sent

one?

End test and Signal
UART Error

No

Transmit Byte 2 over
Tx

Yes

Is the received
BYTE same as sent

one?

End test and Signal
UART Error

No

Disconnect UART Tx
and Rx lines

Yes

Enable Tx and Rx pin
connections to

global bus

Restore UART
settings registers

Enable UART if
requested

End and return
UART_OK

Communications SPI

This function implements the SPIS internal data loopback
test. The test is a success if the transmitted byte is equal
to the received 1. When the test is a success, the function
returns 0; otherwise, it returns 1.

Function

BYTE SelfTest_SPIS_LoopBack(BYTE mode)

Arguments: BYTE mode

Mode with which SPI slave has to

be tested and started again, if

0xFF is passed then SPI is tested

in mode 2 and disabled after

test.

Returns:

0 No error

1 Error detected

2 Test not done

Include:

Source File: SelfTest_SPI.c

Header File: SelfTest_SPI.h

The PSoC implementation for SPI loopback is similar to
the one explained for UART. The SPI slave MOSI and

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 15

MISO lines are shorted internally during the test and VC2
is used as SCLK source. If there are bytes in the receive
buffer, the test is not executed and it returns 2, which
indicates the test was not done because of a full receive or
transmit register.

The test function saves all the user module configuration
registers before testing and restores them afterward.
During the test, this function transmits two special
checkerboard bytes (0x55 and 0xAA) over the MISO line
and checks the data received over the MOSI line. The
function requires you to provide details, such as the port
global select register and port pin number of the MOSI and
MISO pins. These details are used to connect and
disconnect the pins during the test and are available in the
selftest_spis.h file. This function can be called periodically
to ensure proper SPI slave functioning.

CRC-8 for Communications Protocols

This function implements a firmware 8-bit cyclic
redundancy check (CRC) algorithm, which can be used by
communications protocols to perform CRC-8. The same
function can be used to verify CRC-8 checksum as well.
The flowchart to perform CRC-8 using this function is
shown in Figure 8. The calculated 8-bit CRC is available in
the global variable “rc_checksum” in the file and can be
accessed by including the crc.asm, crc.inc, and crc.h files
in the project. The CRC polynomial is provided as a macro
in the crc.inc file, which you can modify per the polynomial
requirement. The comments near the macro describe how
to define the polynomial.

To pass Class B compliance for external communication,
a hamming distance of 3 needs to be satisfied, which
means an error detection capability of up to two bits. The
polynomial of 0x14D (or 0xA6 in implicit “+1” format)
supports a hamming distance of 3 for a data length up to
246 bits, excluding 8-bit CRC checksum, as explained in
Table 4 of the paper titled Cyclic Redundancy Code (CRC)
Polynomial Selection For Embedded Networks. This can
be enough for many applications involving up to 29 bytes
of data, 1 byte of address, and 1-byte checksum. You can
use the CRC16 User Module available in PSoC Designer
to implement a better hamming distance error check code
or to support packet lengths above 246 bits for hamming
distance 3, required for Class B compliance.

Function

void CRC_Calculate(BYTE)

Arguments: BYTE crc_nextByte

Next Byte to be pushed into the

CRC engine.

Returns: None

Include:

Source File: crc.asm

Header File: crc.inc, crc.h

http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 16

Figure 8. CRC-8 for Communication Interface

Start

Initialize
Comm_data_pointer

= 0.

Initialize
CRC_CheckSum = 0.

Push address byte
through the
CRC_engine

Push Comm_data at
Comm_data_pointer

through
CRC_enngine

Increment
Comm_data_pointer

Is pointer <
BUFFER_SIZE?

Append
CRC_CheckSum to

the buffer data.

No

RET

Yes

Push a ‘0’ through
the CRC engine; The
checksum now gives
the Checksum of the
entire data buffer +

address BYTE

CSD

The CY8C22x45 and CY8C21x45 family of devices have a
capacitive sensing feature called CapSense. It allows
users to activate touch-sensitive buttons, sliders, and
wheels using the capacitance of their fingers. Touchpads
and touchscreens are common examples of capacitive
sensing interfaces. The underlying principle of these
technologies is the measurement of capacitance between
a plate (the sensor) and its environment. To learn more
about Cypress’s CapSense technology, see Getting
Started with CapSense.

This section demonstrates how to use the unique
hardware reconfiguration possibilities available in PSoC
devices to detect errors in capacitive sensing
measurements at run time. The errors include the
following:

 Shorts to VCC or ground

 Sensor-to-sensor shorts

 Sensor disconnects

 Faults in the sigma-delta modulator external
components:

 Modulation capacitor (Cmod)

 Discharge resistor (Rb) or current DAC

Use these diagnostics to provide fail-safe functions in
capacitive sensing devices, where sensor faults lead to
safety concerns. White goods, automotive, and industrial
electronic applications are examples of the devices that
require a sensor fault diagnosis for safe operation.

Test on Sensor Shorts

In normal operating conditions, the sensor-to-ground,
sensor-to-sensor, and sensor-to-VCC resistances are very

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 17

high. To detect any shorts, actual resistance values are
compared to the PSoC internal pull-up resistors. Figure 9
shows a simplified schematic for sensor-to-ground short
detection.

Figure 9. Sensor-to-Ground Short Detection Schematic

VDD

Sensor

PSoC

Reads ‘0’ for sensor
short to GND

Shorting

The sensor pin is configured in the resistive pull-up drive
mode. In normal conditions, the CPU reads a logic 1
because of the pull-up resistor and due to the high
impedance of the sensor input. Due to a fault, if the sensor
is shorted to ground, the CPU will read a logic 0 on the
input and can recognize this as a fault.

Sensor-to-VCC shorting is detected by a similar method.
Figure 10 shows the corresponding schematic.

Figure 10. Sensor-to- VCC Short Detection Schematic

Sensor

PSoC

Reads ‘1’ for sensor
short to VDD

VDD

Shorting

In this case, the sensor pin is configured in the resistive
pull-down drive mode. The input level is 0 in normal
conditions and a logic HIGH if the sensor is shorted to
VCC.

Figure 11 shows the schematic for the sensor-to-sensor
short check.

Figure 11. Sensor-to-Sensor Short Detection Schematic

VDD

Sensor

PSoC

Reads ‘0’ for sensor
short to another

sensor

Sensor
Other sensors

connected to GND
internally

Shorting

All of the sensor pins are connected to ground internally
by writing ‘0’ to the data registers in the strong drive mode.
Every sensor input is now individually configured to pull-up
mode, and the level on the sensor input is read. If the
sensor is good, then a logic HIGH will be read. If the
sensor is shorted to any other sensor, then a logic 0 will
be read. The following function does all the short tests
mentioned in this section.

Function

BYTE SelfTest_CSD_CheckShorts(void)

Returns:

‘0’ No error

‘N’ Error detected, N - number of

sensor with error

Include:

Source File: SelfTest_CSD.asm

Header File: SelfTest_CSD.h

Important Note

The CSD User Module must be named the CSD to use
the functions as such and the table
CSD_Shade_Table_Short_Test in selftest_csd.asm file
should be replaced with the table CSD_Shade_Table
from CSD.asm file. This should be done whenever
sensor pin or number of sensors is changed.

The function SelfTest_CSD_CheckShorts () is called

to detect sensor shorts to ground, VCC, or other sensors.

Test on Sensor Disconnect

Another task is to detect the sensor disconnects. Unlike
detecting shorts, this task cannot be accomplished with
hardware tricks. The detection method is based on
observing the sensor baseline data. If a sensor is
disconnected from the PSoC, the area of copper attached
to the sensing IC is smaller than expected. This leads to a
significantly lower raw count and baseline values.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 18

To detect the sensor disconnects, store the baseline
values under normal conditions in the internal EEPROM.
The actual baseline value is compared to the stored value.
If the actual value is less than the stored value and the
difference exceeds the threshold, a system fault is
detected. If the threshold value is too small, you can get
false fault triggering. That occurs when there is a small
change in baseline due to environmental changes. In
addition, this value must not be too large or you will not
have a reliable disconnect detection. This implementation
provides two predefined threshold values: 25% and 12.5%
of the stored baseline value. These values are sufficient
for most applications. Choose the actual value in your
system by running tests on real boards in real systems.

Function

BYTE SelfTest_CSD_CheckBaselines(void)

Returns:

‘0’ No error

‘N’ Error detected, N - number of

sensor with error

Include:

Source File: SelfTest_CSD.asm

Header File: SelfTest_CSD.h

Important Note

The CSD User Module must be named the CSD to use
the functions as such.

The function SelfTest_CSD_CheckBaselines() is

called to detect the sensor disconnection.

Modulator Component (C m o d and Rb) Testing

The sigma-delta modulator in the CSD User Module in
bleed resistor (Rb) mode uses two external components: a
modulation capacitor (Cmod) and a discharge resistor (Rb).
These components can also cause errors in the
capacitance measurement. For example, these
components could be shorted or opened.

The simplest method to test both Cmod and Rb
simultaneously is to estimate the RC time constant by
charging Cmod through Rb. This measurement requires a
minimal hardware reconfiguration and is easy to
implement in software.

If Cmod is completely discharged and then charged to Vcc
through Rb, the voltage on the capacitor changes
according to Equation 1.

Vc (t) = Vcc (1 - e -t/τ) Equation 1

In this equation, the time constant (τ) = RbCmod.

The capacitor charges until its voltage reaches the
comparator reference voltage. This reference voltage
depends on the CSD Component settings. In the example
case, the reference source is bandgap (VBG) and the

reference voltage is 1.3V. The time needed to charge the
capacitor from 0 to 1.3V with Vcc = 5V is shown in
Equation 2 and 3.

 ln 4t Equation 2

1.39t Equation 3

The oscilloscope image in Figure 12 shows the proposed
RC test method. In the first stage, Cmod is completely
discharged and in the second stage it is charged to Vref.
The measured charge time is about 16 µs. This completely
agrees with the previous equations for Cmod = 10 nF and
Rb = 5.1 k, as shown in Equation 4.

Figure 12. Voltage on Cmod When Charged Through Rb

t = 0.3 . 5.1k . 10nF = 15.3 µs Equation 4

In software, it is more convenient to measure the charge
time in the CPU cycles, as shown in Equation 5

NCLK = 0.3 . RbCmod . CPU_Clock Equation 5

For example, if Cmod = 10 nF, Rb = 5.1 k, and
CPU_Clock = 12 MHz, the measured charge time is
NCLK = 183 CPU cycles.

Important Note

Cmod and Rb must be located on the correct pins in the
wizard settings in PSoC Designer. If they are not, an
error is reported.

Modulator Component (C m o d and IDAC)
Testing

This test is similar to the Cmod and Rb test, except a
predetermined current is used to charge Cmod to a
predetermined voltage, and the charge time is calculated
based on CPU_Clock cycles.

When the current is constant (Id), the rate at which Cmod
charges is linear and is proportional to the current and
value of Cmod. If the final voltage on Cmod is fixed to Vref,
then the relationship between current (Id), voltage (Vref),
capacitor (Cmod), and time (t) is shown in Equation 6.

Vref = Id * t / Cmod Equation 6

Based on Equation 6, “t” can be calculated, and similar to
Equation 5, the number of CPU clocks can be derived.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 19

Function

BYTE SelfTest_CSD_CheckMod (void)

Returns: 0 - No error

1 - Error detected

Include:

Source File: SelfTest_CSD.asm

Header File: SelfTest_CSD.h

Important Note

The CSD User Module must be named the CSD to use
the functions as such.

The function SelfTest_CheckMod() is called to detect

an error in Cmod and Rb/IDAC working. The function will
automatically compile for Rb/IDAC based on the modulator
combination selected in the project.

Important Note

The CSD User Module in PSoC Designer 5.3 supports
built-in FMEA. The code provided with this application
note is similar to the UM FMEA/Self-Test code. This code
can be used with previous Designer versions.

Checkerboard RAM Test

This is an additional RAM test that can help to detect
stuck-at fault in RAM areas without destroying them. But
this test does not cover coupling faults. The checkerboard
RAM test writes the checkerboard patterns (0x55 and
0xAA) to a sequence of memory locations. This is a
nondestructive memory test. This test performs the
following major tasks:

1. Saves the contents of the memory locations to be
tested in temporary registers (TMP_DRx).

2. Writes the binary value 10101010 to the memory
location ‘N’, and the inverted binary value, 01010101,
to the memory location ‘~N’.

3. Reads the content of the memory location ‘N’ and
checks if it is 10101010; it then checks 01010101 in
memory location ‘~N’.

4. Restores the data from the temporary registers

5. Steps 2 and 3 are repeated for the entire content in
the memory page.

6. After the test is completed, it is repeated starting from
the last address and in descending order.

7. After a memory page is completed, the test of the
next page starts until all the memory pages defined
are tested.

If an error is detected in the temporary registers used in
the checkerboard RAM test, avoid those corresponding
tests to prevent loss of RAM data.

Function

BYTE SelfTest_RAM_CheckerBoard(void)

Returns:

 0 (SelfTest_RAM_OK) No error

 2 (SelfTest_ERR_RAM_FAILURE) Error

Include:

Source File: selfTest.asm,

 selftest_ram_rom.c

Header File: selfTest.h, selftest.inc,

 selftest_ram_rom.h

The SelfTest_RAM_Checkerboard can be called at

any time. This function checks the RAM without destroying
the data. This function should be called only if the

SelfTest_CPU() returns 0.

Redundant Inverse Storage of Safety
Variable

The RAM tests provided and the ones mandated for Class
B are good at detecting bad RAM cells, whether they are
stuck to a value or coupled to nearby cells. But when it
comes to program execution, the danger with RAM is
variable corruption because of unexpected ISRs, poor
coding, or even poor optimization by the compiler. There is
no standard or test to check variable corruption. This
section provides a brief description of how it can be done.

To do this test, each global variable (or at least the key
variables) will require a shadow variable associated with it.
So it practically doubles the RAM used for global
variables. But, at times, this can be very handy and a
much needed RAM test compared to the March
algorithms. This test can be carried out in two ways:

Check Before Access

This method provides full protection against corruption but
it increases flash usage and execution time

1. The shadow variable is defined at a remote memory
location from the global variable being protected,
maybe in a different page for better protection against
corruption.

2. Whenever the global variable is written, the shadow
variable is updated with a bit-inverted value of the
global variable.

3. Before the global variable is accessed for read, the
values of the global variable and shadow variable are
bitwise XORed. If the result is 0xFF (all 1’s) the
variable is not corrupt. Otherwise, declare error and
process the necessary error handling, which can be a
simple program reset..

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 20

Periodic Variable Check

This method provides partial protection against corruption,
but with less impact on the flash size and execution time.

1. The shadow variable is defined at a far-away memory
location from the global variable being protected,
maybe in a different page for better protection against
corruption.

2. Whenever the global variable is written, the shadow
variable is updated with a bit-inverted value of the
global variable.

3. A periodic check function can be implemented, which
runs once in the while(1) loop and keeps a check on
the variable by bit-wise XORing with its shadow and
checking the result for 0xFF. In case of error, simple
error handling, such as resetting the system, can be
triggered.

Example code accompanies this application note in which
a simple function is used to check variable corruption of a
BYTE variable using its inverse storage.

Summary

This application note described how to implement
diagnostic measures proposed by the IEC 60730
standard. The introduction of IEC 60730-1 into the design
of white goods and other appliances adds a new level of
safety for consumers. By taking advantage of PSoC 1,
design teams can comply with regulations while
maintaining or reducing the cost of electronic systems.
The use of PSoC and the Class B Safety Software Library
allows you to create a strong system-level development
platform and achieve superior performance, fast time-to-
market, and energy efficiency.

References

1. IEC 60730 Standard, “Automatic Electrical Controls
for Household and Similar Use,” IEC 60730-1 Edition
4.0, 2010-03.

2. IEC 60335 Standard, “Household and Similar
Electrical Appliances – Safety,” IEC 60335-1 Edition
5.0, 2010-05.

3. Koopman, P. & Chakravarty, T., “Cyclic Redundancy
Code (CRC) Polynomial Selection for Embedded
Networks,” DSN04, June 2004.

About the Author

Name: Meenakshi Sundaram Ravindran

Title: Senior Applications Engineer

Background: The author holds a Bachelor’s of
Engineering degree in Electronics and
Communication from College of
Engineering, Guindy, Chennai (India).
He works on PSoC 1, CapSense, and
motor control solutions at Cypress.

Contact: msur@cypress.com

http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
mailto:msur@cypress.com

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 21

Appendix A: How to Obtain the Checksum of Flash (Invariable Memory)

Step 1:
Browse to the root folder of the PSoC Designer project and locate the .hex file.

Step 2:
Open the .hex file in any text editor.

Step 3:
Place the following code in any .c file in the project to place the checksum in the last two bytes of flash; the address of the
second-to-last byte for a 16-KB flash device is 0x3FFE.

#pragma lit_abs_address:<address of second last BYTE in flash>

__flash WORD checksum = 0x0000h;
#pragma end_abs_address

Step 4:
Go to the end of the file and locate the checksum, as shown in Figure 13.

Figure 13. CheckSum location in the .hex file

Step 5:
Replace the checksum value “0x0000h” entered in step 3 with the found checksum in step 4 as follows.

#pragma lit_abs_address:<address of second last BYTE in flash>

__flash WORD checksum = <checksum_value>;

#pragma end_abs_address

For asm:
;;
Org <address of second last BYTE in flash>
DW <checksum_value>
Area <flash area to be switched to for user code>
;;

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 22

Note After placing the code, the checksum observed in step 3 will change because the code in step 4 places two different
bytes at the end of the flash area, and these two bytes are also accounted in that checksum. During a self-test of
ROM/flash memory, the last two bytes are not included in the checksum calculation. Therefore, the calculated checksum
and this stored checksum need to match for proper ROM.

When using EEPROM UM or CSD self-test routines, care should be taken while calculating the checksum in this way. In such
scenarios, after the address of last byte until which checksum needs to be calculated is set, the rest of the flash area must be
written with ‘0’ to obtain the proper checksum through the method described. By default, ‘0x30h’ (the halt instruction) is written
in unused flash bytes. Or checksum can be manually calculated by subtracting (0x30h * number of bytes not used for
checksum calculation) from the found checksum.

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 23

Appendix B: IEC 60730-1 Table H.11.12.7

API Source File(s) Header File(s) Arg (s) Return

Fault Detect
Time

Class B
Component

Tested

(for
CPUCLK =

12 MHz)

SelfTest_CPU_Registers Selftest.asm Selftest.h; Selftest.inc; -

BYTE:

45 µs
CPU Registers
except PC

0 – No Err;

1 – TMP_DR Err;

Halt – CPU
register Err;

SelfTest_PC Selftest_pc.asm Selftest_pc.inc; Selftest_pc.h; -

BYTE:

~12.5 µs

CPU Register –
Program
Counter (Island
test)

0 – PC proper;

1 – Special
Calculation error
– PC might be
corrupt;

Does not
return/halt – PC
Err

SelfTest_IMO_Check Selftest_clock.asm

Selftest_clock.h;

-

BYTE:

~2 ms Clock

Selftest_clock.inc 0 – No Err;

 1 – ILO/IMO Err;

SelfTest_Clock_HW Selftest_clock_hw.c Selftest_clock_hw.h -

BYTE:

~2 ms
Clock (using
HW timer)

0 – No Err;

1 – ILO/IMO Err;

SelfTest_ROM

Selftest.asm; Selftest.h; Selftest.inc ;
WORD
noOfBlocks;
Number of
blocks to be
appended to
checksum;

BYTE:

~110 ms for
16k

Flash
(invariable
memory)

Selftest_ram_rom.c Selftest_ram_rom.h;
0 – No Err;

1 – Not
complete;

2 – CheckSum
mismatch;

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 24

API Source File(s) Header File(s) Arg (s) Return

Fault Detect
Time

Class B
Component

Tested

(for
CPUCLK =

12 MHz)

SelfTest_RAM_CheckerBoard Selftest.asm;

Selftest_ram_rom.c;

-

BYTE:
~50 ms for
1024 bytes

RAM (variable
memory)

Selftest.h; Selftest.inc ; 0 – No Err;

SelfTest_RAMMarchC_Periodic

Selftest_ram_march_c_periodic.c;
Selftest_ram_march_c_periodic.
h;

BYTE
*startAdr;
BYTE
*endAddr;
Start and end
address of
RAM area to
be tested

2 – RAM Err;

~76 ms for 768
bytes Selftest_ram_march_low_lvl.asm; Selftest_ram_march_low_lvl.h;

0xFF – Ram
address Out of
bounds

SelfTest_bSTKPG_Test_March_C Selftest_ram_march_c.asm;

Selftest_ram_march_c.h;

-

~3.5 ms for
256 bytes Selftest_ram_march_c.inc;

SelfTest_bRAM_Test_March_B

Selftest_ram_march_b.asm; Selftest_ram_march_b.h; -

~15 ms for 768
bytes

SelfTest_bSTKPG_Test_March_B
~5 ms for 256
bytes

SelfTest_SAR Selftest_SAR_ADC.asm

Selftest_SAR_ADC.inc;

-

BYTE:

~70 µs A/D Converter

Selftest_SAR_ADC.h; 0 – No Err;

 0xFF- SAR Err;

SelfTest_Comparator SelfTest_Comparator.c SelfTest_Comparator.h -

0 – No Err;

~42 µs Comparator

1 – Err;

SelfTest_UART_LoopBack SelfTest_UART.c SelfTest_UART.h

BYTE: BYTE: ~2.3 ms @
External
Communication;

Parity; 0 – No Err; 93.75 ksps Protocol Test

0 – No Parity 1 – Err;

2 – Even;
2 – Test Not
done;

6 – Odd
Parity;

0xFF –

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 25

API Source File(s) Header File(s) Arg (s) Return

Fault Detect
Time

Class B
Component

Tested

(for
CPUCLK =

12 MHz)
Disable
UART

SelfTest_SPIS_LoopBack SelfTest_SPI.c SelfTest_SPI.h
BYTE:

~360 µs @
93.75k SCLK

SPI Mode;
0xFF –
Disable SPIS
after test

CRC_Calculate CRC.asm CRC.h; CRC.inc;
BYTE:

-
~25 µs for one
BYTE

External
Communication;
CRC-Single
Word

Next Byte into
CRC-8
engine

SelfTest_WDT Selftest_WDT.c Selftest_WDT.h

-

BYTE:

4 * Sleep timer Others

0 – No Err;

1 – WDT
disabled/Err;

SelfTest_CSD_CheckShorts Selftest_CSD.asm Selftest_CSD.h

-

BYTE:
~380 µs for 2
sensors

Others

0 – No Err;

SelfTest_CSD_CheckBaselines N – Err Sensor
number

~60 µs for 2
sensors

SelfTest_CSD_CheckMod

WORD:

~1.5 ms Others

CMOD
charge/discharge
CPU counts

SelfTest_StackOverflowChk_Init SelfTest_StackOverflow.asm SelfTest_StackOverflow.inc;
SelfTest_StackOverflow.h;

-

- 7 µs

Stack Overflow
check

SelfTest_StackOverflowChk BYTE:

9 µs

0 – No Err;

1 – Err;

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 26

Document History

Document Title: PSoC
®
 1 – IEC 60730 Class B Safety Software Library – AN81828

Document Number: 001-81828

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4222277 MSUR 12/17/2013 New specification.

*A 4637314 VAIR 01/27/2015 Updated correct hyperlink to IEC 60730 General Requirements in

Introduction.
Updated the clock test description in IntroductionClock (Table 1 – 3).
Updated the argument description SelfTest_ROM() API in Flash (Invariable
Memory, Table 1 – 4.1).
Updated the section Modulator Component (Cmod and Rb) Testing.
Updated the note under SelfTest_CSD_CheckShorts() API in Test on Sensor
Shorts.
Added a note indicating VC2 is used as SCLK in Communications SPI.

*B 5711125 AESATP12 04/26/2017 Updated logo and copyright.

http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/48788?OpenDocument

PSoC
®
 1 – IEC 60730 Class B Safety Software Library

www.cypress.com Document No. 001-81828 Rev. *B 27

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

 © Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries,
including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned
by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Overview of Annex H
	Class B Requirements
	Class B Safety Software Library
	API Functions for PSoC 1
	CPU Self-Test (Table 1 – 1.1)
	Program Counter (Table 1 – 1.3)
	Stack Overflow Test
	WDT Test
	Interrupt Handling and Execution (Table 1 – 2)
	Clock (Table 1 – 3)
	Flash (Invariable Memory, Table 1 – 4.1)
	SRAM (Variable Memory, Table 1 – 4.2)
	March Test
	March C Test
	March B Test

	Digital I/O (Table 1 – 7.1)
	A/D Converter (Table 1 – 7.2.1)

	Additional Safety Measures
	Comparator
	Communications UART (Table 1 – 6.1/6.2)
	Communications SPI
	CRC-8 for Communications Protocols
	CSD
	Test on Sensor Shorts
	Test on Sensor Disconnect
	Modulator Component (Cmod and Rb) Testing
	Modulator Component (Cmod and IDAC) Testing

	Checkerboard RAM Test
	Redundant Inverse Storage of Safety Variable
	Check Before Access
	Periodic Variable Check

	Summary
	References
	About the Author
	Appendix A: How to Obtain the Checksum of Flash (Invariable Memory)
	Appendix B: IEC 60730-1 Table H.11.12.7
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

