
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document No. 001-77900 Rev.*G 1

AN77900
PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

Author: Greg Reynolds

Associated Part Family: All PSoC 3 and PSoC 5LP parts

Associated Code Examples: Yes

Software Version: PSoC Creator™ 4.1 SP1 or higher

For a complete list of related application notes, click here.

AN77900 is an introduction to the PSoC 3 and PSoC 5LP low-power modes and features. Major topics include PSoC

power modes, power management APIs and registers, power-saving techniques, and other low-power mode

considerations. The associated PSoC Creator project demonstrates these principles.

Contents

1 Introduction .. 2
1.1 Power Modes and Transitions 2
1.2 Wakeup Sources ... 3

2 Active Mode Power Reduction 4
2.1 Power Off Unused Components 4
2.2 Use the ADC at a Slower Sample Rate 5
2.3 Use PSoC to Gate Current Paths 5
2.4 Dynamically Change Clock Speeds 6
2.5 Use DMA to Move Data 9
2.6 Using Alternate Active mode 9
2.7 Use Power Mode Configuration Registers 9

3 Other Power Mode Considerations 9
3.1 Faster Clocks Can Mean Lower Power 9
3.2 32-kHz Crystal Low-Power Mode 11
3.3 Low-Voltage Interrupts in PSoC Sleep Mode 12
3.4 SegLCD in PSoC Sleep Mode 12
3.5 Boost Converter in PSoC 3 Sleep Mode 12
3.6 Boost Converter in PSoC 5LP Sleep Mode....... 13
3.7 Fast IMO Startup ... 13
3.8 Watchdog in PSoC Sleep Mode 14
3.9 GPIOs in PSoC Low-Power Mode 14
3.10 SIOs in PSoC Low-Power Mode 15
3.11 Digital Blocks in PSoC Low-Power Mode 15
3.12 VREF Sources in PSoC Low-Power Mode 16

3.13 Sleep and Hibernate Regulators 17
3.14 Power Consumption While Programming 17
3.15 Is the Debug Interface Running? 17

4 Approximating Power Consumption 18
5 Summary ... 18
6 Related Application Notes ... 19
Appendix A. Low-Power Example Projects 20

A.1 Two Low-Power Demo Projects 20
A.2 Voltage Alarm – No Optimization 21
A.3 Voltage Alarm – With Optimizations 22

Appendix B. Power Measurements on DVKs 23
B.1 CY8CKIT-001 Modifications 23
B.2 CY8CKIT-030 and CY8CKIT-050 Modifications 24

Appendix C. Power Management API and Registers 26
C.1 CyPmSaveClocks() ... 26
C.2 CyPmRestoreClocks() 26
C.3 CyPmAltAct() .. 26
C.4 CyPmSleep() .. 26
C.5 CyPmHibernate() or CyPmHibernateEx() 26
C.6 Component Low-Power API 26
C.7 Direct Register Writes 27
C.8 Power Management API Flow Charts 28
C.9 Power Management API Register Reference ... 29

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 2

1 Introduction

The PSoC 3 and PSoC 5LP low-power modes allow you to reduce overall current draw without limiting functionality,
especially when they are implemented with other power-saving features and techniques.

This application note describes the fundamentals of the PSoC low-power modes, provides information on Active mode
power-saving methods, and discusses other low-power considerations. It is assumed that the reader is familiar with the
PSoC 3 and PSoC 5LP device architecture and PSoC Creator.

1.1 Power Modes and Transitions

PSoC 3 and PSoC 5LP devices feature four modes of operation: Active, Alternate Active (AltAct), Sleep, and Hibernate.

▪ Active mode is the primary operating mode of the device and is the default power mode at boot. Active mode
typically consumes the most power.

▪ AltAct mode is similar to Active mode. It is an alternate power configuration for Active mode. It provides a method
in which the device can switch to a subset of active analog/digital blocks quickly without having to turn them off
individually then each one back on individually when returning to normal or Active mode. By default, the CPU is
disabled.

▪ Sleep mode disables most subsystems to reduce average current consumption (~1 µA for PSoC 3 and ~2 µA for
PSoC 5LP). Wakeup time is 15-µs max for PSoC 3 and 25-µs max for PSoC 5LP.

▪ Hibernate mode disables all but the absolute minimum resources to provide the greatest power savings (~200 nA
for PSoC 3 and ~300 nA for PSoC 5LP). Wakeup time is 100-µs max for PSoC 3 and 125-µs max for PSoC 5LP.

Active and AltAct modes can transition to any other mode. Sleep and Hibernate modes always wake up and transition
back to Active mode, as Figure 1 shows.

Figure 1. PSoC 3 and PSoC 5LP Power Mode Transitions

Making a transition from one power mode to another affects the functionality of all subsystems throughout PSoC. The
APIs provided by PSoC Creator help simplify and manage these power mode transition processes.

1.1.1 Act ive Mode

Any valid wakeup or reset event returns the PSoC device to Active mode and enables the CPU. A return to Active
mode is usually automatic, so there is no API function for this transition.

The typical way to exit Active mode is to call a low-power mode API function. These functions prepare the PSoC device
to enter a low-power mode and update the register that controls the global power mode setting. See Power
Management API and Registers for more information. You do not need to call API functions to exit Active mode but it
is strongly recommended that you do so.

1.1.2 Al tAct Mode

The typical way to enter AltAct is to call the API function CyPmAltAct(). If any interrupts are pending, the PSoC

device immediately returns to Active mode.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 3

PSoC automatically returns to Active mode when an unmasked wakeup source causes an interrupt. See Table 1 for
the list of wakeup sources available. You can also exit AltAct mode by transitioning to Sleep or Hibernate if the CPU
has not been disabled in AltAct mode. Refer to the PM_STBY_CFG0 register in the PSoC 3 Registers Technical
Reference Manual (TRM) to enable the CPU during AltAct mode.

1.1.3 Sleep Mode

The typical way to enter Sleep mode is to call the API function CyPmSleep(). If any interrupts are pending, the PSoC

device immediately returns to Active mode.

The only way to exit Sleep mode is through a reset or wakeup event, because the CPU and most subsystems are
halted. See Table 1 on page 3 for the list of wakeup sources available.

1.1.4 Hibernate Mode

The typical way to enter Hibernate mode is to call the API function CyPmHibernate(). If any port interrupt control unit

(PICU) interrupts are pending, the PSoC device immediately returns to Active mode.

The only way to exit Hibernate mode is with an enabled PICU interrupt or hardware reset.

1.2 Wakeup Sources

Wakeup sources are grouped into three types: periodic, asynchronous, and reset.

▪ Periodic wakeup sources include the central time wheel (CTW), one pulse per second (OPPS), and LCD timers.
The Real-Time Clock (RTC) and Sleep Timer components use these timers.

▪ Asynchronous wakeup sources include the Boost Converter, Comparator, I2C, LVI, and PICU.

▪ Reset wakeup sources include the external reset (XRES) pin and watchdog timer (WDT).

The low-power modes support some or all of these wakeup sources. Table 1 lists the wakeup sources available for
each power mode.

1.2.1 Mult ip le Wakeup Sources

PSoC applications can use multiple wakeup sources. For example, the PSoC device may need to wake periodically to
check the battery status (OPPS), when a button is pressed (PICU), or if the external temperature is too high
(Comparator).

To configure multiple wakeup sources, call the power mode API function with multiple parameters OR’ed together. You
must read an interrupt status register after wakeup to determine the wakeup source. See Power Management API and
Registers for details.

Table 1. Low-Power Modes and Wakeup Sources

Wakeup
Source

PSoC 3 PSoC 5LP
Notes

AltAct Sleep Hibernate AltAlct Sleep Hibernate

Interrupt   Interrupt Component must be used.

CTW   Sleep time is configurable.

SleepTimer       Sleep Timer uses the CTW.

OPPS   Requires 32-kHz crystal.

RTC     RTC uses the OPPS.

FTW  

PICU       Any unmasked pin interrupt.

Comparator      

I2C Address
Match    

Fixed block slave address match.

Segment
LCD Refresh  1  1

Period depends on settings.

Boost
Converter  2

3  
3

http://www.cypress.com/
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-registers-trm
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-registers-trm

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 4

Wakeup
Source

PSoC 3 PSoC 5LP
Notes

AltAct Sleep Hibernate AltAlct Sleep Hibernate

WDT     WDT issues a reset if not fed.

LVI    

XRES       Device wakes and resets.

1. The LCD low-power feature cannot be used in conjunction with the CyPmSaveClocks() function.

2. In PSoC 3 Sleep mode, the Boost Converter can be used in its Active or Standby mode. Standby mode is
recommended.

3. Hibernate is not recommended for applications requiring a boost. Use Sleep mode instead.

2 Active Mode Power Reduction

Your application may not be able to use the low-power modes, or it may need to spend most of its time in Active mode.
You can still reduce average power consumption in Active mode without going into low-power modes.

2.1 Power Off Unused Components

One of the easiest ways to reduce power in Active mode is to turn off unused components.

Any component that can be disabled in Active has a Stop function in its API. This function immediately halts all operation
of the component and sets it to its lowest power state. The component may be actively performing a task; therefore,
check its status before stopping it.

/* <Check task status.> */

/* Stop the component. */

MyComponent_Stop();

After a component is stopped, it can be restarted by calling its Start function.

/* Start the component. */

MyComponent_Start();

Any component that must preserve its configuration data before powering down has a Sleep function in its API. The
Sleep function saves all necessary component settings and then calls the Stop function. In a few cases, the Sleep
function does nothing but call the Stop function. If code execution time is important, look at the generated source code
to see if you can call the Stop function instead.

/* <Check task status.> */

/* Sleep the component. */

MyComponent_Sleep();

/* <Do something else here.> */

/* Wake the component. */

MyComponent_Wakeup();

When a component is put to sleep, it should be awakened again by calling its Wakeup function. This restores the
component to its pre-sleep state. The Start function also brings the component back into operation, but it is reinitialized
to its default state.

Sleep and Stop both result in the same amount of power savings. The difference is whether the component needs to
resume from exactly where it left off. The example projects associated with this application note show how to use
Stop/Start and Sleep/Wakeup.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 5

2.2 Use the ADC at a Slower Sample Rate

The ADCs in PSoC have several different power profiles. The profiles are enabled automatically depending on the
resolution and sample rate. For example, the power consumption of the DelSig ADC in PSoC 3 changes greatly when
you switch power modes, as Figure 2 shows.

Figure 2. PSoC 3 DelSig IDD Versus Sample Rate (Buffered)

A slightly slower sample rate can result in noticeable power savings. In this case, if the ADC was configured for 16-bit
resolution, the difference between 10 ksps and 12 ksps is almost 1 mA.

If Active mode power consumption is a concern, then it is worthwhile to check the component datasheets to see if a
slower sample rate will result in significant power savings.

Refer to the Delta-Sigma ADC component datasheet, PSoC 3 or PSoC 5LP Architecture TRMs for more information
on selecting the proper sample rate and resolution.

2.3 Use PSoC to Gate Current Paths

Your PCB may have other components that draw power, and the PSoC device can be used to control the current
through them. Note that the maximum pin source and sink capabilities, listed in the datasheet, must not be exceeded.

A good example of this scenario is a thermistor application, as Figure 3 shows. In this case, the PSoC device measures
temperature using the voltage on an analog pin, which changes as the thermistor resistance changes.

Figure 3. Typical Thermistor Application

The ADC can be turned off when not in use, but the external components still consume power because nothing stops
the flow of current through the resistor and thermistor. An easy solution with PSoC is to use a second pin as a switch
to ground, as Figure 4 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=48916
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-architecture-trm
http://www.cypress.com/documentation/technical-reference-manuals/psoc-5lp-architecture-trm

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 6

Figure 4. Using a GPIO as a Ground Switch

In this configuration, current flow can be stopped by writing a ‘1’ to Pin_3. Writing a ‘0’ resumes current flow. The added
cost of this power-saving feature is only one pin and a few lines of code.

2.4 Dynamically Change Clock Speeds

PSoC 3 and PSoC 5LP can change clock speeds during runtime. This allows you to set the clocks slower most of the
time and then increase their speed when it is needed to perform complex operations.

In a new project, the default clock settings are a 3-MHz internal main oscillator (IMO) feeding a 24-MHz PLL, as Figure
5 shows.

Figure 5. Default IMO and PLL Settings for a New Project

Current consumption can be reduced if the PLL is disabled and the IMO is set to 3 MHz. This is great for an empty
project, but your application may require a faster clock.

For example, a 16-bit ADC set to multi-sample mode at 10k samples per second requires the Master Clock to run at a
minimum of 12 MHz, as Figure 6 shows. To do this, you should either run the IMO at 12 MHz or the PLL at its minimum
of 24 MHz.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 7

Figure 6. Warning– Clocks Too Slow for ADC Settings

When the ADC is not sampling, this project can operate with the IMO set to 3 MHz. This means you can simply disable
the PLL and switch the IMO between 3 MHz and 12 MHz.

PSoC Creator requires that you configure the clocks to support the speed of all components in your project. In this
example, you must make the default configuration run at 12 MHz, as Figure 7 shows.

Figure 7. Clock Settings for Dynamic Changes

After the settings are finalized in the design, you can write firmware to change the clock speeds. This example uses
three API functions to configure PSoC properly:

▪ CyIMO_SetFreq() – This function sets the frequency of the IMO clock.

▪ CyFlash_SetWaitCycles() – This function calculates and sets the number of wait cycles needed for proper

flash read and write operations.

▪ CyDelayFreq() – This function calculates and sets the number of cycles needed to accurately time a CyDelay

operation.

Other clocks are not automatically changed. You must add code to adjust their settings. Refer to the component
datasheets and the System Reference Guide for information about the API and registers used to make these
adjustments.

You can create two functions to change the IMO speed:

http://www.cypress.com/
http://www.cypress.com/?rID=51972

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 8

void SlowDownClocks(void)

{

/* Set IMO frequency to 3MHz. */

CyIMO_SetFreq(CY_IMO_FREQ_3MHZ);

/* Set Flash wait to 3MHz. */

CyFlash_SetWaitCycles(3);

/* Set CyDelay frequency to 3MHz. */

CyDelayFreq(3000000);

/* Change any other active clocks. */

OtherClock_SetDivider(0); /* 3MHz/1 */

}

void SpeedUpClocks(void)

{

/* Set IMO frequency to 12MHz. */

CyIMO_SetFreq(CY_IMO_FREQ_12MHZ);

/* Set Flash wait to 12MHz. */

CyFlash_SetWaitCycles(12);

/* Set CyDelay frequency to 12MHz. */

CyDelayFreq(12000000);

/* Change any other active clocks. */

OtherClock_SetDivider(3);/* 12MHz/4 */

}

In the example, the clock can be slowed to 3 MHz immediately after system initialization. It is increased to 12 MHz only
when the ADC needs to take a sample, as Figure 8 shows.

Figure 8. Flow Chart for Clock Changing Example

Startup

Initialize System

SlowDownClocks()

Perform

Other Tasks

SpeedUpClocks()

Take ADC

Measurement

SlowDownClocks()

The ADC could also

be powered down

while not active.

A timed event or

asynchronous interrupt

could trigger an ADC

measurement.

If possible, system

initialization should take

place before reducing

clock speed.

Clock speed adjustments can be used in conjunction with other power-saving techniques to reduce average current
consumption without using the low-power modes.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 9

2.5 Use DMA to Move Data

You can save power any time you offload a task from the CPU and either halt it or let it do something else in parallel.
PSoC 3 and PSoC 5LP have a DMA engine that can be used in Active or AltAct mode to transfer data with no CPU
intervention.

In the example shown in Figure 9, the ADC triggers a DMA transfer when a conversion is complete. The DMA engine
moves the results of the ADC to another location (without using the CPU), and then it triggers an interrupt to indicate
that the transfer is complete.

DMA use is a complex topic that is too broad to cover in this document. You can find more information on
www.cypress.com, including example projects and application notes, such as AN52705 - PSoC® 3 and PSoC 5LP -
Getting Started with DMA .

Figure 9. DMA Triggered by ADC Completion

2.6 Using Alternate Active mode

Alternative active mode is similar to active mode in most of its functionality. Alternative active mode also has its own
additional set of subsystem template bits which determine whether a subsystem is enabled or disabled. This mode is
made available for quick transitions between active and an alternate low-power mode with a subset of the devices
operating including the CPU.

For example, you can write to the template bits to disable CPU and enable certain peripherals to operate in alternate
active mode. While in alternate active mode, if any interrupt is generated, the device automatically transitions to active
mode and begins executing the firmware in active mode. This is much more efficient and faster than powering individual
blocks on and off.

2.7 Use Power Mode Configuration Registers

In Active or AltAct mode, you can control the power to most subsystems with the power mode configuration registers.
The 14 PM_ACT_CFGx registers gate power and clocks in Active mode. The 14 PM_STBY_CFGx registers apply to
AltAct mode.

Based on the project settings, PSoC Creator generates a set of default values for the power mode configuration
registers. These values are stored in the cyfitter_cfg.c file and are loaded into the registers at boot. You can change
the configuration during runtime with a register write in any of the CY_PM_ACT_CFGx registers.

The new settings take effect immediately but they do not persist beyond a reset. Also, some bits in these registers are
automatically set to ‘1’ by interrupts from the subsystems.

It is better to call the Stop function in the component API instead, because it is always mapped to the correct physical
subsystem. The power mode configuration register bitmaps are described in the PSoC 3 and PSoC 5LP Registers
TRMs.

3 Other Power Mode Considerations

This section discusses a variety of tips, tricks, and recommendations related to the use of PSoC 3 and PSoC 5LP low-
power modes.

3.1 Faster Clocks Can Mean Lower Power

In some cases, running the clocks faster can actually result in a lower average current consumption. For example,
consider a PSoC design that takes a reading from a sensor once every second, performs several parsing and
calculation operations, and then transmits the results to another device.

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an52705-psoc-3-and-psoc-5lp-getting-started-dma
http://www.cypress.com/documentation/application-notes/an52705-psoc-3-and-psoc-5lp-getting-started-dma
http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=73299

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 10

Sleep can be used to reduce power use when the PSoC device is idle, but the average current is higher because of
the time spent in Active mode. Figure 10 is a representation of the current consumption of this example with the system
clocks set at 3 MHz.

Figure 10. Example Current Profile with 3-MHz Clocks

Average

Current

C
u

rr
e

n
t

Time
ActiveSleep

If you look at the tasks that are being performed when the PSoC device is awake, it may be possible to complete them
sooner by running the system clocks faster. This can reduce the average current because the PSoC device is in Active
mode for less time. Figure 11 is a representation of Active mode timing, broken up into tasks.

Figure 11. Analysis of Tasks in Active Mode at 3 MHz

A B C D E

A – Wake from sleep.

B – Read sensor data.

C – Manipulate data.

D – Transmit result.

E – Go back to sleep.

C
u

rr
e

n
t

Time

The time required for some tasks does not change even if the system clock frequency increases. Sensor reading and
data transmitting fall into this category. The other tasks, however, require less time if the CPU operates at a faster
frequency.

At some point, the benefit of a shorter Active time is overcome by the energy required to drive the clocks at a higher
rate. Assume that the optimal speed is 12 MHz, as Figure 12 shows.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 11

Figure 12. Analysis of Tasks in Active Mode at 12 MHz

A B C D E

A – Wake from sleep.

B – Read sensor data.

C – Manipulate data.

D – Transmit result.

E – Go back to sleep.

C
u

rr
e

n
t

Time

The time spent in Active mode is about half as long as with the slower clocks. Figure 13 shows that the peak current
consumption is greater when the clocks are faster, but the overall average consumption is lower.

Figure 13. Example Current Profile with 12-MHz Clocks

Average

Current

C
u

rr
e

n
t

Time
ActiveSleep

You may even be able to reduce the peak Active current by applying some of the other suggestions included in this
application note.

For more information on PSoC clocking, refer to application note AN60631 - PSoC 3 and PSoC 5LP Clocking
Resources.

3.2 32-kHz Crystal Low-Power Mode

The 32-kHz crystal can be configured to operate in a reduced power mode when the PSoC device is in Sleep mode. It
is configured to operate at normal power by default. Use the following function near the top of main() to enable this
feature:

CyXTAL_32KHZ_SetPowerMode(1);

The crystal continues to operate at normal power during Active and AltAct modes; it is disabled during Hibernate mode.
The reduced power mode is ~1 µA less than normal power mode.

The System Reference Guide offers more information about this function.

http://www.cypress.com/
http://www.cypress.com/?rID=40990
http://www.cypress.com/?rID=40990
http://www.cypress.com/?rID=51972

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 12

3.3 Low-Voltage Interrupts in PSoC Sleep Mode

The low-voltage interrupt (LVI) subsystem can be used to wake the PSoC device from Sleep mode, but it consumes
~1 µA of power when enabled. If your application uses the LVI during Active mode but does not need it during Sleep
mode, it can be disabled to save power. Use the following API functions to disable this feature:

CyVdLvDigitDisable(); /* Digital LVI */

CyVdLvAnalogDisable(); /* Analog LVI */

To enable it again after wakeup, use:

CyVdLvDigitEnable(<Reset>,<Threshold>);

CyVdLvAnalogEnable(<Reset>,<Threshold>);

The LVI subsystem is disabled by default. The System Reference Guide offers more information about these functions.

3.4 SegLCD in PSoC Sleep Mode

The Direct Drive Segment LCD (SegLCD) component has a low-power configuration to ensure that the LCD segments
are refreshed when the PSoC device is in Sleep mode, as Figure 14 shows.

Figure 14. SegLCD Configuration Wizard

The CyPmSaveClocks() function cannot be used, and the project must be configured to run at 12 MHz for the

SegLCD component to operate properly in Sleep mode. This is because the CyPmSaveClocks() function turns off

the digital clocks that the component uses, and the CyPmSleep() function sets the system clocks to run from the IMO

at 12 MHz.

PSoC Creator includes two SegLCD example projects to demonstrate operation in Active and Sleep modes. Refer to
these projects for details on implementing the SegLCD component in a system that uses Sleep mode. You can also
refer to AN52927 – PSoC 3 and PSoC 5LP Segment LCD Direct Drive for more information.

3.5 Boost Converter in PSoC 3 Sleep Mode

The PSoC 3 boost converter can be used with all PSoC 3 power modes. It has two modes of operation:

▪ Boost Active is used in Active or AltAct mode. In this mode, the boost converter monitors the output voltage and
can support full PSoC functionality.

▪ Boost Standby is a low-power state that provides enough power for the PSoC device to operate while in Sleep
mode.

It is not recommended to use chip Hibernate with the boost converter. Any power savings accrued from using Hibernate
instead of Sleep are small because the boost converter draws more power than the rest of the chip.

The PSoC device cannot operate for more than a few microseconds (depending on the configuration) in Active or AltAct
modes when the boost converter is in Boost Standby mode. Change the Boost mode to Standby immediately before
putting the PSoC device to sleep. You should also set the Boost mode to Active as soon as possible after wakeup.

http://www.cypress.com/
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=37795

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 13

/* Set system clocks for low power. */

CyPmSaveClocks();

/* Set boost to Standby mode. */

BoostConv_SetMode(BoostConv_BOOSTMODE_STANDBY);

/* Sleep PSoC 3 until wakeup event. */

CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_BOOSTCONVERTER);

/* Restore boost to Active mode. */

BoostConv_SetMode(BoostConv_BOOSTMODE_ACTIVE);

/* Restore system clocks. */

CyPmRestoreClocks();

The external 32-kHz crystal is used to time the automatic refresh, or “thump,” of the converter in Sleep mode. Thump
is enabled by default if the API function is used to put the Boost Converter in Standby mode.

Additional details about the boost subsystem are available in the PSoC 3 datasheets and TRM. More information on
the Boost Converter Component is available in the Boost Converter component datasheet and System Reference
Guide.

3.6 Boost Converter in PSoC 5LP Sleep Mode

The PSoC 5LP boost converter can be used with all PSoC 5LP power modes. It has two modes of operation:

▪ Boost Active mode is used in chip Active, AltAct, and Sleep modes. In this mode, the boost converter monitors the
output voltage and can support full PSoC functionality.

▪ Boost Standby is a low-power state that provides enough power for the PSoC device to operate while in Sleep
mode.

It is not recommended to use chip Hibernate with the boost subsystem. Any power savings from using Hibernate instead
of Sleep mode are small because the boost converter draws more power than the rest of the chip.

The PSoC device cannot operate for more than a few microseconds (depending on the configuration) in Active or AltAct
modes when the boost converter is in Standby mode and is powering the PSoC device. Change the Boost mode to
Standby immediately before putting the PSoC device to sleep.

/* Set system clocks for low power. */

CyPmSaveClocks();

/* Set boost to Standby mode. */

BoostConv_SetMode(BoostConv_BOOSTMODE_SLEEP);

/* Sleep until boost refresh is needed. */

CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_CTW);

/* Restore boost to Active mode. */

BoostConv_SetMode(BoostConv_BOOSTMODE_ACTIVE);

/* Restore system clocks. */

CyPmRestoreClocks();

Additional details about the boost subsystem are available in the PSoC 5LP datasheets and TRM. More information on
the Boost Converter Component is available in the Boost Converter component datasheet and System Reference
Guide.

3.7 Fast IMO Startup

PSoC 3 and PSoC 5LP have a Fast IMO (FIMO) feature that starts the IMO at 48 MHz to speed up boot. This means
that current consumption may be higher during boot than regular operation. This feature is enabled by default in the
Design-Wide Resources file of a PSoC Creator project, as Figure 15 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=46442
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=46442
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=51972

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 14

Figure 15. Fast IMO Selection in the .cydwr Tab

Disabling this feature can reduce current at startup, but it results in a slower boot and initialization period. Refer to the
“Clocking System” section of the PSoC 3 and PSoC 5LP Architecture TRMs for more information about the FIMO
feature and its impact on boot time.

3.8 Watchdog in PSoC Sleep Mode

The watchdog timer can operate in Active, AltAct, and Sleep modes. Three options are available for low-power
watchdog behavior:

▪ No change – The watchdog continues to run with the specified interval and must be cleared before the interval is
reached.

▪ Maximum interval – The watchdog continues to run and must be cleared, but the interval is set to the maximum
(1024 ticks). It returns to the original interval after being cleared for the first time after wakeup.

▪ Disabled – The watchdog is disabled while the PSoC device is in a low-power mode. It is enabled again upon
wakeup and runs at the specified interval.

It is recommended that you use the API (CyWdtStart) to ensure that the watchdog is configured as desired. The
“Maximum Interval” option is set in the PM_WDT_CFG registers by default.

The watchdog is not active in Hibernate mode. It is reset after a wakeup from Hibernate, but the behavior may not
match the configuration defined in the user firmware.

More information on the operation of the watchdog timer and the associated API is available in the PSoC 3 and
PSoC 5LP Architecture TRMs and the System Reference Guide.

3.9 GPIOs in PSoC Low-Power Mode

The GPIOs can continue to drive when the PSoC device is in a low-power mode. This is helpful when you need to hold
other external logic at a fixed level, but it can lead to wasted power if the pins needlessly source or sink current.

You should analyze your design and determine the best state for your GPIOs during low-power operation. If holding a
digital output pin at logic 1 or 0 is best, then use the component’s Write function to set it.

/* Set My Pin to ‘0’ for low power. */

MyPin_Write(0);

Any unused GPIO should be configured as Analog Hi-Z unless there is a specific reason to use a different drive mode.
If all of the physical pins associated with a Pins Component can be set to Analog Hi-Z, then you can use the
component’s SetDriveMode function.

/* Set My Pin to Alg Hi-Z for low power. */

MyPin_SetDriveMode(MyPin_DM_ALG_HIZ);

If you need to change only some of the pins that are associated with a Pins Component, you can write to the port pin
configuration registers. There is one register for each GPIO pin on the PSoC device named CYREG_PRTx_PCy, where
"x" is the port number and "y" is the pin number.

The flexibility of PSoC 3 and PSoC 5LP makes it easy to manage GPIO drive modes to prevent unwanted current
leakage. See AN72382– Using PSoC 3 and PSoC 5LP GPIO Pins for more information.

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=72887
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-architecture-trm
http://www.cypress.com/?rID=72887
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=57571

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 15

3.10 SIOs in PSoC Low-Power Mode

Special input/output (SIO) pins should be put in single-ended mode before putting the PSoC device in Sleep mode to
reduce PSoC sleep current. SIOs in differential mode consume a high current of 100 µA. To put SIOs in single-ended
mode, use the register PRT12_SIO_CFG and set the bits for the specific SIO pair to zero. After the PSoC device comes
out of Sleep mode, the bits should be set back to their previous values. Table 2 shows the description of the SIO
configuration register.

Table 2. PRT12_SIO_CFG Register

SIO[7:6] SIO[5:4] SIO[3:2] SIO[1:0]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

See AN60580 – SIO Tips and Tricks in PSoC 3/PSoC 5LP for more information.

Also, if you are using SIO pins as outputs and you have the “Drive level” set to “Vref” instead of “Vddio” you may want
to disable the Vref mode during low power modes to minimize the power. These are done in pairs so enable the Vref
output mode in groups of two adjacent pins. See code example below that defines the mask for the pin pairs and how
to enable or disable the Vref.

#define SIO_VREG_EN_1_0 0x01 // Mask for SIO pins[1:0]

#define SIO_VREG_EN_3_2 0x04 // Mask for SIO pins[3:2]

#define SIO_VREG_EN_5_4 0x10 // Mask for SIO pins[5:4]

#define SIO_VREG_EN_7_6 0x40 // Mask for SIO pins[7:6]

// Code to enable and disable Vref output mode (Instance name is “MySIO”)

MySIO_SIO_CFG |= VREG_EN_3_2; // Set to use Vref reference

MySIO_SIO_CFG &= ~VREG_EN_3_2; // Clear Vref for Low Power mode

3.11 Digital Blocks in PSoC Low-Power Mode

Some subsystems are always powered off in Sleep and Hibernate modes. Connecting them to other subsystems that
remain powered can lead to unwanted behavior.

Figure 16 shows a Control Register that is used to set the output of a GPIO pin (the other pin and clock are used to
indicate that the PSoC device is awake).

Figure 16. Control Register Used to Set Pin Output

The pin continues to drive its last state (HIGH) while the chip is in low-power mode, but the physical block containing
the Control Register is unpowered. When the PSoC device wakes and power to the digital block is restored, the Control
Register bit is reset to ‘0’. The pin connected to the Control Register then switches from a HIGH to LOW output, as
Figure 17 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=40989

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 16

Figure 17. Control Register Not Persistent Through Sleep

Even if firmware is added to set the Control Register back to ‘1’ at wakeup, a glitch occurs because the pin logic briefly
sees a ‘0’ at wakeup before the firmware can change it, as Figure 18 shows.

Figure 18. Control Register Glitch at Each Wakeup

In this case, it is better to control the pin directly, instead of with a Control Register.

3.12 VREF Sources in PSoC Low-Power Mode

In PSoC, VDDA, VDDD, and VBAT remain connected during Sleep or Hibernate mode, but the other VREF sources
do not. Additionally, the VDDA/2 reference remains active, but the voltage divider is disconnected. If a reference voltage
is required during Sleep or Hibernate mode, you must use an external source.

Figure 19 shows an example of this situation. The comparator is configured as a wakeup source and it has a VREF
component connected to the negative terminal.

Figure 19. How Not to Use VREF with Low Power

This is acceptable as long as the PSoC device is in Active or AltAct mode, but the VREF is disconnected in low-power
mode. The result is intermittent wakeups when the negative terminal floats, as Figure 20 shows.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 17

Figure 20. Intermittent Wakeup as Comparator Input Floats (Voltage scale = 1.0 V)

The solution to this issue is to supply an external reference voltage, as Figure 21 shows. This reference remains active
while the PSoC device is in Sleep mode; therefore, the Comparator wakeup source functions as desired.

Figure 21. Using an External VREF with Low Power

Very little current is needed on the input terminals, so large resistances can be used to limit the power lost through the
divider.

3.13 Sleep and Hibernate Regulators

PSoC 3 and PSoC 5LP have two low-power regulators that are used to maintain logic states in Sleep and Hibernate
modes.

▪ The sleep regulator provides enough power for a fast wakeup and to meet the needs of subsystems that remain
active in Sleep mode.

▪ The hibernate regulator provides only enough power to maintain logic states in essential registers, memories, and
latches during Hibernate mode.

The output of the sleep regulator can be seen on the VCCD and VCCA pins, but it does not provide enough current to
power anything but the internal PSoC resources. You should not attempt to use the sleep regulators for anything else.

The hibernate regulator does not power the VCCD and VCCA nets, so its output cannot be observed.

3.14 Power Consumption While Programming

PSoC 3 and PSoC 5LP consume approximately 14 mA during programming. This is because the programming and
debug logic is enabled along with the clocks and CPU.

If your design cannot supply this level of current, then you must power the PSoC device from an external source, such
as the MiniProg3, during programming or debug. Refer to the PSoC Creator Help files for information on how to
configure the MiniProg3 to supply power to the PSoC.

3.15 Is the Debug Interface Running?

PSoC 3 and PSoC 5LP support on-chip debug. You may observe higher current consumption than you expect while in
debug mode. This is normal because the programming and debug interface remains active in low-power modes.

Comparator Output

VREF

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 18

Power measurements may also be skewed if the debug pins are set to SWD or JTAG mode and a MiniProg3 is
attached—even if the PSoC device is not in debug mode.

The debug interface pins are set to GPIO mode on all chips from the factory, but a new PSoC Creator project sets them
to SWD mode by default. The registers that control the debug interface can be changed only during programming. Use
the System tab in the .cydwr file of the PSoC Creator project to set the pins to GPIO mode, as Figure 22 shows.

Figure 22. Disable Debug Interface to Reduce Power

You can program and debug even if the pins are set to GPIO mode. If the debug interface is disabled, a reset must be
done to access the debug controller inside the PSoC device. This means that the only thing you cannot do is attach
the debugger to a running project.

It is recommended that the debug interface pins be set to GPIO mode for any released product. For more information
about programming and debugging, refer to the device datasheets and TRMs.

4 Approximating Power Consumption

The device datasheet and the component datasheets provide sufficient information to estimate power consumption for
a given project. To simplify this process, a spreadsheet is provided that includes typical power requirements for a wide
range of internal components. This spreadsheet, PSoC3_5_Power_Estimator.xls, can be found on Cypress webpage
that hosts this application note, AN77900. Since every project is different, the power calculation provided by this
spreadsheet is only an estimate, but it should be close enough to provide good feedback before your design is complete.
There are several tabs in the spreadsheet; make sure that you read the Instructions tab before entering your data.

5 Summary

Proper low power consumption techniques can have a major impact on portable devices. They can decrease the

size of the device battery which in turn reduces the size of your product, or increases your battery life
for a specific battery. By taking advantage of the many power-saving features available in PSoC 3 and PSoC 5LP,
you can optimize your design and ensure that it consumes the least amount of power.

http://www.cypress.com/
http://www.cypress.com/?rID=64554

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 19

6 Related Application Notes

These application notes give you more information about topics that are not fully discussed here:

▪ AN86233 – PSoC 4 Low-Power Modes and Power Reduction Techniques

▪ AN54181 – Getting Started with PSoC 3

▪ AN77759 – Getting Started with PSoC 5LP

▪ AN77835 – PSoC 3 to PSoC 5LP Migration Guide

▪ AN61290 – PSoC 3 and PSoC 5LP Hardware Design Considerations

▪ AN54460 – PSoC 3 and PSoC 5LP Interrupts

▪ AN60616 – PSoC 3 and PSoC 5LP Startup Procedure

▪ AN60631 – PSoC 3 and PSoC 5LP Clocking Resources

▪ AN72382 – Using PSoC 3 and PSoC 5LP GPIO Pins

▪ AN60580 – SIO Tips and Tricks in PSoC 3/PSoC 5LP

▪ AN52705 – PSoC 3 and PSoC 5LP– Getting Started with DMA

▪ AN52927 – PSoC 3 and PSoC 5LP – Segment LCD Direct Drive

http://www.cypress.com/
http://www.cypress.com/?rID=78797
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=60890
http://www.cypress.com/?rID=72847
http://www.cypress.com/?rID=43337
http://www.cypress.com/?rID=38267
http://www.cypress.com/?rID=40991
http://www.cypress.com/?rID=40990
http://www.cypress.com/?rID=57571
http://www.cypress.com/?rID=40989
http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=37795

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 20

Appendix A. Low-Power Example Projects

Using PSoC is one of the best ways to become familiar with it. Four example projects are associated with this application
note. They are all part of the same PSoC Creator workspace and can run on the same development kit (DVK) hardware
setup.

A.1 Two Low-Power Demo Projects

These projects demonstrate PSoC 3 and PSoC 5LP power mode transitions and wakeup sources. Select the power
mode and wakeup source by setting the Port 0 pins to a specified value. A falling edge on P2[7] causes the PSoC
device to execute the code to demonstrate the selected configuration, as Figure 23 shows.

Figure 23. PSoC Low-Power Demo Flow Chart

Boot

Initalization

Update

LCD Text

ModeSelect

Interrupt?

Button

Interrupt?

No

Yes

Yes

No

Low-Power

Mode Demo

The projects demonstrate all of the common Sleep and Hibernate wakeup sources. SegLCD has its own example
projects in PSoC Creator, and boost regulation during Sleep mode is explained in the main body of this application
note. Only two of the AltAct sources are demonstrated because they are generally the same as in Sleep mode.
Table 3 lists the modes and wakeup sources that are demonstrated by these example projects.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 21

Table 3. PSoC Demo Wakeup Sources

Mode Wakeup Source

Active None

AltAct PICU

RTC

Sleep PICU

RTC (uses the OPPS)

SleepTimer (uses the CTW)

CTW (PSoC 3 only)

Comparator

I2C Address

LCD (not implemented)

Hibernate PICU

Custom None (user defined)

This code demonstrates the principles and techniques described in this application note. No effort has been made to
optimize it for size or speed. Instructions for using the projects are located in the project’s schematics and source files.

A.2 Voltage Alarm – No Optimization

This project demonstrates a simple voltage measurement and alarm system using a PSoC 3 device, as Figure 24
shows. The project is not optimized for low power consumption. The default clocking and global power settings are
unchanged, and no low-power modes are used.

A DelSig ADC reads the value of an analog input, and the reading is displayed on the LCD. The RTC component is
also operating, and a time value is displayed on the LCD. If the voltage on the input exceeds a defined level, then a
LED begins to pulse and “Alarm” is displayed on the LCD.

Figure 24. Alarm System – No Optimizations

Boot

Initalization

Measure ADC and

Update LCD

X
R

E
S

Instructions for using the project are located in the project’s schematic and source files.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 22

A.3 Voltage Alarm – With Optimizations

This project demonstrates the same basic functionality as the previous voltage measurement and alarm. Several low-
power optimizations have been implemented to reduce power consumption, as Figure 25 shows.

Figure 25. Alarm System – With Optimizations

Boot

Initalization

Measure ADC and

Update LCD

Wake From

OPPS Interrupt

X
R

E
S

Enter AltAct

Instructions for using the project are located in the project’s schematic and source files.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 23

Appendix B. Power Measurements on DVKs

The Cypress development kits (DVKs) are designed to demonstrate the analog and digital features available in the
PSoC devices. They are not optimized for easy measurement of the current drawn only by the PSoC device. This
appendix describes how to modify the CY8CKIT-001, CY8CKIT-030, and CY8CKIT-050 boards for accurate PSoC
power measurement. It is recommended that you become familiar with the schematics for these boards before making
any modifications. Schematics are available on the individual kit web pages.

B.1 CY8CKIT-001 Modifications

The following steps demonstrate how to modify the CY8CKIT-001 DVK board to ensure proper current measurements.
The configuration described here uses a single power rail for VDDD, VDDA, and VDDIO. Power is measured by placing
a meter in series with the PSoC VDDD pins.

1. Remove jumpers from J2, J3, J4, J5, J6, J7, J10, and J11.

2. Short the center pin of J6 to the center pin of J7. This ties the VDD_DIG and VDD_ANLG nets together.

3. Short the center pins of J2, J3, J4, and J5 to the center pin of J6. This ties the VDDIO nets to VDD_DIG.

4. Short pin 1 of J11 (above the “VR” text) to pin 1 of J10 (next to the “RS232” text). This sources the potentiometer
R20 from the VDD net instead of VDD_ANLG.

5. Connect the LOW side lead from the multimeter to the center pin of J7.

6. Connect the HIGH side lead from the multimeter to the VDD test point.

Note: If you are operating at 5 V, then no further modification is needed. If you are operating below 5 V, then the
LCD level shifter circuit can source current to the PSoC I/O pins and skew current consumption numbers in Sleep
or Hibernate mode. The following steps prevent this from happening and allow the character LCD to work whenever
the PSoC device is operating at 3.3 V or 5 V. Be forewarned that this modification involves cutting traces on the
PCB. Figure 26 on page 24 shows the cuts and jumps described in the following steps.

7. Cut the trace that runs through the “R32” text on the top side of the DVK board. It is recommended that you cut it
just past the text, before it turns a corner toward R40, where there are no vias or components nearby.

8. Cut the same trace again between where it crosses the “R38” text and the “RESRV14” text. These two cuts
separate the pull-up resistors on the high-side shifter signals from the VCC_LCD net.

9. Scrape the solder mask from the trace that was just cut, on the side closest to the “RESRV14” text, to expose
copper for soldering.

10. Solder a jumper wire from the bottom pad of R40 (below the “R40” text) to the area where the solder mask was
scraped away in the previous step. This bypasses the section that was isolated by the two previous cuts and ties
the LCD module’s power supply back to the center pin of J12.

11. Solder a jumper wire from the top pad of R39 (below the “R39” text) to the bottom pad of C22 (next to the circle
silkscreen of U7). This ties the HIGH side shifter’s pull-ups and reference pins to 3.3V.

12. Set the jumper on J12 to the ON position to enable the LCD module.

http://www.cypress.com/
http://www.cypress.com/?id=1353&rtID=110
http://www.cypress.com/?rID=37464
http://www.cypress.com/?rID=49524
http://www.cypress.com/?rID=51577

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 24

Figure 26. CY8CKIT-001 LCD Level Shift Bypass for Low-Power Measurements at 3.3 V

X

X

After these modifications are made, the total current drawn by the PSoC device can be accurately measured. All other
components on the KIT-001 board are powered separately from VDDD, so they are not seen in your power
measurements. The CY8CKIT-001 can be configured for 5-V or 3.3-V operation, without any further changes, by using
SW3.

B.2 CY8CKIT-030 and CY8CKIT-050 Modifications

The following steps demonstrate how to modify the CY8CKIT-030 and CY8CKIT-050 DVK boards to ensure proper
current measurements. The called-out hardware is identified in Figure 27 on page 25. The configuration described here
uses a single power rail for VDDD, VDDA, and VDDIO. Power is measured by placing a meter in series with the PSoC
VDDD pins.

1. Remove R23. This separates the VDDA net from the VDDA_P net.

2. Add a zero-ohm resistor to the pads for R30. This ties VDDD to VDDA so that you can measure the total current
consumed by the PSoC device.

3. Remove R58. This separates the RS-232 driver U8 from VDDA. By default, U8 is powered by VDDA, so it appears
in your power measurement.

4. If RS-232 is needed, short pin 2 of J37 (above the “J37” text) to the VDDA_P test point. This powers the RS-232
driver from VDDA_P instead of VDDA so that it does not appear in your power measurements.

5. Remove the jumper from J30. By default, R56 is powered by VDDA, so it appears in your power measurement.

6. If potentiometer R56 is needed, short pin 2 of J30 (below the “J30” text) to the VDDA_P test point. This powers the
potentiometer from VDDA_P.

7. Remove the jumper from J10.

8. Connect the LOW side lead from the multimeter to the center pin of J10.

9. Connect the HIGH side lead from the multimeter to one of the outside pins (for 5-V or 3.3-V operation) of J10.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 25

After these modifications are made, the total current drawn by the PSoC device can be accurately measured. All the
other components on the DVK board are powered separately from VDDD, so they do not appear in your power
measurements. The DVK can be configured for 5-V or 3.3-V operation without any further changes by using J10 and
J11.

Figure 27. CY8CKIT-030/050 Low-Power Modifications

Steps 1, 2:

R23, R30

Steps 7, 8, 9:

J10

Steps 5, 6:

J30

Steps 3, 4:

R58, J37

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 26

Appendix C. Power Management API and Registers

Cypress provides API routines for handling the PSoC device’s transitions between low-power modes. The functions
discussed here are the most typically used ones. They are available in CyPm.c, which is part of every PSoC Creator
project.

The System Reference Guide has a detailed section on the power management API, and the PSoC 3 and PSoC 5LP
TRMs contain further information on the registers.

C.1 CyPmSaveClocks()

This function prepares the PSoC clocks for low-power operation. It should be called immediately before entering Sleep
or Hibernate mode. It is not typically called before entering AltAct mode because the clocks are expected to remain in
operation.

Failure to call this function before entering Sleep or Hibernate mode may result in undefined behavior.

C.2 CyPmRestoreClocks()

This function is used to restore the PSoC device to the settings that were saved when CyPmSaveClocks() was called.

It is typically the first function called after exiting the low-power mode.

C.3 CyPmAltAct()

This function manages the transition to AltAct mode. It has two parameters: wakeupTime and wakeupSource. The
wakeupTime parameter is used to set the frequency of a timer and unmask it as a wakeup source. The wakeupSource
parameter is used to unmask the asynchronous and component-based wakeup sources.

Note: If “Interrupt” is configured as an AltAct wakeup source, you cannot mask individual interrupt components.
Additionally, the power manager sees all raw interrupts before they are filtered by the interrupt controller. This means
that any edge detection or enable settings, which are normally applied to the interrupt signal, are ignored.

C.4 CyPmSleep()

This function manages the transition to Sleep mode. It has two parameters: wakeupTime and wakeupSource. The
wakeupTime parameter is used to set the frequency of a timer and unmask it as a wakeup source. The wakeupSource
parameter is used to unmask the asynchronous and component-based wakeup sources.

You should call CyPmSaveClocks() before this function to ensure that the clock states have been properly saved

before entering Sleep mode.

C.5 CyPmHibernate() or CyPmHibernateEx()

The CyPmHibernate()manages the transition to Hibernate mode. It has no parameters, enabling PICU and XRES

as valid wakeup sources.

The CyPmHibernateEx() has one parameter used to change the wakeup sources from hibernate mode. They can

be configured as: PICU interrupt, Comparator0, Comparator1, Comparator2, and Comparator3 output. This allows the
user to specify the exact wakeup sources, and to change them easily if required by different modes of operation. It
basically allows the design to mask off wakeup sources that are not needed or required.

You should call CyPmSaveClocks() before these functions to ensure that the clock states are saved properly before

entering Hibernate mode. Also, the PSoC device should not re-enter a low-power mode until at least 20 µs after a wake
from Hibernate mode to ensure that the sleep regulator is stable.

C.6 Component Low-Power API

Most PSoC Creator Components have API functions to put the component into a low-power state. The Sleep function
saves component settings and calls the Stop function. There is no power savings difference between calling Stop or
Sleep.

Unless the component is being used as a wakeup source, its Sleep function should be called prior to calling
CyPmSleep() or CyPmHibernate(). The Sleep function is formatted as:

 MyComponentName_Sleep();

http://www.cypress.com/
http://www.cypress.com/?rID=51972
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=72887

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 27

Any component that has a Sleep function also has a Wakeup function, which restores the component to the previous
state. It is formatted as:

 MyComponentName_Wakeup();

The Sleep and Stop functions do not check for component idle or busy status. You should add a check in your code to
ensure that active components are not busy. Refer to the individual component datasheets for details on how to manage
low-power operation.

C.7 Direct Register Writes

The API functions should be used to control power mode transitions whenever possible, but register writes can be used
instead. The registers mentioned here are the most commonly used ones related to power mode transitions.

C.7.1 PM_MODE_CSR

The power mode control and status register is perhaps the most important register relating to PSoC power modes. Bits
[2:0] in this register control the global power mode for the entire PSoC device, as Table 4 on page 27 shows. Reading
these bits tells you which mode the PSoC device is in currently.

Table 4. PM_MODE_CSR[2:0] Values

[2:0] Value Mode

000 Active mode

001 AltAct mode

010 (Unsupported)

011 Sleep mode

100 Hibernate mode

101 (Unsupported)

110 (Unsupported)

111 (Unsupported)

Setting these bits does not automatically configure the entire PSoC device for low-power operation. More information
on the global power settings and how they affect the PSoC 3 and PSoC 5LP subsystems is available in the PSoC 3
and PSoC 5LP TRMs.

Note: Using an unsupported low-power mode or wakeup source may result in unreliable behavior. Use the standard
API to enter low-power modes whenever possible.

C.7.2 PM_TW_CFGx

These three registers enable and configure the timers used to wake the PSoC from low-power modes.

C.7.3 PM_WAKEUP_CFGx

These three registers mask the power mode wakeup sources. Individual sources can be dynamically masked or
unmasked to allow for different wakeup sources under different conditions.

C.7.4 PICUx_INTTYPEy

These registers configure the PICU. There is one register for each pin to set the interrupt trigger condition.

C.7.5 PICUx_INTSTAT

These registers hold the status of pin interrupts. There is one status register for each port, with one bit per pin.

C.7.6 FASTCLK

These registers configure the IMO, Master Clock, and PLL. Clock distribution is controlled by the CLKDIST registers.

C.7.7 SLOWCLK

These registers configure the internal low-speed oscillator (ILO) and 32-kHz crystal. Clock distribution is controlled by
the CLKDIST registers.

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=72887

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 28

C.8 Power Management API Flow Charts

Figure 28. Power Management Function Flow Charts

CyPmSaveClocks()

Save and disable

analog and digital

domain clocks.

Save flash wait

cycles and set to

maximum.

Save IMO state

and set to low-

power mode.

Save Master clock

state and set

source to IMO / 1.

Save Bus clock

state and set to

Master / 1.

Set flash wait

cycles to low-

power level.

Disable PLL if

active.

Disable MHz ECO

if active.

Exit

CyPmAltAct()

Set periodic

wakeup sources.

Set asynchronous

wakeup sources.

Set

PM_MODE_CSR

to AltAct

Enter AltAct.

(Remain until

wakeup event.)

Restore wakeup

sources.

Exit

CyPmSleep()

Save and disable

other interrupts.

Set periodic

wakeup sources.

Set regulators and

system clocks to

low-power mode.

Set IMO to sleep

frequency.

Enter Sleep.

(Remain until

wakeup event.)

Restore IMO

frequency.

Restore regulators

and system clocks.

Exit

Restore wakeup

configuration and

other interrupts.

CyPmHibernate()

Save and disable

other interrupts.

Set regulators and

system clocks to

low-power mode.

Set PICU wakeup

source (PSoC 3).

Set IMO to

hibernate

frequency.

Enter Hibernate.

(Remain until

wakeup event.)

Restore regulators

and system clocks.

Restore wakeup

configuration and

other interrupts.

Exit

Set asynchronous

wakeup sources.

Set

PM_MODE_CSR

to Sleep

Set

PM_MODE_CSR

to Hibernate

CyPmRestoreClocks()

Restore MHz

ECO.

Set flash wait

cycles to

maximum.

Restore XTAL and

DSI clocks.

Restore IMO

frequency.

Restore PLL.

Restore Master

clock source and

divider.

Restore Bus clock

divider.

Restore flash wait

cycles.

Exit

Restore analog

and digital domain

clocks.

Prepare PSoC Configure Wakeups, Enter and Exit Low-Power Restore PSoC

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 29

C.9 Power Management API Register Reference

Table 5 lists the asynchronous wakeup sources available in the PSoC 3 and PSoC 5LP devices.

Table 5. CyPm Wakeup Source Configuration

API Wakeup Source Defined wakeupSource Mask Affected Register [bits]

CyPmAltAct() Comparator0 PM_ALT_ACT_SRC_COMPARATOR0 PM_WAKEUP_CFG1 [0x01]

Comparator0 PM_ALT_ACT_SRC_COMPARATOR1 PM_WAKEUP_CFG1 [0x02]

Comparator0 PM_ALT_ACT_SRC_COMPARATOR2 PM_WAKEUP_CFG1 [0x04]

Comparator0 PM_ALT_ACT_SRC_COMPARATOR3 PM_WAKEUP_CFG1 [0x08]

Any Interrupt PM_ALT_ACT_SRC_INTERRUPT PM_WAKEUP_CFG0 [0x01]

PICU PM_ALT_ACT_SRC_PICU PM_WAKEUP_CFG0 [0x04]

I2C Address PM_ALT_ACT_SRC_I2C PM_WAKEUP_CFG0 [0x08]

Boost PM_ALT_ACT_SRC_BOOSTCONVERTER PM_WAKEUP_CFG0 [0x20]

FTW PM_ALT_ACT_SRC_FTW PM_WAKEUP_CFG0 [0x40]

CTW PM_ALT_ACT_SRC_CTW PM_WAKEUP_CFG0 [0x80]

OPPS PM_ALT_ACT_SRC_ONE_PPS PM_WAKEUP_CFG0 [0x80]

LCD PM_ALT_ACT_SRC_LCD PM_WAKEUP_CFG2 [0x01]

CyPmSleep() Comparator0 PM_SLEEP_SRC_COMPARATOR0 PM_WAKEUP_CFG1 [0x01]

Comparator1 PM_SLEEP_SRC_COMPARATOR1 PM_WAKEUP_CFG1 [0x02]

Comparator2 PM_SLEEP_SRC_COMPARATOR2 PM_WAKEUP_CFG1 [0x04]

Comparator3 PM_SLEEP_SRC_COMPARATOR3 PM_WAKEUP_CFG1 [0x08]

PICU PM_SLEEP_SRC_PICU PM_WAKEUP_CFG0 [0x04]

I2C Address PM_SLEEP_SRC_I2C PM_WAKEUP_CFG0 [0x08]

Boost Converter PM_SLEEP_SRC_BOOSTCONVERTER PM_WAKEUP_CFG0 [0x20]

CTW PM_SLEEP_SRC_CTW PM_WAKEUP_CFG0 [0x80]

OPPS PM_SLEEP_SRC_ONE_PPS PM_WAKEUP_CFG0 [0x80]

LCD Glass Drive PM_SLEEP_SRC_LCD PM_WAKEUP_CFG2 [0x01]

CyPmHibernate() PICU N/A PM_WAKEUP_CFG0 [0x04]

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 30

Table 6 lists the periodic wakeup sources available in PSoC 3 devices.

Table 6. CyPm Wakeup Period Configuration

API Wakeup Source Defined wakeupTime Mask Affected Register [bits]

CyPmAltAct()

and

CyPmSleep()1

OPPS
PM_ALT_ACT_TIME_ONE_PPS

PM_SLEEP_TIME_ONE_PPS

PM_TW_CFG2 [0x20] – Unmask

PM_TW_CFG2 [0x10] – Enable

CTW 2 ms
PM_ALT_ACT_TIME_CTW_2MS

PM_SLEEP_TIME_CTW_2MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x01] – 2 ms Period

CTW 4 ms
PM_ALT_ACT_TIME_CTW_4MS

PM_SLEEP_TIME_CTW_4MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x02] – 4 ms Period

CTW 8 ms
PM_ALT_ACT_TIME_CTW_8MS

PM_SLEEP_TIME_CTW_8MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x03] – 8 ms Period

CTW 16 ms
PM_ALT_ACT_TIME_CTW_16MS

PM_SLEEP_TIME_CTW_16MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x04] – 16 ms Period

CTW 32 ms
PM_ALT_ACT_TIME_CTW_32MS

PM_SLEEP_TIME_CTW_32MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x05] – 32 ms Period

CTW 64 ms
PM_ALT_ACT_TIME_CTW_64MS

PM_SLEEP_TIME_CTW_64MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x06] – 64 ms Period

CTW 128 ms
PM_ALT_ACT_TIME_CTW_128MS

PM_SLEEP_TIME_CTW_128MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x07] – 128 ms Period

CTW 256 ms
PM_ALT_ACT_TIME_CTW_256MS

PM_SLEEP_TIME_CTW_256MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x08] – 256 ms Period

CTW 512 ms
PM_ALT_ACT_TIME_CTW_512MS

PM_SLEEP_TIME_CTW_512MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x09] – 512 ms Period

CTW 1024 ms
PM_ALT_ACT_TIME_CTW_1024MS

PM_SLEEP_TIME_CTW_1024MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x0A] – 1024 ms Period

CTW 2048 ms
PM_ALT_ACT_TIME_CTW_2048MS

PM_SLEEP_TIME_CTW_2048MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x0B] – 2048 ms Period

CTW 4096 ms
PM_ALT_ACT_TIME_CTW_4096MS

PM_SLEEP_TIME_CTW_4096MS

PM_TW_CFG2 [0x08] – Unmask

PM_TW_CFG2 [0x04] – Enable

PM_TW_CFG1 [0x0C] – 4096 ms Period

FTW 10 µs to 2.56 ms

(AltAct Only)
PM_ALT_ACT_TIME_FTW(1-256)

PM_TW_CFG2 [0x02] – Unmask

PM_TW_CFG2 [0x01] – Enable

PM_TW_CFG0 [0x00 to 0xFF] Period

CyPmHibernate() N/A N/A N/A

1 PSoC 5LP supports only the CTW and OPPS wakeup sources as part of a SleepTimer or RTC Component.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 31

Document History

Document Title: AN77900 - PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

Document Number: 001-77900

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3653707 GIR 06/22/2012 New application note.

*A 3845784 GIR 12/18/2012 Updated to support PSoC 5LP and PSoC Creator 2.1 SP1.
Corrected links to the segment LCD application note.
Other minor changes.

*B 4034418 MAXK 06/19/2013 Updated author info.
Added picture for kit modifications.
Project updated.
Minor typo fixes.

*C 4713744 RLOS 04/08/2015 Fixed constant names of the power management APIs.

Added the following sections – “SIOs in PSoC Low-Power Mode” and
“Approximating Power Consumption.”

*D 4817268 RLOS 07/07/2015 Updated projects to support PSoC Creator 3.2.

Added the comparator as a wake-up source for the hibernate mode.

Added explanation of CyPmHibernateEx() API in the Appendix C.

Updated template

Sunset Review

*E 5330253 MEH 07/25/2016 Added note about low power with SIO pins when using Vref output mode.

Added clarification of AltAct mode.

Made some grammatical corrections.

Updated figures 17 and 18.

Added clarification about CyPmHibernateEx() function.

Updated template

*F 5701881 BENV 04/19/2017 Updated logo and copyright

*G 5889808 MEH 07/18/2017 Added MHzECO power options in power estimator spreadsheet.

Section 3.6 removed statement that says CPU must wake during sleep mode
while boost is in standby mode, this was incorrect.

http://www.cypress.com/

PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques

www.cypress.com Document No. 001-77900 Rev.*G 32

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make
changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

