

www.cypress.com Document No. 001-72382 Rev. *H 1

AN72382

Using PSoC® 3 and PSoC 5LP GPIO Pins
 Author: Greg Reynolds

 Associated Part Family: All PSoC
®
 3 and PSoC 5LP parts

 Software Version: PSoC Creator™ 2.1 SP1 and higher

Related Application Notes: For a complete list of related application notes, click here.

AN72382 shows you how to use GPIO pins effectively in PSoC
®
 3 and PSoC 5LP. Major topics include GPIO basics,

configuration, mixed-signal use, registers, interrupts, and low-power behavior.

Contents

1 Introduction .. 1
2 GPIO Pin Basics .. 2

2.1 Physical Structure of GPIO Pins 2
2.2 Digital System Interconnect Overview 2
2.3 Analog Routing Overview.................................... 3
2.4 GPIO Power Structure and Limits 3
2.5 Relative Voltages of VDDA, VDDD, and VDDIO 4
2.6 Startup and Low-Power Behavior 5
2.7 DMA Access to GPIO Pins.................................. 5
2.8 Port Interrupt Control Unit 5

3 GPIO Pins in PSoC Creator... 6
3.1 PSoC Creator APIs ... 6
3.2 Pins Component Symbols and Macros 6
3.3 Pins Component Interrupts 6
3.4 External Terminals .. 8
3.5 Manual Pin Assignments..................................... 8

4 GPIO Examples, Tips, and Tricks 9
4.1 The GPIO ―Hello World‖ Project 9
4.2 Read an Input and Write to an Output 9
4.3 Add Multiple GPIO Pins as a Logical Port 10

4.4 Configure GPIO Output Enable Logic 12
4.5 Enable the Configurable XRES Feature 13
4.6 Disable Debug Logic on GPIO Pins 14
4.7 Toggle GPIOs Faster with Data Registers 14
4.8 Use 8051 Special Function Registers 16
4.9 Use Both Analog and Digital on a GPIO 16
4.10 Control Analog Switching with Hardware 18
4.11 Use the DSI as a Clock Source 20
4.12 Change PICU Settings with Firmware............... 22
4.13 Gang Pins for More Drive/Sink Current............. 23
4.14 Level-Shift Signals .. 24

5 Related Application Notes ... 25
Appendix A. GPIO API and Register Reference 26

A.1 Component API .. 26
A.2 Per-Pin API ... 26
A.3 GPIO Registers ... 27
A.4 Nonvolatile Latches .. 28

Appendix B. PSoC Creator Settings and Registers ... 29
Document History .. 40
Worldwide Sales and Design Support 41

1 Introduction

The any-signal-to-any-pin routing available with PSoC
®
 3 and PSoC 5LP GPIOs helps to optimize PCB layout,

shorten design time, and allow a large degree of solderless rework. However, with this freedom comes a steeper
learning curve than with a traditional microcontroller. This application note introduces you to PSoC 3 and PSoC 5LP
GPIO basics and demonstrates techniques for their effective use in a design.

It is assumed that you are familiar with PSoC Creator™ and the PSoC 3 and PSoC 5LP family device architecture. If
you are new to PSoC, see the introductions in AN54181 – Getting Started with PSoC 3 and AN77759 – Getting
Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home page.

For a list of related PSoC design resources, see the Related Application Notes section.

http://www.cypress.com/
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=60890
http://www.cypress.com/?rID=60890
http://www.cypress.com/go/creator

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 2

2 GPIO Pin Basics

In PSoC 3 and PSoC 5LP devices, the GPIO, SIO, and USB pins are similar. Unlike GPIO pins, though, the SIO and
USB pins have different drive strengths and application-specific features. Some GPIO pins also have secondary
dedicated functions, such as opamp inputs and outputs, programming and debugging interfaces, or DAC outputs.
When they are not being used for special functions, all GPIO pins behave the same. Depending on the package type,
PSoC devices can have as many as 62 GPIO pins.

2.1 Physical Structure of GPIO Pins

GPIO pins have eight drive modes to support the many analog and digital I/O capabilities that PSoC offers. A detailed
block diagram of the GPIO structure appears in the PSoC 3 Architecture Technical Reference Manual (TRM), as well
as in the PSoC 3 and PSoC 5LP family datasheets. Figure 1 shows a simplified version.

Figure 1. Simplified GPIO Block Diagram

Digital Input Path

Digital Output Path

Analog

LCD

Digital System

Interconnect

Analog Global

& Analog Mux

LCD Bus

GPIO

The various drive modes and their custom settings are described in detail in the Pins Component datasheet, which is
available as part of PSoC Creator or as a separate download from the Cypress website.

2.2 Digital System Interconnect Overview

The PSoC 3 and PSoC 5LP digital subsystem has a programmable interconnect that allows connections between the
built-in peripherals, custom logic functions (universal digital blocks, or UDBs), and any I/O pin. The digital system
interconnect (DSI) routing interface allows GPIO pins to connect to any digital resource in the chip, as Figure 2
illustrates.

Figure 2. DSI Block Diagram

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=37804

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 3

All digital resources are routed to the DSI for connection to each other or to the system core. For more details about
the DSI operation, see the ―UDB Array and Digital System Interconnect‖ section of the TRM.

2.3 Analog Routing Overview

The GPIO pins are connected to analog resources, or to each other, through a series of analog routing buses joined
by switches and muxes. The two primary analog routing buses are the analog global (AG) bus and the analog mux
(AMUX) bus. The AG bus is divided into four quadrants (AGL0-4, AGL4-7, AGR0-4, and AGR4-7), and the AMUX
bus is divided into two halves (AMUXL and AMUXR). Figure 3 shows a portion of the analog routing diagram from the
TRM.

Figure 3. Upper-Left Analog Routing Quadrant

Each AGx can connect to two of the pins on an associated port in each quadrant, while each AMUX can connect to
every pin on its half of the chip. The analog buses also connect to the inputs and/or outputs of various analog
resources, such as comparators, DACs, and ADCs. In addition, switches allow the left and right buses to be
connected to each other.

An in-depth description of the analog routing system in the PSoC 3 and PSoC 5LP devices is included in the ―Analog
Routing‖ section of the TRM. Application notes AN58304 and AN58827 discuss analog routing and pin selection in
detail.

2.4 GPIO Power Structure and Limits

In general, GPIO pins can source 4 mA and sink 8 mA. They can be ganged together (shorted) to allow more current
to be sourced or sunk than that which a single pin can provide, but you need to consider additional power limitations.

PSoC 3 and PSoC 5LP devices provide as many as four individual I/O voltage domains through the VDDIO pins. In the
PSoC 3 and PSoC 5LP datasheets, the VDDIO pin that supplies power to a particular set of pins is indicated by solid
lines drawn on the pinout diagrams. Figure 4 shows a 48-pin PSoC 3 device with the VDDIO quadrant indicators
highlighted in red.

http://www.cypress.com/
http://www.cypress.com/?rID=39974
http://www.cypress.com/?rID=40247

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 4

Figure 4. Example VDDIO Quadrants Highlighted in Red

The VDDIO pins are often tied to the same power rail as VDD. Little thought is given to how much current any individual
VDDIO quadrant is sourcing and sinking, but there are limitations. Table 1 shows the limits according to PSoC family
and package type.

Table 1. VDDIO Quadrant Current Limits

Family Package Source Sink

PSoC 3

PSoC 5LP

100-pin

68-pin
100 mA per VDDIO 100 mA per VDDIO

48-pin

100 mA VDDIO0+VDDIO2

100 mA VDDIO1+VDDIO3

100 mA VDDIO0+VDDIO2

100 mA VDDIO1+VDDIO3

PSoC 5

100-pin

68-pin
20 mA per VDDIO 20 mA per VDDIO

48-pin

20 mA VDDIO0+VDDIO2

20 mA VDDIO1+VDDIO3

20 mA VDDIO0+VDDIO2

20 mA VDDIO1+VDDIO3

Note: Total source+sink current should not exceed 100 mA for any VDDIO quadrant (or VDDIO pair for the 48-pin packages).

In applications for which the typical current sourced and sunk by the GPIO pins is expected to exceed 80 percent of
the limit, make sure that no single quadrant of GPIO pins exceeds its maximum under the worst operating conditions.
Doing so may mean that the design needs to use pins in separate VDDIO quadrants to spread out the current.

2.5 Relative Voltages of VDDA, VDDD, and VDDIO

VDDA must be at the highest voltage present on the PSoC 3 or PSoC 5LP device. All other power supply pins must be
less than or equal to VDDA. The VDDD and VDDIO pins may be less than, greater than, or equal to each other.

The System tab of the Design-Wide Resources file includes a voltage configuration section that lets you define the

voltage at which each power domain will operate. The values entered in these fields, shown in Figure 5, are used by
PSoC Creator if a Component or feature is dependent on the voltage at which it is running.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 5

Figure 5. Voltage Configuration in Design-Wide Resources

Proper voltage configuration in PSoC Creator is recommended in all cases, regardless of which Components or
features are used.

2.6 Startup and Low-Power Behavior

Out of the box, all GPIO pins start up in an Analog HI-Z state, where they remain until reset is released. The initial
operating configuration of each pin is loaded during boot and takes effect at that time. You can change the reset
behavior of GPIOs using the PRTxRDM fields of the nonvolatile latch array, which are written when the PSoC device
is programmed.

In all low-power modes, GPIO pins retain their state until the part is reset or awakened. The port interrupt logic
continues to function in all low-power modes so that pins can be used as wakeup sources.

Note UDB-based Components, such as control registers, are typically not active during sleep or hibernate. They can

glitch when the PSoC device enters or exits these modes. The glitch could cause a GPIO to be set at an unwanted
state. To avoid that, set the pins explicitly to a HIGH or LOW logic state before the PSoC device enters a low-power
mode.

2.7 DMA Access to GPIO Pins

PSoC devices have a DMA controller that connects to different internal peripherals, including the I/O interface.
Because GPIO registers are memory-addressed, DMA transfers can be used to configure GPIO pins and write data
to the digital output path without requiring any action by the CPU.

DMA configuration and data transfer are too complex to be covered in this application note. Several other application
notes and code examples are available, including AN52705 – PSoC 3 and PSoC 5LP – Getting Started with DMA.

2.8 Port Interrupt Control Unit

PSoC 3 and PSoC 5LP have a port interrupt control unit (PICU) that manages I/O interrupts. Each GPIO pin can
generate an interrupt on a rising edge, falling edge, or either edge condition. Level-sensitive interrupts are
implemented by tying a cy_isr Component to the interrupt terminal of a Pins Component.

When a GPIO interrupt is triggered, the corresponding bit in that GPIO‘s status register is set to ‗1‘. The bit will remain
at ‗1‘ until the register is read or a chip reset occurs. The API provided by PSoC Creator manages GPIO interrupt
configuration and reporting.

The individual GPIO interrupt signals within a port are ORed together, and a single PICU request is sent to the
interrupt controller. The port interrupt requests are daisy-chained together to generate a single wakeup signal, which
is sent to the PSoC power manager. The PICU remains active in all low-power modes, but the individual GPIO
interrupts must still be managed after wakeup.

http://www.cypress.com/
http://www.cypress.com/?rID=37793

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 6

3 GPIO Pins in PSoC Creator

This section describes how to use PSoC Creator to configure and manipulate GPIO pins. PSoC Creator combines
text and graphical editing interfaces so that designers can set their hardware configuration and write firmware at the
same time.

3.1 PSoC Creator APIs

Cypress provides a set of APIs that you can use to dynamically control GPIOs through firmware. The APIs for the
Pins Component enable access on both a component-wide and per-pin basis.

The cy_boot Component also provides functions to access chip resources. The functions in cy_boot are not part of
the individual component libraries, but the libraries can use them. The per-pin APIs, which are provided as part of
cy_boot in the cypins.h file, are documented in the ―Pins‖ section of the PSoC Creator System Reference Guide. You

can use these APIs to control the configuration registers for each physical pin.

For a summary and a simple code example for the APIs related to GPIOs, see GPIO API and Register Reference.

3.2 Pins Component Symbols and Macros

The cy_pins Component is the recommended way for internal PSoC resources to connect to a physical pin. It allows
PSoC Creator to automatically place and route the signals within the PSoC device based on the chosen configuration
of the pin. The standard Cypress component catalog contains four types of predefined GPIO configurations (macros)
in the Ports and Pins class of symbols: analog, digital bidirectional, digital input, and digital output. Drag one of these
component macros to the schematic to add a pin to the project, as Figure 6 shows.

Figure 6. Pins Component Symbol Types in PSoC Creator

You are not confined to one type of pin configuration based on which macro symbol you choose. After you place the
pin symbol on the schematic, you can configure its behavior using the component customizer options described in
this document.

3.3 Pins Component Interrupts

You can enable interrupts in Pins Components with the cy_pins configuration dialog in PSoC Creator, as Figure 7
shows. Double-click on the Pins Component to open it.

http://www.cypress.com/
http://www.cypress.com/?rID=51972

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 7

Figure 7. Interrupt Configuration in PSoC Creator

The Pins Component symbol changes when interrupts are enabled, as Figure 8 shows. The IRQ signal of the Pins
Component will toggle when a pin interrupt is triggered. You do not need to connect the irq terminal to an isr
Component to enable a pin interrupt.

Figure 8. Pins Component Symbol Changes with Interrupts Enabled

If interrupts are enabled, you can use only one Pins Component with each physical GPIO port. The reason for this
limitation is that all pin interrupts in a port are ORed together, so only one IRQ signal can be shown on the schematic.

For example, consider two Pins Components with interrupts enabled, as Figure 9 shows. These Components cannot
be mapped to pins in the same physical port because there are now two separate IRQ signals in the PSoC Creator
schematic, but there is really only one physical PICU interrupt generated for the entire port.

Figure 9. Two Pins Components with Interrupts.

PSoC Creator will give an error if you try to assign these two Components to the same port. The accepted method is
to assign multiple pins to the same Component, as Figure 10 shows. This ensures that there is only one IRQ signal in
the schematic for that physical port. You can still assign each pin its own interrupt edge type. The only limitation is
that the pins must be contiguous.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 8

Figure 10. Pin Selection with Different Interrupt Edge Types.

You can also use the PICUx_INTTYPEy registers to enable or change interrupts on any GPIO pin, regardless of
Component settings. See the appendixes for more information on these registers.

3.4 External Terminals

The cy_pins configuration dialog offers an option to show an external terminal. This allows you to add Off-Chip
Components to your schematic and show their connections to the Pin. Figure 11 shows an example of a Pins
Component driving an off-chip LED.

Figure 11. Off-Chip Component Connection Example

3.5 Manual Pin Assignments

A Pins Component is assigned to a physical pin through the Pins tab of the Design-Wide Resources interface

(cydwr). PSoC Creator automatically assigns pins if none are chosen by the user, but this may lead to pin placement
that is more difficult to route on a PCB. Also, some GPIO pins are directly connected to analog or digital resources.

Figure 12 shows three assigned pins. The pins highlighted in gray were manually assigned, and the pin highlighted in
yellow was automatically assigned. Selecting the Lock option prevents the pin from being reassigned by PSoC

Creator.

Figure 12. Pin Assignment in cydwr Window

PSoC Creator makes it simple to reassign pins as needed, but designers should consider pin selection before boards
are designed. The ―Analog Interconnect‖ diagrams in the TRM, AN58304, and AN58827 are valuable resources to
help determine the optimal analog pin selection.

http://www.cypress.com/
http://www.cypress.com/?rID=39974
http://www.cypress.com/?rID=40247

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 9

4 GPIO Examples, Tips, and Tricks

This section provides practical examples of how to use GPIO pins. The examples were generated for PSoC 3
devices, but the same techniques apply to PSoC 5LP. Both basic examples and more advanced techniques are
included.

4.1 The GPIO “Hello World” Project

The simplest use of a GPIO is to set the output state of a pin HIGH or LOW. This example demonstrates how to set
the output using the Pins Component API.

1. Place a Digital Output Pins Component, configured to Strong drive mode, in the project schematic, as Figure 13
shows.

2. Name the Component ―MyPin‖ and assign it to P6[2].

Figure 13. Hello World Example Schematic

3. In main.c, use the Component API to toggle the output, as follows:

for(;;)

{

 /* Set MyPin output state to HIGH */

 MyPin_Write(1);

 /* Delay for 500 ms */

 CyDelay(500);

 /* Set MyPin output state to LOW */

 MyPin_Write(0);

 /* Delay for 500 ms */

 CyDelay(500);

}

4. Build the project and program the PSoC device.

The result is an output that toggles high/low every 500 ms.

4.2 Read an Input and Write to an Output

This example demonstrates how to read and write to a GPIO pin with the Component APIs. The output pin will drive
the inverse of the input pin state.

1. Place two pins in the project schematic—one digital input pin and one digital output pin—as Figure 14 shows.

Figure 14. Input and Output Example Schematic

2. Use the Component APIs to set the state of OutputPin based on InputPin as follows:

for(;;)

{

 /* Set OutputPin state to the

 inverse of the InputPin state */

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 10

 OutputPin_Write(~InputPin_Read());

}

The result is that OutputPin is always at the opposite state of InputPin.

4.3 Add Multiple GPIO Pins as a Logical Port

In PSoC Creator, you can organize a group of as many as 64 pins into a logical port, which can then be referenced in
code by the port‘s defined name. All the pins may be part of the same physical port, or they may be from separate
physical ports.

1. Place a single pin symbol, as Figure 15 shows.

Figure 15. Single Pin Symbol Placed in a Schematic

2. Double-click on the pin symbol to open the pin customizer window.

3. Type the number of pins in the Number of Pins field in the configuration window.

The pins will appear in the list below the field. Select an individual pin in the list to allow it to be customized
independently of the others. Select [All Pins] to affect every pin in the port.

4. For this example, set three of the pins as digital output pins. Set the last as a digital input, as shown in Figure 16.

Figure 16. One of Four Pins Configured as a Digital Input

5. Click OK to apply the changes.

After you define the number of pins and their types, the schematic symbol will resemble Figure 17.

Figure 17. Pins Component in Port Configuration

6. (Optional) Select Display as Bus in the Mapping tab of the pin configuration window to display the port as a bus

symbol, as Figure 18 and Figure 19 show.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 11

Figure 18. Display as Bus Option

This feature does not affect the behavior of the port. Note All pins must be of the same type for them to be
displayed as a bus.

Figure 19. Four Pins Displayed as a Port Bus Symbol

7. (Optional) Select Contiguous in the Mapping tab to force the pins to be physically adjacent, as Figure 20

shows.

Figure 20. Contiguous Pin Placement Option

When you select Contiguous, PSoC Creator will modify the list of available pinout options to match the

port‘s configuration, as Figure 21 shows.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 12

Figure 21. Pin Placement of Contiguous Port Pins

These features are described in more detail in the pin configuration window and the Pins Component datasheet.

4.4 Configure GPIO Output Enable Logic

This example demonstrates how to configure and use the output enable logic of a GPIO pin.

1. Place two digital output pins in the project schematic.

2. Open the configuration dialog for each pin and check the Output Enable box, as Figure 22 shows.

Figure 22. Output Enable Selection

3. Place a control register in the schematic.

4. Configure the control register for two outputs, as Figure 23 shows.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 13

Figure 23. Control Register Configured with Two Outputs

5. Add two Clock Components, configured in any way.

6. Connect the clocks to the pins, as Figure 24 shows.

Figure 24. Control Register Driving Pins' Output Enable

7. Add the following code to the main.c file:

for(;;)

{

 for(i=0; i<=3; i++)

 {

 ControlReg_Write(i);

 CyDelay(500);

 }

}

8. Compile and program the PSoC 3 or PSoC 5LP device.

The result is the output of the two pins gated by the state of ControlReg.

This same method can be used for the creation of a bi-directional data bus. Place as many pins as required for
the data bus and check the Output Enable box in each Pin Component. Connect all the output enable signals to

a single Control Register output. When Output Enable is enabled the GPIO pins are strongly driven out. When
the Output Enable is disabled the GPIO pin input logic state can be read.

4.5 Enable the Configurable XRES Feature

This example demonstrates how to enable the configurable XRES feature. You can configure Pin P1[2] as an
optional XRES pin to support an external reset for small packages. The feature is also available in the larger
packages.

1. Open the System tab in the Design-Wide Resources file, as shown in Figure 25.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 14

2. Select the Use Optional XRES option to enable the optional XRES logic. If this box is selected, P1[2] stops

functioning as a GPIO pin and is configured as an active LOW input with an internal pull-up.

Figure 25. Optional XRES Pin Enable

3. Program the PSoC device to write the setting to the nonvolatile array. It will take effect after the next power on.

4. Deselect the Use Optional XRES option and reprogram the PSoC device to restore normal GPIO functionality.

Note that all PSoC 3 and PSoC 5LP devices come from the factory with the optional XRES feature disabled. Using
the configurable XRES pin does not change the functionality of a dedicated XRES pin.

4.6 Disable Debug Logic on GPIO Pins

This example demonstrates how to disable the debug logic associated with the port 1 pins. If the debug port feature is
enabled, the PSoC device will enter debug mode if it detects activity on these pins at boot time.

1. Open the Design-Wide Resources file and click the System tab.

2. Select Debug ports disabled from the drop-down menu, as Figure 26 shows.

Figure 26. Debug Ports Disabled

3. Compile and program the PSoC 3 or PSoC 5LP device.

Note that the debug port must be manually enabled again if debugging is needed. Disabling the debug interface does
not affect the ability to program the device.

4.7 Toggle GPIOs Faster with Data Registers

This example demonstrates how to use port data registers and masks to quickly toggle pins. While the Component
API is the easiest way to control GPIO pins, the number of processor cycles needed to update the pin can affect how
fast a toggle can occur. The register definitions and masks in the <pin_name>.h file that is created for each
Component can be used to more quickly update pins.

1. Place a digital output pin in the schematic and name it ―MyPin‖ for convenience.

2. Configure the Component with no hardware connection and assign it to a physical pin (this example uses P6[0]),
as Figure 27 shows.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 15

Figure 27. Pin Placed in Schematic

3. Add the following code to the main.c file:

 for(;;)

 {

 // These are API functions

 MyPin_Write(1); //set MyPin output

 MyPin_Write(0); //clear MyPin output

 }

4. Observe the output of P6[0] using the API, as Figure 28 shows.

Figure 28. Pin Toggle Using API Switch Method

5. Replace the previous code in main.c with this code:

 for(;;)

 {

 MyPin_DR |= MyPin_MASK; //Set MyPin

 MyPin_DR &= ~MyPin_MASK; //Clear

 }

6. Observe the output of P6[0] using the fast switching method, as Figure 29 shows.

Figure 29. Pin Toggle Using Fast Switching Method

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 16

A pin can toggle almost four times faster using the fast switching method rather than the API functions. This code
also has the advantage of being portable. If the pin assignment is changed during development, you do not have to
write to a specific physical pin‘s registers.

4.8 Use 8051 Special Function Registers

The 8051 in PSoC 3 has a set of special function registers (SFRs) that allow faster access to a limited set of PSoC
registers. You can use two of those registers to quickly toggle GPIO pins.

1. Place a Digital Output Pins Component in the project schematic and assign it to a physical pin, just as you did in
the previous example. This example also uses P6[0].

2. Add the following code to the main.c file:

/* Enable SFR access for P6[0]. */

/* Only done once in the beginning. */

SFRPRT6SEL |= 0x01;

/* Toggle GPIO pin. */

for(;;)

{

 /* Switch on P6[0] */

 SFRPRT6DR |= 0x01;

 /* Switch off P6[0] */

 SFRPRT6DR &= ~0x01;

}

3. Alternatively, use this method:

for(;;)

{

 /* Toggle P6[0] */

 SFRPRT6DR ^= 0x01;

}

Either method will result in very fast pin toggles. For more information on the SFRs, see the PSoC 3 Architecture
TRM.

4.9 Use Both Analog and Digital on a GPIO

This example demonstrates how to configure and use a pin for both analog and digital functions. Assume that a GPIO
pin needs to output a 10-kHz clock signal for a short time, switch to a reference voltage for a short time, and then
switch back to the 10-kHz signal.

1. Place an analog pin, a VREF, and a clock in the schematic.

2. Assign the Pins Component to a physical pin (this example uses P3[6]), as Figure 30 shows.

Figure 30. Basic Components Placed in the Schematic

3. Configure the pin with both analog and digital output settings, as Figure 31 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=35180

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 17

Figure 31. MyPin Configured as Both Analog and Digital

4. Connect the clock to the digital terminal and the VREF to the analog terminal, as Figure 32 shows.

Figure 32. PSoC Creator Schematic of Analog and Digital Switching Scheme

5. Compile the project to create the API necessary to determine the analog routing that PSoC Creator uses.

6. Open the cyfitter_cfg.c file and look for either CYREG_PRT3_AG (the analog global enable) or

CYREG_PRT3_AMUX (the analog mux bus enable). In this case, the routing tool has chosen to use the AG bus

for Port 0, as follows.

CY_SET_REG8(CYREG_PRT3_AG, 0x40);

Note that the analog routing may change whenever the project is rebuilt. If any changes are made to the project,
you must check the routing.

7. Add the following code to the main.c file:

for(;;)

{

/* Set pin to Analog */

// Set P3[6] to Analog HI-Z

CyPins_SetPinDriveMode(CYREG_PRT3_PC6, PIN_DM_ALG_HIZ);

// Make AG connection for P3[6]

CY_SET_REG8(CYREG_PRT3_AG, CY_GET_REG8(CYREG_PRT3_AG) | 0x40);

// Wait for 100 ms while driving signal

CyDelay(100);

/* Set pin to digital */

// Break AG connection for P3[6]

CY_SET_REG8(CYREG_PRT3_AG, CY_GET_REG8(CYREG_PRT3_AG) & 0xBF);

//Set P3[6] to Strong Drive mode

CyPins_SetPinDriveMode(CYREG_PRT3_PC6, PIN_DM_STRONG);

// Wait for 100 ms while driving signal

CyDelay(100);

}

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 18

8. Compile and program the PSoC 3 or PSoC 5LP device.

The result is an output that alternates every 100 ms between the clock signal and the reference voltage.

4.10 Control Analog Switching with Hardware

This example shows how an external signal is used to gate the output of an analog pin without CPU intervention.

1. Place a digital input pin (Ext_Gate in this example), an analog pin (Analog_Out), and an analog source (VDAC8)
in the project schematic, as Figure 33 shows.

Figure 33. Components for Hardware-Controlled Gate

2. Configure the Analog_Out pin with both analog and digital properties, as Figure 34 shows.

Figure 34. Analog_Out Pin Configuration

3. Configure the drive mode of the Analog_Out pin as ―Open Drain Drives Low,‖ as Figure 35 shows.

Figure 35. Analog_Out Pin Drive Mode

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 19

4. Connect the Components, as Figure 36 shows.

Figure 36. Analog Pin with Hardware Gate

5. Add the following line of code to the main.c file. In this example, it sets the bidirectional bit for pin 0 in the Port 0
configuration registers:

// Set P0[0] to bidirectional mode

CY_SET_REG8(CYDEV_IO_PRT_PRT0_BIE, 0x01);

6. Assign the Analog_Out pin to P0[0] to match the previous code.

7. Compile and program the PSoC 3 or PSoC 5LP device.

Figure 37, which is taken from the detailed GPIO block diagram in the PSoC 3 and PSoC 5LP datasheets, shows
how the GPIO control logic is used to implement this technique.

Figure 37. Highlighted GPIO Block Diagram from PSoC 3 and PSoC 5LP Datasheets

Drive

Logic

PRT[x]DM0

PRT[x]DR

Digital Output Path

PRT[x]SLW

PRT[x]DM1

PRT[x]DM2

Analog

Analog Mux

Analog Global

DSI Output

PRT[x]BYP

PRT[x]BIE

Bidir Control

Capsense Control

Switches

Vddio

Vddio

PRT[x]AMUX

PRT[x]AG

1

CAPS[x]CFG1

OE

In

PRT[x]SYNC_OUT

(VDAC8)

(Ext_Gate)

(Analog_Out)

0

1 0

1

0

1

The Ext_Gate signal is routed through the DSI to the digital portion of the Analog_Out pin. The signal from the DSI
(red) is routed to the analog switches because the port bidirectional bit and the analog global select bit are set
(yellow). The VDAC output (blue) is switched on or off depending on the logic state of the Ext_Gate signal.

For more details on the analog switching available in PSoC 3 and PSoC 5LP devices, see the ―Analog Routing‖
section of the TRM. Another good resource is the application note AN58827 – PSoC 3 and PSoC 5LP Internal Analog
Routing Considerations.

http://www.cypress.com/
http://www.cypress.com/?rID=40247
http://www.cypress.com/?rID=40247

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 20

4.11 Use the DSI as a Clock Source

This example demonstrates how to use a digital signal routed through the DSI as a clock source. As many as eight
digital and four analog clocks can be created from an arbitrary DSI signal. Also, the PSoC device can use an arbitrary
digital signal as an input source for the PLL.

1. Place a digital input pin, a digital output pin, and a clock in the schematic, as Figure 38 shows.

Figure 38. Basic Components for DSI Clock Example

2. Open the configuration dialog for Signal_In and deselect the Input Synchronized option in the pin configuration

window, as Figure 39 shows. This is necessary to prevent the signal from trying to sync to itself.

Figure 39. Input Synchronized Setting Disabled

3. Connect the clock to Signal_Out with the wire tool.

4. Use the wire tool to create a signal for the DSI source that is connected only to Signal_In. Start away from the
terminal of Signal_In to create the wire, as shown in Figure 40.

Figure 40. DSI Clock Source Signal

5. Right-click on the wire and select Edit Name And Width from the pop-up menu that appears.

6. Deselect the Use computed name and width option and type a unique name (―MySignal‖ in this example) in the
Signal Name field, as Figure 41 shows.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 21

Figure 41. Signal Name Configuration Window

After these configurations have been set, the schematic will resemble Figure 42.

Figure 42. Modified Components for DSI Clock Example

7. Open the project‘s Design-Wide Resources file (<Project Name>.cydwr) and select the Clocks tab.

8. Double-click on any of the system clocks to open the Configure Systems Clocks window.

9. Select the Digital Signal option and click the ―…‖ button to open the Select Input Signal window.

10. Select ―MySignal‖ and enter the signal frequency (3 MHz in this example) and accuracy, as Figure 43 shows.

Figure 43. Digital Signal Configuration Window

Note that PSoC Creator uses this information to perform calculations needed to configure the system clocks.
Make sure that the signal information is accurate.

11. Set the input source for the internal main oscillator (IMO) and PLL to ―Digital Signal,‖ as Figure 44 shows.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 22

Figure 44. DSI Signal as the Source for the IMO and PLL

The PLL uses the 3-MHz input to generate a 24-MHz output, which is routed to the Master and Bus clocks to
generate the Signal_Out clock.

For more details on the DSI system clocking, see the datasheet, TRM, and application note AN60631 – PSoC 3 and
PSoC 5LP Clocking Resources.

4.12 Change PICU Settings with Firmware

Dynamic configuration of the PICU is done through a write to bits [1:0] of the PICUx_INTTYPEy register, where ―x‖

corresponds to the port number and ―y‖ corresponds to the pin number (see Table 2). You can change the
configuration at any time to enable or disable pin interrupts.

Table 2. PICU Interrupt Types and Bit Settings

Bits 1:0 Name Description

00 Disable Interrupts disabled

01 Rising Edge Trigger on rising edge

10 Falling Edge Trigger on falling edge

11 Change Mode Trigger on any edge

In this example, pin P6[0] is configured as a rising-edge interrupt, and P6[1] is configured as a falling-edge interrupt.

1. Place two digital input pins in the project schematic.

2. Assign the pins to P6[0] and P6[1].

3. Configure P6[0] as a resistive pull-down pin, or add an external pull-down.

4. Configure P6[1] as a resistive pull-up pin, or add an external pull-up.

5. Add the following code to the main.c file:

//Set P6[0] to PICU rising-edge trigger

CY_SET_REG8(CYREG_PICU6_INTTYPE0, 0x01);

//Set P6[1] to PICU falling-edge trigger

CY_SET_REG8(CYREG_PICU6_INTTYPE1, 0x02);

//Sleep and wait for PICU interrupt

//Sleep again if not P6[1] PICU wakeup

do

{

http://www.cypress.com/
http://www.cypress.com/?rID=40990
http://www.cypress.com/?rID=40990

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 23

 //Save clocks and enter sleep

 CyPmSaveClocks();

 CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_PICU);

 CyPmRestoreClocks();

 //Stay awake for two seconds

 CyDelay(2000);

}

while (!(CY_GET_REG8(CYREG_PICU6_INTSTAT) & 0x02));

//Disable P6[1] PICU trigger

CY_SET_REG8(CYREG_PICU6_INTTYPE1, 0x00);

6. Compile and program the PSoC 3 or PSoC 5LP device.

The PSoC device will wake from sleep on any PICU interrupt, but it will return to sleep again unless P6[1] was the
trigger. You are not required to disable the interrupts after wakeup. They can be used during normal operation like
any other interrupt source.

The PSoC 3 or PSoC 5LP TRM contains further information about the PICU, including block diagrams and functional
descriptions. Another good resource is the application note AN54460 – PSoC 3 and PSoC 5LP Interrupts.

4.13 Gang Pins for More Drive/Sink Current

To increase the total source/sink capabilities of the circuit, GPIO pins can be ganged (shorted together). The
limitations of VDDIO quadrants still apply. This example demonstrates driving a PWM signal with four GPIO pins.

1. Place and configure a PWM and a Clock Component.

2. Place a single Digital Output Pins Component and connect it to the PWM output terminal, as Figure 45 shows.

Figure 45. Single Pin Placed in Schematic

3. Open the Pins configuration dialog and set the number of pins accordingly, as Figure 46 shows. This example
uses four GPIO pins.

Figure 46. Configure Multiple Pins in the Component

4. Optionally, set the pin mapping to Contiguous for easier PCB routing, as Figure 47 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=38267

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 24

Figure 47. Enable Contiguous Mapping

5. Assign the Pins Component to physical pins.

6. Connect the signal source (PWM in this example) to each of the pin terminals in the Component, as shown in
Figure 48.

Figure 48. Ganged Pins Symbol

7. Compile and program the PSoC 3 or PSoC 5LP device.

The output of the PWM will be driven on all four GPIOs. The pins can be shorted externally on the PCB and
connected to the external circuit as needed.

4.14 Level-Shift Signals

The GPIO pins can be used for level-shifting of signals by powering the VDDIO pins at different voltages. The only
limitation is that no VDDIO quadrant may be at a higher voltage than VDDA. This example demonstrates how to create a
simple 5-V/1.8-V level shifting configuration in the PSoC 3 or PSoC 5LP device.

1. Place two High-Z digital input pins and two Strong Drive digital output pins in the project schematic.

2. Connect one of the inputs to one of the outputs. Connect the remaining input to the remaining output.

3. For convenience, give the pin symbols meaningful names similar to the ones shown in Figure 49.

Figure 49. Level-Shifting with GPIO Pins

4. Assign the 5-V signals to pins in one VDDIO quadrant, and the 1.8-V signals to pins in another quadrant. For this
example, VDDIO3 (5.0 V – P12[1:0]) and VDDIO0 (1.8 V – P4[1:0]) were chosen. See the device datasheet for VDDIO
distributions.

5. On the development board, connect VDDD, VDDA, VDDIO1, VDDIO2, and VDDIO3 to a 5-V supply.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 25

6. Connect VDDIO0 to a 1.8-V supply.

7. Compile and program the PSoC 3 or PSoC 5LP device.

Any 5-V signal applied to the high-side input will appear at 1.8 V on the low-side output. Likewise, any 1.8-V signal
applied to the low-side input will appear at 5 V on the high-side output, as Figure 50 shows.

Figure 50. Level-Shifted Signals

In addition to shifting the voltage of the signal, the PSoC device can read and manipulate the data as it passes
through. Remember that all GPIO pins in a VDDIO quadrant will be at the same voltage.

5 Related Application Notes

 AN54181 – Getting Started with PSoC 3

 AN77759 – Getting Started with PSoC 5LP

 AN60631 – PSoC 3 and PSoC 5LP Clocking Resources

 AN58304 – PSoC 3 and PSoC 5LP – Pin Selection for Analog Designs

 AN58827 – PSoC 3 and PSoC 5LP Internal Analog Routing Considerations

 AN54460 – PSoC 3 and PSoC 5LP Interrupts

 AN60580 – SIO Tips and Tricks in PSoC 3/PSoC 5LP

 AN77900 – PSoC 3 and PSoC 5LP Low-power Modes and Power Reduction Techniques

 AN52705 – PSoC 3 and PSoC 5LP – Getting Started with DMA

About the Author
Name: Greg Reynolds

Background: Greg Reynolds has been with Cypress in several roles for more than a decade.

http://www.cypress.com/
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=60890
http://www.cypress.com/?rID=40990
http://www.cypress.com/?rID=39974
http://www.cypress.com/?rID=40247
http://www.cypress.com/?rID=38267
http://www.cypress.com/?rID=40989
http://www.cypress.com/?rID=64554
http://www.cypress.com/?rID=37793

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 26

Appendix A. GPIO API and Register Reference

A.1 Component API

The Pins Component API is used to access all physical pins associated with a Component. The instance name of the
Component, either assigned by the user or generated by PSoC Creator, is used as the prefix for the function name.
The Component APIs are documented in detail in the Pins Component datasheet. Table 3 lists the Component
functions.

Table 3. Component API Reference

API Description Example (using a Component name of MyPin)

<Pin_Name>_Read
Returns the current value for all pins in the
Component.

myVar = MyPin_Read();

<Pin_Name>_Write Writes the value to the Component pins. MyPin_Write(1);

<Pin_Name>_ReadDataReg
Returns the current value for all pins in the
Component.

myVar = MyPin_ReadDataReg();

<Pin_Name>_SetDriveMode
Sets the drive mode for each of the
Component‘s pins.

MyPin_SetDriveMode(MyPin_DM_ALG_HIZ);

<Pin_Name>_ClearInterrupt
Clears any active interrupts on the port into
which the Component is mapped. Returns the
value of interrupt status register.

myVar = MyPin_ClearInterrupt();

A.2 Per-Pin API

You can access individual physical pins by using the global per-pin API macros. The physical pins do not need to be
associated with a Pins Component because the macros directly access the pin configuration registers. Using per-pin
APIs can result in undefined behavior in any physical pin associated with a Pins Component due to conflicts with the
Component configuration. The per-pin APIs are documented in detail in the PSoC Creator System Reference Guide.
Table 4 lists the per-pin functions.

Table 4. Per-Pin API Reference

API Description Example (using P1[2])

CyPins_ReadPin Reads the current value on the pin. myVar = CyPins_ReadPin(CYREG_PRT1_PC2);

CyPins_SetPin
Sets the output value for the pin to
logic HIGH.

CyPins_SetPin(CYREG_PRT1_PC2);

CyPins_ClearPin
Sets the output value for the pin to a
logic LOW.

CyPins_ClearPin(CYREG_PRT1_PC2);

CyPins_SetPinDriveMode Sets the drive mode for the pin.
CyPins_SetPinDriveMode(CYREG_PRT1_PC2,

PIN_DM_ALG_HIZ);

CyPins_ReadPinDriveMode Reads the drive mode for the pin. myVar = CyPins_ReadPinDriveMode(CYREG_PRT1_PC2);

CyPins_FastSlew()
Sets the slew rate for the pin to fast
edge rate.

CyPins_FastSlew(CYREG_PRT1_PC2);

CyPins_SlowSlew()
Sets the slew rate for the pin to slow
edge rate.

CyPins_SlowSlew(CYREG_PRT1_PC2);

http://www.cypress.com/
http://www.cypress.com/?rID=51972

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 27

A.3 GPIO Registers

The following registers are used to configure the GPIOs. They are accessible by firmware during normal operation.
Further details and register maps are in the PSoC 3 and PSoC 5LP Registers TRM documents that are available for
free from the Cypress website. Table 5 lists the GPIO registers.

Table 5. GPIO Registers

Register Name Description

PRTx_PCy[7:0] Port Pin Configuration
This register accesses several configuration or status bits of a single
I/O port pin at once.

PRTx_DR[7:0] Port Data Output
This register is used to set the output data state for the corresponding
GPIO port.

PRTx_PS[7:0] Port Pin State
This register holds the logical pin state for the corresponding GPIO
port. If the drive mode for the pin is set to High-Z Analog, the state will
always read 0.

PRTx_DM2[7:0]

PRTx_DM1[7:0]

PRTx_DM0[7:0]

Port Drive Mode
These registers‘ combined value determines the unique drive mode of
each bit in a GPIO port.

PRTx_SLW[7:0] Port Slew Rate Control
This register is used to set a fast or slow edge rate for any strong drive
mode GPIO pin.

PRTx_BYP[7:0] Port Bypass Enable
This register selects whether the output data for the corresponding
GPIO is sourced from the DSI or port logic data register.

PRTx_BIE[7:0] Port Bidirection Enable
This register is used to enable dynamic bidirectional control through
the DSI.

PRTx_INP_DIS[7:0] Input Buffer Disable Override This register is used to force the input buffers off.

PRTx_CTL[0] Port Wide Control Signals This register is used to select the internal buffer trip point.

PRTx_PRT[7:5,3:1] Port Wide Configuration
This register accesses several available configuration registers on a
port-wide basis with a single bit write.

PRTx_BIT_MASK[7:0] Bitmask for Aliased Register Access
This register allows or blocks access to the data registers from the
aliased register address space.

PRTx_AMUX[7:0] Port Analog Global Mux Bus Enable
This register controls the analog global mux switch for the
corresponding GPIO port.

PRTx_AG[7:0] Port Analog Global Enable
This register controls the analog global switch for the corresponding
GPIO port.

PICUx_INTTYPE[1:0] Port Interrupt Control Type
This register configures the type of interrupt for the corresponding
GPIO pin.

PICUx_INTSTAT[7:0] Port Interrupt Control Status This register shows posted interrupts for the corresponding GPIO port.

PICUx_SNAP[7:0] Port Interrupt Control Snapshot
This register shows the state of input pins at the last read of the
PICUx_INTSTAT register.

PICUx_DISABLE_COR[0]
Disable Status Register Clear on
Read Feature

This register disables the ―clear on read‖ feature of the
PICUx_INTSTAT register.

http://www.cypress.com/
http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=73299

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 28

A.4 Nonvolatile Latches

PSoC 3 and PSoC 5LP have an array of nonvolatile latches (NVLs) that are used to configure the device behavior in
reset. The following latches are used to configure the GPIOs. They are not accessible from firmware during normal
operation. Further details and register maps for the NVL array are included in the ―Nonvolatile Latches‖ section of the
PSoC 3 and PSoC 5LP datasheets and TRM. Table 6 lists the NVL latches.

Table 6. NVL Latches Relating to GPIOs

NVL Latch Name Description

PRTxRDM[1:0] Port Reset Drive Mode Controls reset drive mode of the corresponding I/O port.

XRESMEN[0] Optional XRES Enable Controls whether pin P1[2] is used as a GPIO or as an external reset.

DPS[1:0] Debug Port Select Controls the use of various Port1 pins as a debug port.

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 29

Appendix B. PSoC Creator Settings and Registers

The GPIO settings established in PSoC Creator are part of the cy_boot startup code and take effect during initial
device configuration. The tables in this appendix show the relationship between the settings in the Pins Component
configuration window and the GPIO registers. In addition, simple code examples demonstrate how to perform the
same function in the firmware during normal operation, if applicable. The configuration window may look slightly
different, depending on which version of PSoC Creator you are using.

Table 7. Drive Mode Parameter

Drive Mode

This parameter configures the pin to provide one of the eight available pin drive modes. Pin type determines default settings.

PSoC Creator Configuration Window Component APIs

<PinName>_SetDriveMode()

Per-Pin APIs

CyPins_SetPinDriveMode()

CyPins_ReadPinDriveMode()

Associated Registers

PRTx_PCy[3:1]

PRTx_DMy[7:0]

PRTx_BIE[7:0]

Code Examples

/* Set pin to Resistive Pull-up Using Component API */

MyPin_SetDriveMode(MyPin_DM_RES_UP);

/* Set pin to Resistive Pull-up Using Per-Pin API */

CyPins_SetPinDriveMode(CYREG_PRT1_PC2,PIN_DM_RES_UP);

/* Read Drive Mode Using Per-Pin API */

myVar = CyPins_ReadPinDriveMode(CYREG_PRT1_PC2);

/* Set pin to Resistive Up/Down Using Register Write */

CY_SET_REG8(CYREG_PRT1_PC2, CY_GET_REG8(CYREG_PRT1_PC2) | 0x07);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 30

Table 8. Initial State Parameter

Initial State

This parameter specifies the value written to the pin‘s data register after power-on reset (POR).

PSoC Creator Configuration Window Component APIs

<PinName>_Write()

Per-Pin APIs

CyPins_SetPin()
CyPins_ClearPin()

Associated Registers

PRTx_DR[7:0]

Code Examples

/* Set pin to logic state HIGH output */

MyPin_Write(1);

/* Set pin P1[2] to logic state HIGH output */

CyPins_SetPin(CYREG_PRT1_PC2);

/* Set pin P1[2] to logic state LOW output */

CyPins_ClearPin(CYREG_PRT1_PC2);

/* Set pin P1[2] output to logic state LOW using a register write */

CY_SET_REG8(CYREG_PRT1_DR, CY_GET_REG8(CYREG_PRT1_DR) | 0xFB);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 31

Table 9. Threshold Parameter

Threshold

This parameter selects the threshold levels that define a logic HIGH level (1) and a logic LOW level (0). The setting applies to
all physical pins in the port. Only CMOS and LVTTL settings are valid for GPIO pins.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PRTx_CTL[0]

Code Examples

/* Set port 1 logic threshold to CMOS using a register write */

CY_SET_REG8(CYREG_PRT1_CTL, 0);

/* Set port 1 logic threshold to LVTTL using a register write */

CY_SET_REG8(CYREG_PRT1_CTL, 1);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 32

Table 10. Interrupt Parameter

Interrupt

This parameter selects the interrupt type of the GPIO.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PICUx_INTTYPEy[1:0]

Code Examples

/* Disable interrupt on P1[2] */

CY_SET_REG8(CYREG_PICU1_INTTYPE2, 0x00);

/* Enable rising-edge interrupt on P1[2] */

CY_SET_REG8(CYREG_PICU1_INTTYPE2, 0x01);

/* Enable falling-edge interrupt on P1[2] */

CY_SET_REG8(CYREG_PICU1_INTTYPE2, 0x02);

/* Enable any edge interrupt on P1[2] */

CY_SET_REG8(CYREG_PICU1_INTTYPE2, 0x03);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 33

Table 11. Input Buffer Enabled Parameter

Input Buffer Enabled

This parameter determines if the pin‘s digital input buffer is enabled.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PRTx_INP_DIS[7:0]

Code Examples

/* Disable Input Buffer on P1[2] using register write. */

CY_SET_REG8(CYREG_PRT1_INP_DIS, CY_GET_REG8(CYREG_PRT1_INP_DIS) | 0x04);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 34

Table 12. Input Synchronized Parameter

Input Synchronized

This parameter enables synchronization of the input of the pin to the bus clock.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PRTx_DBL_SYNC_IN[7:0]

Code Examples

/* Sync input of P1[2] to bus_clk using register write. */

CY_SET_REG8(CYREG_PRT1_DBL_SYNC_IN, CY_GET_REG8(CYREG_PRT1_DBL_SYNC_IN) | 0x04);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 35

Table 13. Slew Rate Parameter

Slew Rate

This parameter determines the rise and fall ramp rate for the pin as it changes output logic levels.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

CyPins_FastSlew(CYREG_PRTx_PCy)

CyPins_SlowSlew(CYREG_PRTx_PCy)

Associated Registers

PRTx_SLW[7:0]

Code Examples

/* Set fast edge rate for P1[2] */

CyPins_FastSlew(CYREG_PRT1_PC2);

/* Set slow edge rate for P1[2] */

CyPins_SlowSlew(CYREG_PRT1_PC2);

/* Set slow edge rate for P1[2] */

CY_SET_REG8(CYREG_PRT1_SLW, CY_GET_REG8(CYREG_PRT1_SLW) |= 0x02);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 36

Table 14. Output Synchronized Parameter

Output Synchronized

This parameter synchronizes the output drivers of the pin to the bus clock.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PRTx_SYNC_OUT[7:0]

Code Examples

/* Sync output of P1[2] to bus_clk using register write. */

CY_SET_REG8(CYREG_PRT1_SYNC_OUT, CY_GET_REG8(CYREG_PRT1_SYNC_OUT) | 0x04);

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 37

Table 15. POR Parameter

Power-On Reset (NVL Array)

This parameter determines how the pin behaves during reset. It is not the same as the operating drive mode, which is
configured during the boot process. Note that the POR setting is a per-port setting, which requires all pins placed in the same
physical port to have the same value. This register is part of the NVL array and cannot be changed during normal operation.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

PRTxRDM[1:0]

Code Examples

See the PSoC 3 Device Programming Specifications or PSoC 5LP Device Programming Specifications documents for details
and instructions on programming the NVL array.

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=72883

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 38

Table 16. Enable Optional XRES Parameter

Enable Optional XRES (NVL Array)

This parameter determines whether P1[2] will be configured as an external reset (XRES) pin. This register is part of the NVL
array and cannot be changed during normal operation.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

XRESMEN[0]

Code Examples

See the PSoC 3 Device Programming Specifications or PSoC 5LP Device Programming Specifications documents
for details and instructions on programming the NVL array.

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=72883

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 39

Table 17. Debug Port Select Parameter

Debug Port Select (NVL Array)

This parameter sets the preferred programming and debugging interface. This register is part of the NVL array and cannot be
changed during normal operation.

PSoC Creator Configuration Window Component APIs

N/A

Per-Pin APIs

N/A

Associated Registers

DPS[1:0]

Code Examples

See the PSoC 3 Device Programming Specifications or PSoC 5LP Device Programming Specifications documents for details
and instructions on programming the NVL array.

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=72883

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 40

Document History

Document Title: AN72382 - Using PSoC
®
 3 and PSoC 5LP GPIO Pins

Document Number: 001-72382

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3470167 GIR 12/20/2011 New application note

*A 3477593 GIR 12/28/2011 Updated Table 1 and the following text to reflect recent PSoC 5

*B 3526406 GIR 02/28/2012 Updated GPIO Power Structure and Limits section

Updated Table 1, VDDIO Quadrant Current Limits

Added Toggle section

Updated Change PICU Settings with Firmware section.

*C 3820218 MKEA 11/26/2012 Updated for PSoC 5LP and PSoC Creator 2.1 SP1

*D 3884724 GIR 01/25/2013 Added GPIO interrupt sections – Port Interrupt Control Unit and Pins Component
Interrupt.

Added Special Function Registers section.

Added additional text to the Introduction.

Minor corrections and changes for overall look and feel.

*E 3942353 MKEA 03/22/2013 Added External Terminals section. Corrected some references to other application
notes.

*F 4592891 GJV 12/10/2014 Removed reference to hidden pin component.
Updated referenced application note names.

*G 5702158 BENV 04/19/2017 Updated logo and copyright

*H 6033709 GJV 01/16/2018 Added information on creation of a bi-directional data bus.

Updated template

http://www.cypress.com/

Using PSoC® 3 and PSoC 5LP GPIO Pins

www.cypress.com Document No. 001-72382 Rev. *H 41

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‘s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Arm
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2011-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (―Cypress‖). This document, including any software or firmware included or referenced in this document (―Software‖), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress‘s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or
errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (―Unintended Uses‖). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	GPIO Pin Basics
	Physical Structure of GPIO Pins
	Digital System Interconnect Overview
	Analog Routing Overview
	GPIO Power Structure and Limits
	Relative Voltages of VDDA, VDDD, and VDDIO
	Startup and Low-Power Behavior
	DMA Access to GPIO Pins
	Port Interrupt Control Unit

	GPIO Pins in PSoC Creator
	PSoC Creator APIs
	Pins Component Symbols and Macros
	Pins Component Interrupts
	External Terminals
	Manual Pin Assignments

	GPIO Examples, Tips, and Tricks
	The GPIO “Hello World” Project
	Read an Input and Write to an Output
	Add Multiple GPIO Pins as a Logical Port
	Configure GPIO Output Enable Logic
	Enable the Configurable XRES Feature
	Disable Debug Logic on GPIO Pins
	Toggle GPIOs Faster with Data Registers
	Use 8051 Special Function Registers
	Use Both Analog and Digital on a GPIO
	Control Analog Switching with Hardware
	Use the DSI as a Clock Source
	Change PICU Settings with Firmware
	Gang Pins for More Drive/Sink Current
	Level-Shift Signals

	Related Application Notes
	GPIO API and Register Reference
	Component API
	Per-Pin API
	GPIO Registers
	Nonvolatile Latches

	PSoC Creator Settings and Registers
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

