
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

THIS SPEC IS OBSOLETE

Spec No: 001-61744

Spec Title: INTRODUCTION TO CYAPI.LIB BASED
APPLICATION DEVELOPMENT USING VC++
- AN61744

Sunset Owner: Nikhil Naik (NIKL)

Replaced By: NONE

www.cypress.com Document No. 001-61744 Rev. *E 1

AN61744

Introduction to CyAPI.lib Based Application
Development Using VC++

 Author: Praveen Kumar CP

 Associated Project: No

 Associated Part Family: CY7C68013/ CY7C68013A

 Software Version: Microsoft Visual Studio 2008/ 2010

Abstract

SuiteUSB 3.4 is a .NET application development library from Cypress to create Windows Applications using

Microsoft Visual Studio. AN61744 includes a history and guides you on how to write your first USB application on

Microsoft Visual C++ platform using Cypress Suite USB C++ library, CyAPI.lib. This document is primarily meant for

beginners in Windows Application and CyAPI.lib

Contents

Introduction ... 1
Cypress SuiteUSB... 2

Cyusb.dll versus CyAPI.lib ... 2
System Requirements ... 3

Hardware .. 3
Software ... 3

Writing Your First Application .. 3
Application Code Analysis ... 7
Additional Features in the Application 8

Detecting Devices .. 8
Add Buttons and Toggle a 7-Segment Display 9

Summary ... 11
Advanced Examples .. 11
Additional Resources .. 11
About the Author ... 11
Appendix ... 12
Document History .. 15
Worldwide Sales and Design Support 16

Introduction
Applications‟ communication with USB devices have
evolved. Earlier, the application writing process involved
making direct calls to drivers. The process of writing an
application was complex; the application had to first get a
device handle and then call device I/O controls, or
read/write files. This made it difficult to access USB
devices.

Cypress released CyAPI.lib, first in its USB Developers‟
μStudio and then in the latest Cypress SuiteUSB. This
provided a high level programming interface to get a
device handle and communicate with Cypress USB
devices. Figure 1 on page 2 compares the early days of
application development with the CyAPI.lib

http://www.cypress.com/?rID=14342
http://www.cypress.com/?mpn=CY7C68013A-56PVXC

Introduction to CyAPI.lib Based Application Development Using VC++

www.cypress.com Document No. 001-61744 Rev. *E 2

Figure 1. Early Days of Application Development Vs. the CyAPI.lib

CyAPI.lib automatically takes care of activities such as
error handling, which were otherwise handled by the user
when making direct calls to the drivers. CyAPI.lib is
implemented as a statically linked library. It provides C++
programming interface to USB devices and enables users
to quickly develop custom USB applications. It enables
users to access devices bound only to the cyusb.sys
driver. Instead of communicating with USB device drivers
directly through Win32 API calls, such as SetupDi and
DeviceIoControl, applications can access USB devices
through library functions such as XferData and properties
such as AltIntfc.

Because CyAPI.lib is a statically linked C++ library, its
classes and functions can be accessed from C++
compilers such as Microsoft Visual C++. To use the
library, you need to add a reference to CyAPI.lib to your
project's Source Files folder and include a dependency to
the header file CyAPI.h. Then, any source file that
accesses the CyAPI.lib has to include a line to include
header file CyAPI.h in the appropriate syntax.

The following section explains how you can develop your
first application with CyAPI.lib. The following examples are
written in Visual C++.

Cypress SuiteUSB
The host application is developed using Cypress
SuiteUSB C++ library (CyAPI.lib) that comes with Cypress
SuiteUSB. Cypress provides SuiteUSB, which is a set of
development tools for Visual Studio to create .NET
Windows applications. SuiteUSB.NET 3.4 includes the
following:

 A Generic USB Device Driver

 A .NET Managed Class Library that has

 CyUSB.dll, which is a C# library

 CyAPI.lib, which is a C++ library

 USB Control Center: that serves as a USB
experimenter's work-bench

 Sample Codes.

For more details, go to SuiteUSB 3.4

Note Cypress Suite USB and Cypress USB driver
CyUSB.sys are compatible only with Windows 2000, XP,
Vista, and Windows 7. If you need USB applications on
MAC or Linux, you can refer to the following examples.
These examples show you how to communicate with
Cypress USB devices using the generic open source
driver LIBUSB:

 MAC Users: EZ-USB® FX2LP™ - Developing
USB Application on MAC OS X using LIBUSB

 Linux Users: EZ-USB® FX2LP™/ FX3™
Developing Bulk-Loop Example on Linux

Cyusb.dll versus CyAPI.lib

CyUSB.dll is a managed Microsoft .NET class library
Because it manages USB devices for you, there are no
more „open‟ and „close‟ of devices. You can locate multiple
USB devices connected to the host using various indexers
in the USBDeviceList. It provides simpler and more
powerful APIs. CyUSB.dll supports the cyusb.sys,
usbstor.sys, and usbhid.sys device drivers increasing the
spectrum of devices that can be accessed with this tool.
Cyusb.dll easily handles USB PNP events too. For more
information about CyUSB.dll, refer to the files
CyUSB.NET.chm or CyUSB.NET.pdf, located at
C:\Cypress\Cypress Suite USB

3.4.x\CyUSB.NET after installing SuiteUSB 3.4. If you

want to develop your application using CyUSB.dll, you
should refer to Introduction to CyUSB.dll based
Application development using C#, which also guides you
to more practical examples in that.

http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=57610
http://www.cypress.com/?rID=57610
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=12974
http://www.cypress.com/?rID=12974

Introduction to CyAPI.lib Based Application Development Using VC++

www.cypress.com Document No. 001-61744 Rev. *E 3

System Requirements

Hardware

A FX2LP DVK (CY3684) board is used as the
development and testing platforms for this example. A
detailed schematic of the DVK can be found at the location

C:\Cypress\USB\Hardware\FX2LP after installing

FX2LP DVK. More information about the board is available
in the „EZ-USB Advanced Development Board‟ section of
the „EZ-USB_GettingStarted‟ document, available at

C:\Cypress\USB\doc\General (after you install DVK).

Software

1. Cypress SuiteUSB 3.4

2. Microsoft Visual Studio 2008.

Writing Your First Application
Before you begin writing your first application, ensure you
have installed SuiteUSB 3.4 and Microsoft Visual Studio
2008. The following steps guide you on how to develop
your first VC++ application using CyAPI.lib.

1. Start a new project in Visual Studio 2008 by clicking
on File > New > Project.

2. In the window, select Other Languages > Visual
C++ > Windows Forms Application, and give your
application a unique name. In this example, the
application name is „Example1‟ as shown in Figure
2.

Figure 2. Starting a New Project

3. Click OK and a blank form displays. This form is a

functional application. Click the green arrow (Run
button) to start the application. A blank form appears
as you start the application.

4. Right click on Source Files and select Add >
Existing Item, under the Solution Explorer window
as shown in Figure 3 on page 4. Browse to the
installation directory of SuiteUSB 3.4

(C:\Cypress\Cypress Suite USB

3.4.6\CyAPI\lib) and choose the CyAPI.lib

according to the system you are using, and double
click on CyAPI.lib. This references the library to your
project. However, you cannot use it just yet.

http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870

www.cypress.com Document No. 001-61744 Rev. *E 4

Figure 3. Adding Reference to CyAPI.lib

5. If a blank form displays, right click in the white space
and click View Code. This is your code view
window. Note that Microsoft enters some initial code
to start your project.

6. At the top, you see a number of „using Namespace‟
directives. Include the lines

 #include <wtypes.h>

 #include <dbt.h>

after the line #pragma. These two headers are
required for the primitive datatypes in CyAPI.h and
the USB Plug and Play (PnP) events respectively.

7. After adding the reference to CyAPI.lib, you have to
expose the interface to it. This can be done by
including a line to referenc CyAPI.h, which gives you
access to the library‟s APIs, classes, and other
functionality. This is done in the following steps.

a. Go to Project > Properties. In the dialog
box, select Configuration Properties >
C/C++ > General > AdditionalInclude
Directories. Point it to the inc folder that is
found in the following path

C:\Cypress\Cypress Suite USB

3.4.x\CyAPI\inc

after the installation of SuiteUSB 3.4 as
illustrated in Figure 4. This folder contains
the CyAPI.h file. Click OK.

b. Add a line

#include "CyAPI.h"

after the lines added in step 6.

Figure 4. Settings to include the CyAPI.lib Path

http://www.cypress.com/?rID=34870

www.cypress.com Document No. 001-61744 Rev. *E 5

8. Go to Project > Properties. In the dialog box, select Configuration Properties > Linker > Input > Additional
Dependencies and type user32.lib as shown in Figure 5.

Figure 5. Additional Project Settings

9. Go to Project > Properties. In the dialog box, select Configuration Properties > General > Common Language
Runtime Support and set it to Common Language Runtime Support (/clr) as shown in Figure 6.

Figure 6. Project Property Settings

10. Insert the following code in your application at the exact location in the Form1 class. The code is explained in the section,
Application Code Analysis on page 7. Note that Form1() and WndProc must be public members.

1. public ref class Form1 : public System::Windows::Forms::Form

2. {

3. public:

4. CCyUSBDevice *USBDevice, *CyStreamdev;

5. int AltInterface;

6. bool bPnP_Arrival;

7. bool bPnP_Removal;

8. bool bPnP_DevNodeChange;

9. Form1(void)

10. {

11. InitializeComponent();

12. USBDevice =new CCyUSBDevice((HANDLE)this->Handle,CYUSBDRV_GUID,true);

www.cypress.com Document No. 001-61744 Rev. *E 6

13. }

14. virtual void WndProc(Message% m) override

15. {

16. if (m.Msg == WM_DEVICECHANGE)

17. {

18. // Tracks DBT_DEVNODES_CHANGED followed by DBT_DEVICEREMOVECOMPLETE

19. if (m.WParam == (IntPtr)DBT_DEVNODES_CHANGED)

20. {

21. bPnP_DevNodeChange = true;

22. bPnP_Removal = false;

23. }

24. // Tracks DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

25. if (m.WParam == (IntPtr)DBT_DEVICEARRIVAL)

26. {

27. bPnP_Arrival = true;

28. bPnP_DevNodeChange = false;

29. }

30. if (m.WParam == (IntPtr)DBT_DEVICEREMOVECOMPLETE)

31. bPnP_Removal = true;

32. // If DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

33. if (bPnP_DevNodeChange && bPnP_Removal)

34. {

35. bPnP_Removal = false;

36. bPnP_DevNodeChange = false;

37. GetDevice();

38. }

39. // If DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

40. if (bPnP_DevNodeChange && bPnP_Arrival)

41. {

42. bPnP_Arrival = false;

43. bPnP_DevNodeChange = false;

44. GetDevice();

45. }

46. }

47. Form::WndProc(m);

48. }

49. void GetDevice()

50. {

51. USBDevice = new CCyUSBDevice((HANDLE)this->Handle,CYUSBDRV_GUID,true);

52. AltInterface = 0;

53. if (USBDevice->DeviceCount())

54. {

55. Text = "Device Attached";

56. }

57. else

58. {

59. Text = "No Devices Attached";

60. }

61. }

www.cypress.com Document No. 001-61744 Rev. *E 7

Application Code Analysis
Before we analyse the previous code, note that you can
find more details about the CyAPI.lib APIs in the API guide
(CyAPI.chm or CyAPI.pdf), which you can find at
C:\Cypress\Cypress Suite USB 3.4.x\CyAPI

after installing SuiteUSB 3.4.

An application normally creates an instance of the
CCyUSBDevice class that knows how many USB devices
are attached to the CyUsb.sys driver. Therefore, a
working knowledge of the CCyUSBDevice class is
essential. The CCyUSBDevice class is the primary entry
point in the library. All the functionality of the library should
be accessed through an instance of CCyUSBDevice. An
instance of CCyUSBDevice is aware of all the USB
devices that are attached to the CyUSB.sys driver and can
selectively communicate with any one of them by using
the Open () method. The CCyUSBDevice object created
serves as the programming interface to the driver whose
GUID is passed in the guid parameter. The constructor of
this class is displayed in line number 12:

 USBDevice = new

CCyUSBDevice((HANDLE)this-

>Handle,CYUSBDRV_GUID,true);

(HANDLE)this->Handle is a handle to the application's
main window (the window whose WndProc function
processes USB PnP events).

Pass CYUSBDRV_GUID as the guid parameter.
CYUSBDRV_GUID is a unique constant guid value for the
CyUSB.sys driver and is specified in the inf file that is
used to bind the device to the CyUSB.sys driver.

These CCyUSBDevice objects are all properly initialized
and ready to use.

MainForm's WndProc method is used to watch for PnP
messages. Windows sends all top-level windows a set of
default messages when new devices or media are added
and become available, and when existing devices or
media are removed. These messages are known as
WM_DEVICECHANGE messages. Each of these
messages has an associated event, which describes the
change.

When a device is added or removed from the system, the
system broadcasts the DBT_DEVNODES_CHANGED
device event using the WM_DEVICECHANGE message.
The operating system sends the DBT_DEVICEARRIVAL

device message when a device is inserted and becomes
available. Similarly, a _DEVICEREMOVAL device
message is sent when a device is removed.

The WndProc takes the message sent by the operating
system as an argument and if the message indicates a
device arrival or a device removed status, calls the
GetDevice() function to update the status of USB devices
connected to the host bound to the CyUSB.sys driver.

The GetDevice() function uses the DeviceCount() function
(line number 53), which is a member of the
CCyUSBDevice class. The DeviceCount() function returns
the number of devices attached to the CyUSB.sys driver. If
this function returns a non-zero value, it means that there
is one, or more, devices connected to the host that is
bound to the CyUSB.sys driver. You can write an IF
statement as shown in the previous example (line number
53 to 60) to check for the presence or absence of USB
devices.

1. Inside the IF statement that indicates that there are
devices attached, type the following:

 Text = “Device Attached”.

2. Inside the else statement that indicates that no
devices are attached, type the following:

 Text = "No Devices Attached".

These lines of code display the status of device
connection to host. If there are one or more devices
connected to host, the “Device Attached” text is
displayed. If no devices are attached, then the “No
Devices Attached” text is displayed. The Text
property controls the text seen at the top left corner
when you run your application. For example, if you
run the application without the code, the word Form1
is displayed, which is not very informative. Adding this
code every time a device is plugged in or removed
updates the text.

3. Press the green Play button and attach and detach a
USB device.

Make sure it is a Cypress USB device, because the
event handler you write only handles devices tied to
the CyUSB driver.

4. Unplug and plug the device repeatedly and watch
the text change.

These are the basics of writing your own application. The
next few sections discuss features that make the
application more productive.

http://www.cypress.com/?rID=34870

www.cypress.com Document No. 001-61744 Rev. *E 8

Additional Features in the
Application
The CCyUSBDevice provides the following two
components (a detailed list is located in the CyAPI
Programmers Reference Guide):

1. Functions

2. Properties (Data Members)

These two components give you access to most of the
USB controls needed for your application, including
functions such as GetDeviceDescriptor(), Reset() and
SetAltIntfc(); properties such as DeviceName, DevClass,
VendorID (VID), and ProductID (PID).

Detecting Devices

The first application you wrote allowed you to detect PnP
events and change the text of the application. This section
explains how you can create a Listview that displays the
currently connected USB devices. The following code
generates an application that detects all devices
connected to the bus.

1. Click Form1.h [Design] tab in Visual Studio.

2. Click View > Toolbox.

3. Drag and drop listBox in the form and expand it to
take up most of the room on the form.

4. Right click in the white space outside of your form
and click View Code.

5. Insert the following code to Form1.

1. void RefreshList()

2. {

3. listBox1->Items->Clear();

4. listBox1->Text = " ";

5. for(int i=0;i<USBDevice-
>DeviceCount();i++)

6. {

7. USBDevice->Open(i);

8. listBox1->Items->Add(gcnew
String(USBDevice->FriendlyName));

9. listBox1->Text=

Convert::ToString(listBox1-

>Items[i]);

10. }

11. }

This function connects all the devices to the
CyUSB.sys driver and displays their names in a
listbox. The DeviceCount() function is implemented in
CyAPI.lib and returns the number of USB devices
attached to the host, which are bound to CyUSB.sys
driver. This function should be called every time a
device is attached or removed to update the list of
devices. This single function fills the listBox with the
friendly names of all the USB devices bound to the
CyUSB.sys driver.

listBox1 ItemsClear(); – It clears the tree every
time the function is called. The open() function gives a
handle to i

th
 USBdevice attached to the CyUSB.sys

driver and the FriendlyName property contains the
device description string for the open device, which
was provided by the driver's .inf file.

6. Add the following line of code

 RefreshList();

This code calls the above function in GetDevice() and
inside Form() constructor. When the application
starts, the Listbox is populated with the initial list of
devices attached. When a USB PnP event occurs
(attach/detatch), the listbox gets populated with a
fresh list of currently connected USB devices. Your
view should be similar to Figure 7. For exact
positioning of the code statements in various
functions, refer to the Appendix section on page 12.

Figure 7. Application GUI

http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870

www.cypress.com Document No. 001-61744 Rev. *E 9

Add Buttons and Toggle a 7-Segment Display

Now, add some buttons to your form and experiment with
alternate interfaces. The next example uses the EZ-USB

®

FX2LP™.

1. This example, uses a specific fimrware to
demonstrate advanced features in the CyAPI.lib.dll.
Use the CyStream firmware, which is located at

C:\Cypress\Cypress Suite USB

3.4.x\Firmware\CyStreamer after installing

SuiteUSB 3.4.

2. Now, download the CyStream.iic file to the EEPROM
of the EZ-USB FX2LP.

3. To do that, first connect the FX2LP DVK with the
“EEPROM ENABLE” switch to „No EEPROM‟
position to the PC.

4. It enumerates with the default internal descriptor.
Use the appropriate CyUSB.inf file to bind with the
device. For more information on binding the driver,
see the section, MatchingDriverToUSBDevice, in

CyUSB.chm at C:\Cypress\Cypress Suite

USB 3.4.x\Driver after installing SuiteUSB 3.4 or

the link Drivers for FX1/FX2LP to bind with the
device.

5. Change the „EEPROM ENABLE‟ switch position to
“EEPROM” position, and the EEPROM SELECT
switch to the LARGE EEPROM position on the
device.

6. Open the Control Center application present at
Start > Programs > Cypress > Cypress Suite USB
3.4.x > Control Center. Download the CyStream.iic

from C:\Cypress\Cypress Suite USB

3.4.x\Firmware\CyStreamer to the large

EEPROM present on the FX2LP DVK using the
Control Centre utility.

7. After you reset the FX2LP, the device enumerates
running the CyStream firmware.

8. If Windows pops up asking you to bind the driver,
repeat the steps explained in Step 4.

9. The CyStream example has a number of Alternate
settings for interface. The selected Alternate setting
is displayed on the 7-segment display on the FX2LP
DVK. For more information on the CyStream
example, refer to the source code CyStream.uV2,

available at C:\Cypress\Cypress Suite USB

3.4.x\Firmware\CyStreamer.

10. Now, add an event handler on your application to
select the Alternate setting of the CyStream device.

Follow these steps to modify your application:
1. In the Toolbox, click and drag the Button anywhere

on your application.

2. A button labeled Button1 appears on your form.
Double click the Button.

3. An event handler is created. When you click the
button, your program does what is inside this
function call.

private:System::Void

button1_Click(System::Object^sender,
System::EventArgs^ e)

object^ sender – where the event came from. If
there are multiple functions, calling this function can
determine where it came from.

EventArgs^ e – any arguments that are passed in
when the event happens.

4. Add the following code to select the Alternate setting
of the CyStream device. In your function, type the
following:

CyStreamdev->SetAltIntfc

(++AltInterface);

Text = Convert::ToString (CyStreamdev-

>AltIntfc());

Note that you need to declare and define
“CyStreamdev” before you can use that inside this
event handler. That is explained in step 5.

TheSetAltIntfc (UCHAR alt) function is used to set
the alternate interface setting for the device to the
value alt. Thus, when you click on Button1, you set
the next alternate interface setting on CyStream
device. Since the 7-segment display shows the
alternate interface, this code increments the numbers
on display. At the same time, the text in your
application outputs what is currently displayed. You
can use this code in an application where a USB
device has multiple alternate interfaces, each
operating with its own set of endpoints. The interface
currently used can be displayed on the screen.

http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870
http://www.cypress.com/?id=4&rID=48578
http://www.cypress.com/?id=4&rID=48578

www.cypress.com Document No. 001-61744 Rev. *E 10

5. You already declared CyStreamdev, in class Form1. (Refer to Line 4 in the code snippets in Writing Your First
Application). CyStreamdev is instantiated in the modified RefreshList() function as follows:

1. void RefreshList()

2. { int vid, pid;

3.

4. listBox1->Items->Clear();

5. listBox1->Text = " ";

6.

7. CyStreamdev = NULL;

8. button1->Enabled = FALSE;

9. for(int i=0;i<USBDevice->DeviceCount();i++)

10. {

11. USBDevice->Open(i);

12. listBox1->Items->Add(gcnew String(USBDevice->

 FriendlyName));

13. listBox1->Text= Convert::ToString(listBox1->Items[i]);

14. vid = USBDevice -> VendorID;

15. pid = USBDevice -> ProductID;

16. if(vid == 0x04B4 && pid == 0x1003)

17. {

18. CyStreamdev = new CCyUSBDevice(

 (HANDLE)this->Handle,CYUSBDRV_GUID,true);

19. button1 ->Enabled = TRUE;

20. }

21.

22. }

23. }

6. In Line 7 of the previous code snippet, CyStreamdev is assigned NULL by default. While you populate the Listbox with all
the devices attached, you must also check the VID/PID of the particular device (lines 14,15 of the code snippet). If the
VID/PID equals 0x04B4/0x1003 (same as that for CyStream firmware), then you instantiate the “CyStreamdev” with a
handle to that particular device and enable Button1. Note that Button1 is disabled by default (line 8 in the code snippet).

7. Now run your application. Your application looks similar to Figure 8. Then try to implement a button to decrement the
count.

www.cypress.com Document No. 001-61744 Rev. *E 11

Figure 8. Application GUI

After you perform these exercises, try to write and test
your own applications. Experiment with different properties
and tools to write an application that meets your
requirements. Refer to the CyAPI Programmers Reference
Guide included in the SuiteUSB installation.

Summary
This application note explained how to write a simple
application on VC++ using CyAPI.lib. You can use this
application as a stepping stone to develop real world
applications involving data transfer to and from Cypress
devices. Refer to the sections, Advanced Examples and
Additional Resources, for more details.

Advanced Examples
Now that you know how to write a simple application on
VC++ using CyAPI.lib, you may want to know how to
develop more practical applications to transfer data to and
from the device. More application examples are provided
along with Cypress SuiteUSB. Refer to the examples at
C:\Cypress\CypressSuiteUSB3.4.4\

CyAPI\examples after installing SuiteUSB.

Additional Resources

 Getting Started with FX2LP™

 Introduction to CyUSB.dll based Application
development using C# - Helps in getting started with
developing host applications in VC# using CyUSB.dll.

 EZ-USB® FX2LP™ Host Application in VC++ 2008
Using Suite USB Library (CyUSB.dll) – Advanced
example on developing applications on VC++ using
CyUSB.dll

 EZ-USB FX2LP™ Bulk Transfer Application in C#
Using SuiteUSB C# Library (CyUSB.dll) – Advanced
example on developing applications on VC# using
CyUSB.dll

About the Author
Name: Praveen Kumar C P

Title: Application Engineer

http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=12974
http://www.cypress.com/?rID=12974
http://www.cypress.com/?rID=53167
http://www.cypress.com/?rID=53167
http://www.cypress.com/?rID=53165
http://www.cypress.com/?rID=53165

www.cypress.com Document No. 001-61744 Rev. *E 12

Appendix
 #pragma once

 #include <wtypes.h>

 #include <dbt.h>

 #include "CyAPI.h"

 namespace Example1 {

 using namespace System;

 using namespace System::ComponentModel;

 using namespace System::Collections;

 using namespace System::Windows::Forms;

 using namespace System::Data;

 using namespace System::Drawing;

 /// <summary>

 /// Summary for Form1

 ///

 /// WARNING: If you change the name of this class, you will need to change the

 /// 'Resource File Name' property for the managed resource compiler tool

 /// associated with all .resx files this class depends on. Otherwise,

 /// the designers will not be able to interact properly with localized

 /// resources associated with this form.

 /// </summary>

 public ref class Form1 : public System::Windows::Forms::Form

 {

 public:

 CCyUSBDevice *USBDevice, *CyStreamdev;

 int AltInterface;

 bool bPnP_Arrival;

 bool bPnP_Removal;

 bool bPnP_DevNodeChange;

 private: System::Windows::Forms::Button^ button1;

 public:

 public:

 private: System::Windows::Forms::ListBox^ listBox1;

 public:

 Form1(void)

 {

 InitializeComponent();

 USBDevice =new CCyUSBDevice((HANDLE)this->Handle,CYUSBDRV_GUID,true);

 RefreshList();

 //

 //TODO: Add the constructor code here

 //

 }

 virtual void WndProc(Message% m) override

 {

 if (m.Msg == WM_DEVICECHANGE)

 {

 // Tracks DBT_DEVNODES_CHANGED followed by DBT_DEVICEREMOVECOMPLETE

 if (m.WParam == (IntPtr)DBT_DEVNODES_CHANGED)

 {

 bPnP_DevNodeChange = true;

 bPnP_Removal = false;

 }

 // Tracks DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

 if (m.WParam == (IntPtr)DBT_DEVICEARRIVAL)

 {

 bPnP_Arrival = true;

 bPnP_DevNodeChange = false;

 }

 if (m.WParam == (IntPtr)DBT_DEVICEREMOVECOMPLETE)

 bPnP_Removal = true;

www.cypress.com Document No. 001-61744 Rev. *E 13

 // If DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

 if (bPnP_DevNodeChange && bPnP_Removal)

 {

 bPnP_Removal = false;

 bPnP_DevNodeChange = false;

 GetDevice();

 }

 // If DBT_DEVICEARRIVAL followed by DBT_DEVNODES_CHANGED

 if (bPnP_DevNodeChange && bPnP_Arrival)

 {

 bPnP_Arrival = false;

 bPnP_DevNodeChange = false;

 GetDevice();

 }

 }

 Form::WndProc(m);

 }

 void GetDevice()

 {

 USBDevice = new CCyUSBDevice((HANDLE)this->Handle,CYUSBDRV_GUID,true);

 AltInterface = 0;

 if (USBDevice->DeviceCount())

 {

 Text = "Device Attached";

 }

 else

 {

 Text = "Device Not Attached";

 }

 RefreshList();

 }

 protected:

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 ~Form1()

 {

 if (components)

 {

 delete components;

 }

 }

 private:

 /// <summary>

 /// Required designer variable.

 /// </summary>

 System::ComponentModel::Container ^components;

 private: System::Void button1_Click(System::Object^ sender, System::EventArgs^ e) {

 CyStreamdev -> SetAltIntfc (++AltInterface);

 Text = Convert::ToString (CyStreamdev->AltIntfc());

 }

 void RefreshList()

 {

 int vid, pid;

CyStreamdev = NULL;

 button1->Enabled = FALSE;

listBox1->Items->Clear();

 listBox1->Text = " ";

 for(int i=0;i<USBDevice->DeviceCount();i++)

 {

 USBDevice->Open(i);

www.cypress.com Document No. 001-61744 Rev. *E 14

 listBox1->Items->Add(gcnew String(USBDevice->FriendlyName));

 listBox1->Text= Convert::ToString(listBox1->Items[i]);

 vid = USBDevice -> VendorID;

 pid = USBDevice -> ProductID;

 if(vid == 0x04B4 && pid == 0x1003)

 {

 CyStreamdev = new CCyUSBDevice((HANDLE)this->Handle,

 CYUSBDRV_GUID,true);

 button1 ->Enabled = TRUE;

 }

 }

 }

#pragma region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 void InitializeComponent(void)

 {

 this->button1 = (gcnew System::Windows::Forms::Button());

 this->listBox1 = (gcnew System::Windows::Forms::ListBox());

 this->SuspendLayout();

 //

 // button1

 //

 this->button1->Location = System::Drawing::Point(505, 19);

 this->button1->Name = L"button1";

 this->button1->Size = System::Drawing::Size(75, 23);

 this->button1->TabIndex = 0;

 this->button1->Text = L"button1";

 this->button1->UseVisualStyleBackColor = false;

 this->button1->Click += gcnew System::EventHandler(this,

 &Form1::button1_Click);

 //

 // listBox1

 //

 this->listBox1->FormattingEnabled = true;

 this->listBox1->Location = System::Drawing::Point(19, 19);

 this->listBox1->Name = L"listBox1";

 this->listBox1->Size = System::Drawing::Size(457, 186);

 this->listBox1->TabIndex = 2;

 this->listBox1->SelectedIndexChanged += gcnew System::EventHandler(this,

 &Form1::listBox1_SelectedIndexChanged);

 //

 // Form1

 //

 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);

 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;

 this->ClientSize = System::Drawing::Size(620, 266);

 this->Controls->Add(this->listBox1);

 this->Controls->Add(this->button2);

 this->Controls->Add(this->button1);

 this->Name = L"Form1";

 this->Text = L"Form1";

 this->ResumeLayout(false);

 }

#pragma endregion

 };

}

www.cypress.com Document No. 001-61744 Rev. *E 15

Document History
Document Title: Introduction to CyAPI.lib Based Application Development Using VC++ - AN61744

Document Number: 001-61744

Revision ECN
Orig. of
Change

Submission
Date

Description of Change

** 2934442 CPPK 05/20/10 New Application Note

*A 3007276 CPPK 08/13/10
Title is changed from „Developing USB Applications with VC++‟ to „Getting
Started With USB Application Using VC++‟.

*B 3088800 CPPK 11/17/10 Changed title to “Getting started with SuiteUSB Applications using VC++”.

*C 3186856 CPPK 03/03/11 Updated the title and the abstract.

*D 3600853 GAYA 04/30/2012

Fixed links to pictures and other documentation, added pointers to advanced
examples.

Added Appendix with entire code for reference.

Attached project files for VS 2008/VS 2010.

*E 3974573 NIKL 04/19/2013 Obsolete document.

www.cypress.com Document No. 001-61744 Rev. *E 16

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

All trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730

Website : www.cypress.com

© Cypress Semiconductor Corporation, 2010-2013. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, l ife saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	THIS SPEC IS OBSOLETE

