
www.cypress.com Document No. 001-73503 Rev. *K 1

AN73503

PSoC® USB HID Bootloader

Authors: Robert Murphy, Keith Mikoleit

Associated Part Family: All PSoC 3, PSoC 4 L-series, and PSoC 5LP parts with USB

Related Code Examples and Other Documents: For a complete list, click here.

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code
examples web page. You can also explore the PSoC 4 video library here.

AN73503 describes how to implement a USB bootloader for PSoC devices by using the USB Human Interface

Device (HID) class. It also shows how to build a Windows-based USB bootloader host program.

Contents

1 Introduction..1

1.1 Terms and Definitions ...2

1.2 Using a Bootloader ...2

1.3 Bootloader Function Flow3

1.4 USB Bootloader Considerations3

1.5 Code Example ..3

2 Bootloader Project ...4

2.1 Create the Project ...4

2.2 Configure the Bootloader Component.................5

2.3 Configure the USB Component...........................5

2.4 Configure the Input Pin6

2.5 Place Pins and Configure Clocks........................6

2.6 Bootloader Firmware...8

3 Bootloadable (Application) Project...............................8

3.1 Create the Project ...8

3.2 Configure the Bootloadable Component9

3.3 Configure Remainder of Project..........................9

4 PSoC Creator Bootloader Host..................................10

5 Build a Bootloader Host...11

5.1 Required Resources ...11

5.2 Create the Bootloader Host Application............11

6 Summary...16

7 Related Resources..16

A Appendix A – USBFS HID Configuration...................17

A.1 Create Device Descriptor..................................17

A.2 Create HID Descriptor.......................................21

B Appendix B – Bootloader and Device Reset..............26

B.1 Why is Device Reset Needed?26

B.2 Effect on PSoC 3 and PSoC 5LP
Device I/O Pins ...26

B.3 Effect on Other Functions27

B.4 Example: Fan Control27

C Appendix C – Host Core APIs29

C.1 cybtldr_api2.c / .h..29

C.2 cybtldr_api.c / .h..29

C.3 cybtldr_command.c / .h.....................................29

C.4 cybtldr_parse.c / .h ...29

C.5 cybtldr_utils.h..29

1 Introduction

Bootloaders are a common part of MCU system design. A bootloader makes it possible for a product's firmware to be
updated in the field. At the factory, initial programming of firmware into a product is typically done through the MCU’s
Joint Test Action Group (JTAG) or Serial Wire Debugger (SWD) interface. However, these interfaces are usually not
available in the field.

This is where bootloading comes in. Bootloading enables system firmware upgrade over a standard communication
interface such as USB or I2C. A bootloader communicates with a host to get new application code or data, and writes
it into the device’s flash memory.

http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/32-bit-arm-cortex-m0-psoc-4200-programmable-digital-blocks
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://www.cypress.com/documentation/code-examples/psoc-345-code-examples
http://www.cypress.com/documentation/code-examples/psoc-345-code-examples
http://www.cypress.com/video-library/PSoC

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 2

In this application note, you will learn how to:

 Add a USB bootloader to a PSoC 3, PSoC 4 L-series, or PSoC 5LP device

 Prepare an application project for bootloading

 Use the bootloader host program provided with PSoC Creator

 Create your own Windows-based bootloader host program

This application note assumes that you are familiar with PSoC and the PSoC Creator IDE. If you are new to PSoC,
you can find introductions in the Getting Started with PSoC application notes AN54181, AN79953, and AN77759.
If you are new to PSoC Creator, see the PSoC Creator home page.

This application note also assumes that you are familiar with bootloader concepts. If you are new to these concepts,
see application note AN73854, PSoC Introduction to Bootloaders.

Finally, this application note assumes that you are familiar with USB. If you are new to USB or the USB HID class,
see application notes AN57294, USB 101: An Introduction to Universal Serial Bus 2.0 or AN57473, USB HID Basics
with PSoC.

1.1 Terms and Definitions

Figure 1 shows that a product’s embedded firmware uses the communication port for two different purposes – normal
operation and updating the application. That portion of the embedded firmware that updates the application is called a
bootloader.

Figure 1. Bootloader System Block Diagram

Target

MCU

Flash
Memory

Bootloader

Application

HostCommunication
Channel

Application
File

Typically, the system that provides the data to update the flash is called the host, and the system being updated is
called the target. The host can be an external PC or another MCU on the same PCB as the target.

The act of transferring data from the host to the target flash is called bootloading, or a bootload operation, or just
bootload for short. The data that is placed in flash is called the application or bootloadable.

Another common term for bootloading is in-system programming (ISP). Cypress has a product with a similar name
called In-System Serial Programmer (ISSP) and an operation called Host-Sourced Serial Programming (HSSP). For
more information, see application notes AN73054 or AN84858, PSoC Programming Using an External Microcontroller
(HSSP).

1.2 Using a Bootloader

A bootloader communication port is typically shared between the bootloader and the application. The first step to use
a bootloader is to manipulate the product so that the bootloader, and not the application, is executing.

When the bootloader is running, the host can send a "start bootload" command over the communication channel. If
the target sends an "OK" response, bootloading can begin.

During bootloading, the host reads the file for the new application, parses it into flash write commands, and sends
those commands to the bootloader. After the entire file is sent, the bootloader can pass control to the new application.

http://www.cypress.com/?rID=39157
http://www.cypress.com/documentation/application-notes/an79953-getting-started-psoc-4
http://www.cypress.com/?rID=60890
http://www.cypress.com/go/creator
http://www.cypress.com/?rID=56014
http://www.cypress.com/?rID=39327
http://www.cypress.com/index.cfm?rID=39404
http://www.cypress.com/index.cfm?rID=39404
http://www.cypress.com/?rID=57435
http://www.cypress.com/documentation/application-notes/an84858-psoc-4-programming-using-external-microcontroller-hssp

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 3

1.3 Bootloader Function Flow

A bootloader typically executes first at reset. It
can then perform the following actions, as
Figure 2 shows:

 Check the application’s validity before letting
it run

 Manage the timing to start host
communication

 Do the bootload / flash update operation

 And finally, pass control to the application

1.4 USB Bootloader Considerations

There are some issues to consider when using a
USB port as the bootloader communication
interface. The USB HID class gives the benefit of
not needing a driver, and the device can work
with any host operating system.

Keep in mind that the bootloader waits for a
limited amount of time before passing control to
the application, and USB devices take time to
enumerate. If USB enumeration takes too long,
the host may miss the opportunity to initiate a
bootload operation after target device reset.

Once the application is in control, there are some
ways to pass control back to the bootloader.

1.4.1 Bootloadable API

The PSoC Creator Bootloadable Component has
an API function to start the bootloader:
Bootloadable_Load(). This enables the
application to pass control back to the
bootloader. This is a good way to allow a product
user to initiate a firmware upgrade.

The problem with this method is that you now
depend on the application code to perform an
application upgrade. What happens if the
application has a bug that doesn’t allow
successful transfer to the bootloader? To ensure
the ability to upgrade and fix firmware, it is a
good idea to put in a failsafe method for starting
the bootloader in the bootloader project.

Figure 2. Bootload Process Flowchart

Reset

Bootloader
valid in flash ?

Go to application

Application
valid in flash ?

Wait for
new application

from host?

Wait forever?

Host comm.
start?

Timeout?

Receive new
application from

host,
install in flash ,

overwriting
existing

application

Host comm.
start?

Halt execution
No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

No

No

Yes

1.4.2 Launching Boot loader at Startup with an Inf in i te Wait Per iod

To address issues such as corrupt application or long USB enumeration times, you can add a method to stay in the
bootloader until a host command is received. You can customize the bootloader project to check for some user input
before calling Bootloader_Start() and running through its normal routine.

Refer to the Bootloader Firmware section for more information.

1.5 Code Example

The following sections show you the steps to create PSoC Creator bootloader and bootloadable projects. You can get
the completed projects at code example CE95391.

http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 4

2 Bootloader Project

A PSoC bootloader system consists of at least two PSoC Creator projects – one bootloader project and at least one
bootloadable (application) project. This section shows how to create a bootloader project. The next section shows
how create a bootloadable project.

A bootloader project design includes the PSoC Creator Bootloader and USBFS Components, as Figure 3 shows. The
USBFS Component communicates with the PC host to get commands and a new application image. The Bootloader
Component does flash programming, host command / response protocol, and launches the bootloadable application.

2.1 Create the Project

To start, create a new PSoC Creator project. Select your target hardware or device in the Create Project dialog.

Give the workspace a name such as "PSoCx_USB_Bootloader". Give the project a name such as
“USB _Bootloader”.

Now add PSoC Creator Components – USBFS, Bootloader, and other Components – to the schematic. You may
optionally rename the Components as Figure 3 shows.

Figure 3. Bootloader Project Schematic from Code Example CE95391

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 5

2.2 Configure the Bootloader Component

The only required change to the Bootloader Component is to set the Communication Component to USBFS, as
Figure 4 shows. This tells PSoC Creator to generate the functions required for the bootloader to interface with the
USB.

Figure 4. Bootloader Component Customizer

You should also review the Wait for command settings. They are particularly important for USB bootloaders
because you must consider USB device enumeration time.

 Wait for command: On device reset, the Bootloader can wait for a command from the host, or immediately jump
to the application code. If this option is enabled, the Bootloader waits for a command from the host until the
timeout period specified by the Wait for command time parameter. If the Bootloader does not receive a
command from the host within the timeout interval, it jumps to the application code.

 Wait for command time (ms): If the above option is enabled, this parameter is the amount of time that the
Bootloader waits before jumping to the application code. A zero value is interpreted as wait forever. The default
value is a 2-second timeout.

If a valid application is not installed in the device flash, the Bootloader waits forever for a host command regardless of
these settings.

For complete information on the Bootloader Component settings, refer to the Bootloader Component datasheet.

2.3 Configure the USB Component

Next, configure the USBFS Component to
support bootloader communication. Remember
that we are using the USB HID class to avoid the
need for externally provided driver files in the
host PC.

To begin configuring the USBFS Component,
double-click it. Then, in the configuration dialog,
delete the default Device Descriptor root. Click
the Device Descriptor tab, and then click the ‘X’
button, as Figure 5 shows.

Figure 5. Delete Default USB Configuration

http://www.cypress.com/?rID=71586

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 6

Then, use the Insert Configuration option to import a USB configuration for the bootloader, as Figure 6 shows. The
complete USB configuration for the bootloader is saved as an .xml file that is included with PSoC Creator:

<PSoC Creator InstallDir> \ psoc \ content \ cycomponentlibrary \ CyComponentLibrary.cylib \ USBFS_v_<version of
USBFS Component> \ Custom \ template \ Bootloader.root.xml

After the configuration is imported, PSoC Creator proceeds to load the required USB descriptors automatically. See
Appendix A for USB configuration details.

Figure 6. USB Insert Configuration

2.4 Configure the Input Pin

As mentioned previously, it is a good idea to provide a backdoor option to start the bootloader. One way to do this is
to check the state of a pin at startup. This works well if the end application has a user interface such as a switch.

Use the Digital Input Pin Component to read the state of a pin. In code example CE95391, the pin is connected to a
kit button. The button shorts to ground when pressed, therefore the Pin Component is configured for resistive pull up.
This causes the Pin input state to be 0 when the button is pressed and 1 when it is released.

2.5 Place Pins and Configure Clocks

After all of the Components are configured, set up the clocking resources and place the pins.

In the Workspace Explorer window, locate and double-click USB_Bootloader.cydwr. The Pin Selection tab appears.
Assign the Wait_Forever and other Pin Components to the device physical pins used in your kit. See CE95391 for an
example.

Note: The USB D+ and D- data lines are automatically assigned by PSoC Creator.

Note: You can assign a Pin Component in a bootloader project and a Pin Component in an application to the same
physical pin. You can even use the same pin name, because the bootloader and application are separate projects.

http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader
http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 7

Next, click the Clocks tab, and double-click one of the clocks to open the clock configuration wizard. Configure the
clocks for USB, as Figure 7 shows for PSoC 4 L-series, and Figure 8 shows for PSoC 3 and PSoC 5LP.

Figure 7. PSoC 4 L-series USB Clock Configuration

Figure 8. PSoC 3 and PSoC 5LP USB Clock Configuration

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 8

2.6 Bootloader Firmware

After all of the project Components are configured, add firmware to control the bootloader operation.
(A recommended best practice is to do a project Build > Generate Application before adding your firmware.)

In many cases, all you have to do is add to your main.c a call to the Bootloader Component API function
Bootloader_Start(). (Replace the “Bootloader” portion of the function call with the name of your Bootloader
Component, if you changed it from the default.)

The Bootloader_Start() function does the entire bootload function. It does not return – it resets the PSoC device
before transferring control to the application. For more information on the bootloader and device reset, see
Appendix B.

For a more complex example of how to use the bootloader indicator and control pins shown in Figure 3, see code
example CE95391.

3 Bootloadable (Application) Project

A bootloadable project includes the PSoC Creator Bootloadable Component, as Figure 9 shows. Other Components
implement the desired application.

Code example CE95391 has two bootloadable projects which blink a kit LED at different rates. The projects also read
a kit button switch. When the switch is closed, the project transfers control to the bootloader.

Figure 9. Bootloadable Project Schematic

3.1 Create the Project

Create another new PSoC Creator project. Select your target hardware or device to be the same as the bootloader
project. Give the project a name such as “USB _Bootloadable”. You can add it to the bootloader project’s workspace
or save it in a different workspace.1

Now add PSoC Creator Components – Bootloadable and other Components – to the schematic. You may optionally
rename the Components as Figure 9 shows.

1 A PSoC Creator workspace can have multiple projects. In many cases, a bootloader project exists in the same workspace as its
associated bootloadables. However, this doesn’t have to be the case—bootloaders and bootloadables can exist in separate
workspaces and separate locations on your PC. Before getting started with PSoC, it is a good idea to work out a workspaces /
projects plan for your overall system development needs.

http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader
http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 9

3.2 Configure the Bootloadable Component

A bootloadable project always has a dependency on the output .hex and .elf files of an associated bootloader project,
as Figure 10 shows. Selecting the .hex file automatically selects the associated .elf file.

Before configuring a Bootloadable Component, you should completely build the associated bootloader project.

Figure 10 shows the bootloader .hex file at a relative path within a PSoC Creator workspace. However, this need not
be the case; bootloader and bootloadable projects can be in different workspaces. In either case, find the .hex file in
the folder for the bootloader project’s compiler output:

<project folder>\USB_Bootloader.cydsn\DP8051\DP8051_Keil_903\Debug\ (For PSoC 3)

<project folder>\USB_Bootloader.cydsn\CortexM0\Debug\ (For PSoC 4 L)

<project folder>\USB_Bootloader.cydsn\CortexM3\Debug\ (For PSoC 5LP)

For more information on bootloader and bootloadable files, see AN73854, PSoC Introduction to Bootloaders.

Figure 10. Bootloadable Component Configuration

3.3 Configure Remainder of Project

After the Bootloadable Component is configured, you can build the remainder of a bootloadable project in the same
manner as a standard (non-bootloadable) project. Add other Components to the schematic as needed, configure
them, and add your firmware. See code example CE95391 for an example.

You can create as many bootloadable projects as you want, and associate each of them with the previously created
bootloader project. Then, after the bootloader project is installed in your target hardware, you can change the target
function by downloading different bootloadable projects.

The remainder of this application note shows how to use the Bootloader Host program provided with PSoC Creator,
and how to build your PC-based bootloader host.

http://www.cypress.com/documentation/application-notes/an73854-psoc-3-psoc-4-and-psoc-5lp-introduction-bootloaders
http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 10

4 PSoC Creator Bootloader Host

PSoC Creator provides a Bootloader Host program to facilitate use of your bootloader and bootloadable projects. Do
the following:

1. Build your bootloader project, and program it into your target PSoC.

2. Open the Bootloader Host tool (Figure 11). Select PSoC Creator menu item Tools > Bootloader Host.

Figure 11. PSoC Creator Bootloader Host Program

3. Click Filters and add a filter to identify the
USB device (i.e., your PSoC target) that you
intend to bootload, as Figure 12 shows.

Make sure that the Vendor ID (VID) and
Product ID (PID) match those defined in
Configure the Bootloader Component.

4. Click the Open File icon, and browse to the
location of your bootloadable file. The file is
of type .cyacd, and is in the folder for the
bootloadable project’s compiler output.

For more information on bootloader and
bootloadable files, see AN73854, PSoC
Introduction to Bootloaders.

5. Click Program or press the F5 key to start
bootloading.

Figure 12. USB Filter Settings

After bootloading is complete, control is passed from the bootloader to your bootloadable application, after a possible
timeout wait by the bootloader.

http://www.cypress.com/documentation/application-notes/an73854-psoc-3-psoc-4-and-psoc-5lp-introduction-bootloaders

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 11

5 Build a Bootloader Host

This section shows how to create a graphical user interface (GUI) application for Windows that implements a custom
USB bootloader host. Only the key steps are described here. If you are unfamiliar with Windows application
development or Microsoft Visual Studio, refer to Related Resources.

A completed bootloader host application Visual Studio project, USBBootloaderHost_VC2015.zip, is attached to this
application note, for reference. You can also copy and paste code from the project source files to your project.

5.1 Required Resources

You need a few things to create the bootloader host:

5.1.1 Visual Studio

Visual Studio editions provide variety of development tools and support for programming languages such as C# and
C++.

Note that the instructions in this application note are for Visual Studio Community 2015. Other versions of Visual
Studio may require different steps.

5.1.2 Visual C# Express 2015

This is Microsoft's free IDE for developing .NET applications using the C# programming language. The instructions in
this application note are for the free version; you can also use the full version (Visual Studio).

5.1.3 Visual C++ Express 2015

This is another IDE from Microsoft for developing .NET applications; it uses the C++ programming language. In this
application note, Visual C++ Express is used to generate a Dynamic Link Library (DLL), using C modules.

5.1.4 CYUSB.dl l

CYUSB.dll is a Cypress developed and maintained .NET dynamic-link library (DLL) for interfacing Visual Studio
applications with Cypress USB devices. This DLL is bundled with the Cypress SuiteUSB package, which is a
complete set of USB development tools for Visual Studio. Download SuiteUSB from Cypress at Cypress SuiteUSB.

5.1.5 Bootloader APIs Provided with PSoC Creator

The four API modules used to create the host program are included with PSoC Creator in:

<install folder> \ PSoC Creator \ <PSoC Creator Version> \ PSoC Creator \ cybootloaderutils.

These modules include all of the code required for host-side interface with a PSoC Creator Bootloader Component,
using the Cypress bootloader command / response protocol. For more information on this protocol, see the
Bootloader Component datasheet or the System Reference Guide.

There are four modules, each of which is a .c / .h file pair:

 cybtldr_api.c / .h

This module contains low-level functions to start a bootload operation, program a flash row, erase a row, verify a
row, and end the bootload operation.

 cybtldr_api2.c / .h

This module is a higher-level API that manages the entire bootload process. It has functions to program the
device, erase the device, verify the device, and abort the bootload operation.

 cybtldr_command.c / .h

This module constructs command packets to send to the bootloader, and parses response packets from the
bootloader.

 cybtldr_parse.c / .h

This module parses the *.cyacd file that contains the bootloadable image to send to the device.

5.2 Create the Bootloader Host Application

This process has the following key stages:

Stage 1: Create a DLL (dynamic-link library) with the bootloader utility functions provided with PSoC Creator.

Stage 2: Create a C# Windows form application (i.e., a GUI).

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=71586
http://www.cypress.com/?rID=51972

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 12

Stage 3: Define the communication functions.

Stage 4: Import essential bootloader functions from the DLL created in Stage 1.

Stage 5: Modify form functions.

Stage 6: Define host error codes.

The following sections explain each stage in detail:

5.2.1 Stage 1: Create a DLL

First, create a DLL with the PSoC Creator bootloader C files. For more information, see Appendix C – Host Core
APIs. This step can be skipped by using the pre-built dll available in the example project.

1. Run Visual Studio Express.

2. Create a new C++ DLL project.

You may need to install Visual C++ 2015 Tools for Windows Desktop to see the Win32 console application, as
Figure 13 shows. Select menu item File > New > Project… > Visual C++ > Win32 Console Application.

Figure 13. Install Visual C++ 2015 Tools for Windows Desktop

3. Provide a suitable name to the project, such as Bootloader_Utils. Click OK, then Next.

4. Set Application type to DLL, and Additional options to Empty project. Click Finish to apply these settings and
create a new project.

5. In the Solution Explorer window, right-click the project name (“Bootloader_Utils”) and select Add > Existing
Item…. Add the following files, from the PSoC Creator folder <install folder> \ PSoC Creator \ <PSoC Creator
Version> \ PSoC Creator \ cybootloaderutils:

 cybtldr_api.h, cybtldr_api.c

 cybtldr_api2.h, cybtldr_api2.c

 cybtldr_parse.h, cybtldr_parse.c

 cybtldr_command.h, cybtldr_command.c

 cybtldr_utils.h

6. Right-click the Solution name (“Bootloader_Utils”), and click Configuration Manager to set the “Release” build
option:

Solution > Configuration Manager… > Active solution configuration > Release

7. Right-click the project name (“Bootloader_Utils”), and add a preprocessor definition to the project properties.
Select menu item:

Project Properties > Configuration Properties > C/C++ > Preprocessor > Preprocessor Definitions >

Edit…

Insert “_CRT_SECURE_NO_WARNINGS” in the bottom of Preprocessor Definitions.

8. Change the Runtime Library option to “Multi-threaded (/MT)”, as Figure 14; otherwise, msvcr100.dll is required
for using Bootloader_Utils.dll.

Project Properties > Configuration Properties > C/C++ > Code Generation > Runtime Library >Multi-
threaded (/MT)

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 13

Figure 14. Runtime Library Option

9. Compile the project – select menu item Build > Build Solution. This creates the file Bootloader_Utils.dll.

5.2.2 Stage 2: Create a Windows Form Applicat ion

The next stage is to create a GUI for the bootloader host. You can reuse or modify the example GUI project instead
of following all steps. The GUI is created using Visual C#. The main requirements are:

 Recognize and attach to an HID device, based on the device’s VID and PID. For more information see the USB
application notes in Related Resources.

 Place an input box for the user to enter a security key

 Allow the user to select a new .cyacd file to bootload onto the device

 Program the .cyacd file onto the device

 Use the x86 Platform target (Project Properties > Build = > Platform target > x86)

 Some systems may have a build error with .NET Framework 4.x, therefore use .NET Framework 3.5. Select the
menu item Project Properties > Application > Target framework > .NET Framework 3.5.

Do the following:

1. Run Visual Studio.

2. Create a new C# project. Select menu item

File > New > Project… > Visual C# > Windows Forms Application.

3. Provide a suitable name to the project, such as USBBootloaderHost, and click OK.

4. Design the form. Place 5 labels, 5 text boxes, 2 buttons, 1 progress bar and 1 openFileDialog from the toolbox
onto the Main Form, as Figure 15 shows. Give the proper names and default values.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 14

Figure 15. Custom Bootloader Host GUI

label1.Text = “Vendor ID 0x”

label2.Text = “Product ID 0x”

label3.Text = “USB HID State”

label4.Text = “Security Key(6bytes) 0x”

label5.Text = “Status Log”

textBox1.Text = “04B4”

textBox2.Text = “B71D”

textBox3.Text = “Disconnected”

textBox3.ReadOnly = true

textBox4.Text = “000000000000”

textBox5.Text = “”, textBox5.Multiline = true

textBox6.Text = “”, textBox6.ReadOnly = true

5.2.3 Stage 3: Def ine the Communicat ion Funct ions

The next stage is to import the CyUSB functions from CyUSB.dll into the C# application. Note that the CyUSB
functions are considered to be unmanaged code because they are not created by a .NET framework. For detailed
information on unmanaged code, see Secure Coding Guidelines for Unmanaged Code.

To import the functions, follow these steps:

1. Copy CyUSB.dll to your project folder. If Cypress SuiteUSB is installed, CyUSB.dll is in:

C:\Cypress\Cypress Suite USB 3.4.7\CyUSB.NET\lib.

2. Right click the project name or References, and select CyUSB.dll:

References > Add Reference… > Browse… > CyUSB.dll

3. Check the check box in front of CyUSB.dll, then click OK.

4. Add a new class file: Right click the project name, then select Add > New Item… > Class. Give the class file a
proper name such as Bootloader_Utils.cs.

5. Add code to Bootloader_Utils.cs, as Code 1 on page 15 shows. You can instead copy and paste code from the
Bootloader_Utils.cs in the completed bootloader host Visual Studio project, USBBootloaderHost_VC2015.zip,
which is attached to this application note.

5.2.4 Stage 4: Import the Bootloader Functions

The next stage is to import the Bootloader functions from the DLL (Bootloader_Utils.dll) into the C# application. This
is accomplished using the dllimport modifier; see Code 1.

1. Add code to Bootloader_Utils.cs, as Code 1 shows. You can instead copy and paste code from the
Bootloader_Utils.cs file in the completed bootloader host application Visual Studio project,
USBBootloaderHost_VC2015.zip, which is attached to this application note.

2. Copy BootLoader_Utils.dll, created in stage 1, to your project output folder: ..\bin\x86\Debug

5.2.5 Stage 5: Modify Form Functions

Code for several events and processes must be added to the form. These include:

https://msdn.microsoft.com/en-us/library/0e91td57(v=vs.110).aspx
http://www.cypress.com/?rID=34870

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 15

 USB HID connection and communication setup

 File management

 Display progress

It is easiest to copy and paste code from the Form1.cs file in the completed bootloader host application Visual Studio
project, USBBootloaderHost_VC2015.zip, which is attached to this application note. You can then modify the code for
your application.

5.2.6 Stage 6: Def ine Host Error Codes

Create a class file and give it a proper name such as Bootloader_enum.cs. The enum definitions must match those in
cybtldr_utils.h. It is easiest to copy and paste code from the Bootloader_enum.cs file in the completed bootloader
host application Visual Studio project, USBBootloaderHost_VC2015.zip, which is attached to this application note.

Code 1. Bootloader_Utils.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;

namespace USBBootloaderHost
{

class Bootloader_Utils
{

// Communication control structure
[StructLayout(LayoutKind.Sequential)]
public struct CyBtldr_CommunicationsData
{

public OpenConnection_USB OpenConnection;
public CloseConnection_USB CloseConnection;
public ReadData_USB ReadData;
public WriteData_USB WriteData;
public uint MaxTransferSize;

};

// Unmanaged code handling
[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
public delegate int OpenConnection_USB();

[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
public delegate int CloseConnection_USB();

[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
public delegate int ReadData_USB(IntPtr buffer, int size);

[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
public delegate int WriteData_USB(IntPtr buffer, int size);

// DLL importing
[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
public delegate int CyBtldr_ProgressUpdate(byte arrayID, ushort rowNum);
[DllImport("BootLoader_Utils.dll", CallingConvention =

CallingConvention.Cdecl)]
public static extern int CyBtldr_Program(string file, byte[] securityKey,

byte appId,
ref CyBtldr_CommunicationsData comm,
CyBtldr_ProgressUpdate update);

}
}

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 16

6 Summary

Bootloaders are a useful way to do product field upgrades. Every bootloader needs a hardware communication
interface to interact with a host. USB is widely available as a communication interface.

The PSoC USB HID bootloader described in this application note and in code example CE95391 provides a reliable
solution to get you up and running quickly. The USBFS Component is configured as a HID class so that it can
interface with any operating system with no custom driver.

A Windows Bootloader Host program is provided with PSoC Creator. This application note also shows how to use
files provided by Cypress to create your own Windows bootloader host application.

7 Related Resources

Code Example

 CE95391 – USB HID Bootloader Code Example

Application Notes

 AN54181 – Getting Started with PSoC 3

 AN79953 – Getting Started with PSoC 4

 AN77759 – Getting Started With PSoC 5LP

 AN73854 – PSoC 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 AN60317 – PSoC 3 and PSoC 5LP I2C Bootloader

 AN86526 – PSoC 4 I2C Bootloader

 AN68272 – PSoC 3, PSoC 4, and PSoC 5LP UART Bootloader

 AN84401 – PSoC 3 and PSoC 5LP SPI Bootloader

 AN57473 – USB HID Basics with PSoC 3 and PSoC 5LP (Fundamentals with Mouse and Joystick)

 AN58726 – USB HID Intermediate with PSoC 3 and PSoC 5LP (with Keyboard and Composite Device)

 AN56377 – PSoC 3 and PSoC 5LP - Introduction to Implementing USB Data Transfers

Additional Information

 SuiteUSB - USB Development tools for Visual Studio

 EZ-USB FX3 Software Development Kit

About the Authors
Name: Robert Murphy

Title: Applications Engineer Staff

Background: Robert Murphy graduated from Purdue University with a Bachelor's Degree in Electrical
Engineering Technology.

Name: Keith Mikoleit

Title: Applications Engineer Sr.

Background: Keith Mikoleit graduated from Western Washington University with a Bachelor's Degree in
Electrical Engineering Technology.

http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader
http://www.cypress.com/documentation/code-examples/ce95391-psocr-usb-hid-bootloader
http://www.cypress.com/?rID=39157
http://www.cypress.com/documentation/application-notes/an79953-getting-started-psoc-4
http://www.cypress.com/?rID=60890
http://www.cypress.com/?rID=56014
http://www.cypress.com/?rID=41002
http://www.cypress.com/documentation/application-notes/an86526-psoc-4-i2c-bootloader
http://www.cypress.com/documentation/application-notes/an68272-psoc-3-psoc-4-and-psoc-5lp-uart-bootloader
http://www.cypress.com/documentation/application-notes/an84401-psoc-3-and-psoc-5lp-spi-bootloader
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=39553
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rid=57990

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 17

A Appendix A – USBFS HID Configuration
This section shows step-by-step how to set up a USB bootloader descriptor. Note that you can import the descriptor
from the bootloader template file bootloader.root.xml, as described in Configure the USB Component.

Note that this application note uses the USB HID class to avoid the need for externally provided driver files.

To begin configuring the USBFS Component, double-click the Component symbol in your PSoC Creator project
schematic.

A.1 Create Device Descriptor
1. In the Descriptor tree, click Device Descriptor. Configure the options for the Device Attributes, as Figure 16

shows:

 Vendor ID: 0x04B4

 Product ID: 0xB71D

 Device Release: 0x0101

 Manufacturing String: Cypress Semiconductor

 Product String: PSoCx Bootloader

Figure 16. USBFS Device Descriptor

The only hard requirement is to change the Vendor ID (VID) and Product ID (PID). The VID used (0x04B4) is a
specific Cypress Semiconductor VID. It is acceptable to use for this example. However, you must use a VID
assigned to your company when you develop an application for production. The PID chosen is unique to this
application. The bootloader host application uses the VID and PID to recognize the device.

You can optionally change strings such as the Manufacturing String and the Product String.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 18

2. In the String Descriptor tree, click Add String. Add strings as Figure 17 shows:

Figure 17. String Descriptors

3. In the Device Descriptor tree, click Configuration Descriptor. Configure the options for Configuration
Attributes as Figure 18 shows:

Figure 18. USBFS Configuration Descriptor

The key settings in this step are to define the USB device as Bus Powered, and to request a power budget of
20 mA from the host. Less than 20 mA for the application is acceptable, but you cannot exceed this requirement.

Remote Wakeup functionality is not required, and therefore disabled.

4. In the Interface Descriptor tree, click Alternate Setting 0. Configure the Interface Attributes as Figure 19
shows:

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 19

 Interface String: PSoCx Bootloader

 Class: HID

 Subclass: No subclass

Figure 19. USBFS Alternate Setting

Each interface can have multiple Alternate Settings, for multiple endpoint configurations. Here you only need one
alternate setting (the default one).

This is also where you specify that the device conforms to the HID class. Notice that as you change the Class
from Undefined to HID, an additional Descriptor appears in the Descriptor Root tree: the HID Class Descriptor.

Note that you still have not set up the HID report. If you click OK or Apply at this point you will receive an error
because no HID report is defined. The creation of this report is covered in the next few steps.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 20

5. Click the Add Endpoint button. An additional Endpoint Descriptor appears in the Alternate Setting 0 tree, as
Figure 20 shows.

Figure 20. USBFS Adding Endpoints

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 21

A.2 Create HID Descriptor

1. Use the HID Descriptor interface to create an HID report descriptor, as Figure 21 shows:

Figure 21. HID Descriptor

Step 1

Step 2
Step 3

Step 4

Step 5

a. Click the HID Descriptor tab.

b. Click the Add Report button.

Follow Table 1 on page 22 for steps 3 to 5. The report items must be added in the order presented in
the table.

c. Select an item from the HID Item List.

d. Select a value from the Item Value list according to the table.

e. When the Item Value box contains a text field for a particular Item selected, click either the Decimal or
Hexadecimal radio option and enter the desired value in the field.

f. Repeat steps 3 to 5 until the report descriptor resembles the screenshot in Figure 22 on page 22.

g. Change HID description name to “Generic HID”.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 22

Table 1. HID Descriptor Items

HID Item Item Value (USAGE)

USAGE PAGE (05) Generic Desktop Controls 0x01

USAGE (09) Undefined 0x00

COLLECTION (A1) Physical 0x00

USAGE (09) Undefined 0x00

COLLECTION (A1) Physical 0x00

USAGE (09) Undefined 0x00

LOGICAL_MINIMUM (15) 0x00

LOGICAL_MAXIMUM (25) 0xFF

REPORT_SIZE (75) 0x08

REPORT_COUNT (95) 0x40

OUTPUT (91) Bit 1 – Variable

USAGE (09) Undefined 0x00

LOGICAL_MINIMUM (15) 0x00

LOGICAL_MAXIMUM (25) 0xFF

REPORT_SIZE (75) 0x08

REPORT_COUNT (95) 0x40

INPUT (81) Bit 1 – Variable

END_COLLECTION (C0) NA

END_COLLECTION (C0) NA

Figure 22. Completed HID Descriptor

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 23

2. Click the Device Descriptor tab. In the Descriptor tree, click HID Class Descriptor. Configure options for
Device Attributes, as Figure 23 shows:

 Descriptor Type: Report

 Country Code: Not Supported

 HID Report: Generic HID

Figure 23. USBFS HID Device Attributes

Since the project uses a Report Descriptor, set the Descriptor Type to Report.

Because the project is not specific to any country, set Country Code to Not Supported.

Finally, the HID Class Descriptor must point to the HID Report Descriptor created in the previous step. To create
this link, match the HID Report to the HID Report Descriptor, which in this example is labeled Generic HID.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 24

3. In the Descriptor tree, click the first Endpoint Descriptor entry. Configure options for Endpoint Attributes as
Figure 24 shows:

 Endpoint Number: EP1

 Direction: OUT

 Transfer Type: INT

 Interval: 10

 Max Packet Size: 64

Figure 24. USBFS Endpoint 1

The first endpoint (EP) is used as the OUT Endpoint. It acts as a buffer for data received from the host. USB IN
and OUT terminology is always relative to the USB host.

First, we define this endpoint as Endpoint 1 (EP1). Next, we set the direction of the endpoint as OUT.

Because this application is an HID, the specification requires that we use Interrupt (INT) transfers.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 25

4. The purpose of EP2 is to act as a buffer for data that sent to the host. Repeat the previous step for the second
endpoint to configure it as an IN endpoint with the following attributes (see Figure 25):

 Endpoint Number: EP2

 Direction: IN

 Transfer Type: INT

 Interval: 10

 Max Packet Size: 64

Figure 25. USBFS Endpoint 2

5. Click the Apply button, and then click the OK button to close the configuration wizard.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 26

B Appendix B – Bootloader and Device Reset
As noted elsewhere in this application note, transferring control from the bootloader to the bootloadable, or vice versa,
is always done through a device reset. This may be a consideration if your system must continue to perform mission-
critical functions while changing from one program to the other. This section details why reset must be used, as well
as its implications for device performance in your application.

B.1 Why is Device Reset Needed?

To understand why device reset is needed, it is important to note that the bootloader and bootloadable projects in
your system are each completely self-contained PSoC Creator projects. Each project has its own device configuration
settings. Thus, when you change from one project to the other, you can completely redefine the hardware functions of
the PSoC device.

To implement complex custom functions, device configuration can involve the setting of thousands of PSoC registers.
This is especially true for PSoC’s digital and analog routing features. When you configure the registers and routing,
you must make sure that, in addition to setting the bits for the new configuration, you reset the bits for the old
configuration. Otherwise, the new configuration may not work, and may even damage the device.

So when changing between bootloader and bootloadable projects, we do a device software reset (SRES). This
causes all PSoC registers to be reset to their default states. Configuration for the new project can then begin. Note
that by assuming that all PSoC registers are initialized to their device reset default states, we can reduce both
configuration time and flash memory usage.

B.2 Effect on PSoC 3 and PSoC 5LP Device I/O Pins

As described in application notes AN61290, PSoC 3, PSoC 5LP Hardware Design Considerations, and AN60616,
PSoC 3 and PSoC 5LP Startup Procedure, during the reset and startup process the PSoC 3 and PSoC 5LP I/O pins
are in three distinct drive modes, as Table 2 shows. PSoC 4 L-series I/O pins are similar.

Table 2. PSoC 3 and PSoC 5LP I/O Pin Drive Modes During Device Reset

Startup Event I/O Pin Drive Mode

Duration (Typical)

Comment
Slow IMO
(12 MHz)

Fast IMO
(48 MHz)

Device reset (SRES) active HI-Z Analog 40 µs While reset is active, the I/Os are held
in the HI-Z Analog mode.

Device reset removed

Nonvolatile Latches (NVLs)
copied to I/O ports

NVL setting:
HI-Z Analog,
Pull-up, or Pull-down

~12 ms ~4 ms Duration depends on code execution
speed and configuration complexity.

Code starts executing

I/O ports and pins are
configured

PSoC Creator
project configuration

n/a 8 possible drive modes. See device
datasheet for details.

Code reaches main() Code may change
I/O pin function

n/a

For details on NVL usage in PSoC 3 and PSoC 5LP, see a device datasheet. In your PSoC Creator project, the NVL
settings are established in two places:

 The Reset tab for I/O ports, the individual Pin Component configurations

 The System tab for all other NVLs, the design-wide resources (DWR) window

The NVLs are updated when the device is programmed with your project. Note that a bootloadable project cannot set
NVLs; its DWR settings must match those in the associated bootloader project.

Final I/O drive modes are set by individual Pin Component configurations.

http://www.cypress.com/go/an61290
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 27

Figure 26 shows the timing diagrams for device startup and configuration. The example in the middle diagram is for
PSoC 3; similar processes exist for PSoC 4 L-series and PSoC 5LP. For more information, see AN60616, PSoC 3
and PSoC 5LP Startup Procedure.

Figure 26. Device Startup Process Diagrams

Reset Released

Reset Boot

Hardware Startup Firmware Startup

CPU halted
CPU Specific

Source File
Main.c ...

CyFitter_cfg.c

No CPU

execution

Hardware Startup Firmware Startup

KeilStart .A51 Main.c ...

CyFitter_cfg.c
Configure

Debug,
Bootloader

Clear SRAM
Clear

IDATA
DMAC

configuration

...

...

CyFitter_cfg.c

Register
initialization

DSI config ,
Digital routing

Digital array,
ClockSetup ()

Analog set
default

B.3 Effect on Other Functions

At device reset, universal digital block (UDB) registers are reset, so all UDB-based Components cease to exist and
their functions are stopped. The same is also true for analog Components based on the configurable SC/CT blocks in
PSoC 3 and PSoC 5LP, and CTBm blocks in PSoC 4 L-series.

All fixed peripherals – digital and analog – are reset to their idle states. This includes the DMA, DFB, timers
(TCPWM), I2C, USB, CAN, ADCs, DACs, comparators, and opamps. All clocks are stopped except the IMO.

All digital and analog routing control registers are reset. This causes all digital and analog switches to be opened,
breaking all connections within the device. This includes all connections to the I/Os except the NVLs.

All hardware-based functions are restored after configuration (see Figure 26). All firmware functions are restored
when the project’s main() function starts executing.

B.4 Example: Fan Control

Let us examine how a bootloader and its associated device reset can be integrated into a typical application such as
fan control. PSoC Creator provides a Fan Controller Component, which encapsulates all necessary hardware blocks
including PWMs, tachometer input capture timer, control registers, status registers, and a DMA channel or interrupt.
For more information, see the Fan Controller Application page.

The fan control application is in a bootloadable project. Optionally, the bootloader may be customized to keep the fan
running while bootloading.

The fan can also be kept running while the device is reset, during the transfer between the bootloader to the
bootloadable, as Table 3 shows.

http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616
http://www.cypress.com/?rid=63172

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 28

Table 3. PSoC I/O Pin Drive Modes During Device Reset for Fan Controller

I/O Pin Drive Mode Comment

HI-Z Analog Optionally add external pull-up or pull-down resistor to the PWM pin, for 100% duty
cycle. This may not be needed because the fan may keep spinning due to inertia.

NVL setting: HI-Z Analog,
Pull-up, or Pull-down

Optionally set the PWM Pin Component reset value to Pull-up or Pull-down, for 100%
duty cycle. This may not be needed because the fan may keep spinning due to inertia.

PSoC Creator
project configuration

Set the PWM Pin Component drive mode and initial state, for 100% duty cycle.
The PWM Component becomes active but does not run.

Main() starts executing When PWM_Start() is called, the PWM starts driving the PWM pin at the Component’s
default duty cycle.
Firmware can read the tachometer data and start actively controlling the duty cycle.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 29

C Appendix C – Host Core APIs

C.1 cybtldr_api2.c / .h

This is a higher-level API that handles the entire bootload operation. It has functions to open and close files. It
invokes the functions of the cybtldr_api.c / .h API for the bootload operations. This API can be used for building a
GUI-based bootloader host.

C.2 cybtldr_api.c / .h

This is a row-level API file for sending a single row of data at a time to the bootloader target. It has functions for
setting up the bootload operation, erasing a row, programming a row, verifying a row and ending the bootload
operation. Table 4 describes in detail the functions of this API.

Table 4. Functions of cybtldr_api.c /.h

Function Description

CyBtldr_StartBootloadOperation Enables the communication interface and sends an Enter Bootloader command to
the target.

 From the response packet received, verifies the silicon ID, silicon revision of the
target device, and bootloader version.

CyBtldr_ProgramRow First validates a row, i.e., sends a Get Flash Size command to the target for a
particular array ID of the target flash. In response to this, the target returns the
start and end row numbers of the bootloadable flash portion in that array. The host
reads this response and checks whether the specified row is in the bootloadable
area of the flash.

 If row validation is a success, the host breaks the row data into smaller pieces and
sends them to the target using Send data commands.

 Along with the last portion of row data, sends a Program Row command to the
target.

CyBtldr_VerifyRow This function also first validates a row for a particular array ID and row number.

 If row validation is successful, sends a Verify Row command for the validated
flash row. In response to this command, the target returns the checksum of the
row.

 The returned checksum is verified against the expected checksum value.

CyBtldr_EraseRow This function also first validates a row for a particular array ID and row number.

 If row validation is successful, sends an Erase Row command for the validated
flash row.

CyBtldr_EndBootloadOperation Sends an Exit Bootload command and disables the communication interface.

C.3 cybtldr_command.c / .h

This API handles the construction of command packets to the target and parsing the response packets received from
the target. The cybtldr_api.c / .h invokes the functions of this API. For example, to send an Enter Bootload command,
CyBtldr_StartBootloadOperation() calls the CyBtldr_CreateEnterBootloadCmd() function of this API. It also has a
function for calculating the checksum of the command packets before sending to the target.

C.4 cybtldr_parse.c / .h

This module handles the parsing of the .cyacd file that contains the bootloadable image to send to the device. It also
has functions for setting up access to the file, reading the header, reading the row data, and closing the file.

C.5 cybtldr_utils.h

This header provides bootloader version information, and constants for status and error.

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 30

Document History

Document Title: AN73503 - PSoC® USB HID Bootloader

Document Number: 001-73503

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3435382 UDAY 12/20/2011 New application note.

*A 3673053 UDAY 07/11/2012 Minor updates and edits. Updated template.

*B 3811883 ANCY 11/14/2012 Updated for PSoC 5LP

*C 3850054 KLMZ 12/21/2012 Rewritten for improved content and organization

*D 4034483 KLMZ 06/19/2013 Improved figure clarity, incorporated customer feedback to improve instructional steps,
added CY USB related resource

*E 4435010 MKEA 07/17/2014 Added Appendix B – Bootloader and Device Reset

*F 4479382 KLMZ 08/20/2014 Added Cypress SuiteUSB to Related Resources

*G 4831774 KLMZ 07/10/2015 Removed bootloader host example projects, fixed links for new website, removed
obsolete links, fixed minor text issues.

*H 5032648 SJLE 12/08/2015 Updated figures for current latest PSoC Creator 3.3

Updated the names of “Related Notes”

Deleted obsolete application notes

Added sub-headings for Appendix A

Updated template

Removed Visual studio Express 2010 hyper-link

Added the Appendix C for a custom Host bootloader

*I 5101142 MKEA 01/29/2016 Deleted attached project; transferred it to code example CE95391. Added references
to the code example.

Updated for PSoC 4 L-series.

*J 5582269 SJLE 01/13/2017 Changed the folder path for USBFS component

Added the information of pre-built dll file in section 5.2.1

Changed the folder path for cybootloaderutils in section 5.1.5 and 5.2.1

Added the information of the host program example in section 5.2.2

Updated the creating steps for Bootloader_Utils.dll

Visual Studio Community project update

– Fixed a communication failed after Windows system resumes

– Provided both release and debug builds

Updated template

*K 5705702 BENV 04/21/2017 Updated logo and copyright

PSoC® USB HID Bootloader

www.cypress.com Document No. 001-73503 Rev.*K 31

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

