

www.cypress.com Document No. 001-60630 Rev. *H 1

AN60630

PSoC® 3 - 8051 Code And Memory Optimization

Author: Mark Ainsworth

Associated Project: No

Associated Part Family: All PSoC 3 parts

Software Version: N/A

Related Application Notes: None

To get the latest version of this application note, or the associated project file, please visit
http://www.cypress.com/go/AN60630.

AN60630 shows how to increase the efficiency of 8051 code in PSoC
®
 3 by making greater use of the 8051 core internal

features. This can result in smaller code size in flash memory, as well as faster code. The efficiency gains can be

realized without writing any 8051 assembler code. Instead, keywords for the Keil 8051 C compiler are used. Several

coding techniques are shown.

Contents

Introduction .. 2
The 8051 “Inner Space” ... 2

Direct and Indirect Access ... 3
SFR Space .. 3

Keil 8051 Memory Models .. 4
The Guidelines ... 5

Guideline #1: Use Bit Variables ... 5
Guideline #2: Do Not Call Functions from ISRs ... 6
Guideline #3: Place Your Variables in the Correct Memory Spaces .. 7
Guideline #4: Decrement Loop Variables .. 7
Guideline #5: Use Bits for Bitwise Operations ... 8
Guideline #6: Use the B Register for Temporary Storage ... 9

Advanced Topics .. 10
Topic #1: Variable Overlay .. 10
Topic #2: Pointers ... 12
Topic #3: Constants and Flash .. 13
Topic #4: Passing Arguments to Functions ... 14
Topic #5: Passing Structures ... 17
Topic #6: Switch Statements ... 19
Topic #7: Large Arrays and Structures .. 21
Topic #8: Compact Data Space ... 23
Topic #9: Use All of the Resources in Your PSoC ... 24

Summary .. 25
Worldwide Sales and Design Support .. 27

http://www.cypress.com/?rID=40986&source=an60630

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 2

Introduction

One common misconception when programming the PSoC
®
 3 8051 is that the only way to get optimal code is to use 8051

assembly language. This is not true, mainly because of the high performance capabilities of the Keil 8051 C compiler. This
compiler is included free with PSoC Creator™, the development tool for PSoC 3, PSoC 4, and PSoC 5LP.

Because of the compiler’s capabilities, most if not all PSoC 3 8051 code can be written in C, and it can be made to be small,
fast, and efficient. The cost is that you must use Keil-specific keywords, and C code containing these keywords may not be
easily portable to other processors, such as the Cortex CPUs in PSoC 4 and PSoC 5LP. However, PSoC Creator offers
equivalent macros that make porting easier.

In any case, by using these keywords or macros, and with knowledge of some code architecture issues, you can make your
8051 code faster and smaller, and avoid using the PSoC 3 8051 in its slowest and least efficient mode.

It is assumed that the reader has a basic knowledge of C programming. Knowledge of 8051 assembler is recommended but
not required.

Note All of the code shown in this application note was compiled using Keil optimization for size, level 3 (size, level 2 is the
PSoC Creator default). Level 3 deletes redundant MOV operations, which can have a significant impact on code size and
speed.

The 8051 “Inner Space”

The 8051 core is a 256-byte address space that contains 256
bytes of SRAM plus a large set of registers called Special
Function Registers (SFRs), as Figure 1 shows. A lot of
functionality is packed into this “internal space” and the 8051
is most efficient when it works in this space.

The lower 128 bytes of this space is all SRAM, and is
accessible both directly and indirectly (more on these terms
later).

The upper 128 bytes contains another 128 bytes of SRAM
that can only be accessed indirectly. The same upper
address space also contains a set of SFRs that can only be
accessed directly.

In addition to normal SRAM access, some of the bytes in the
lower address space can be accessed in other modes, as
Table 1 shows.

The 8 “registers” R0–R7 are a useful set of auxiliary registers

that can be accessed quickly with single-byte, single-cycle
8051 assembler instructions such as:

ADD A,Rn

Only one register bank can be active at a time; usually it is
register bank 0.

Each of the 128 bits in the bit-addressable space 20–2F can
be accessed individually with bit-level assembler instructions
such as:

SETB nn

where nn is the bit number. If nn is 00, then bit 0 of address
20 is accessed; if nn is 01, then bit 1 of address 20 is
accessed, and so on.

Figure 1. 8051 Internal Space Map

S
R

A
M

 SFRs

S
R

A
M

00

7F

80

FF

In
d

ir
e

c
t
a

c
c
e

s
s

D
ir
e

c
t
a

c
c
e

s
s

Table 1. 8051 Lower Internal Address Space Functions

Addresses Function

20–2F Bit-addressable space

10–1F Register bank 3 (R0–R7)

10–17 Register bank 2 (R0–R7)

08–0F Register bank 1 (R0–R7)

00–07 Register bank 0 (R0–R7)

http://www.cypress.com/psoccreator/

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 3

Direct and Indirect Access

With direct access, the address is part of the assembler instruction; for example:

INC nn

where nn is the address of either the first 128 bytes of internal SRAM or an SFR.

For indirect access, register R0 or R1 is used as a pointer; for example:

DEC @Ri

where i is 0 or 1. Using indirect access, the full 256 bytes of internal SRAM is accessible.

The 8-bit stack pointer register SP is also a pointer to all 256 bytes of SRAM; pushing and popping the stack are considered

indirect accesses. The stack pointer grows upward. Because the stack size is always less than 256 bytes, stack operations
must be managed carefully.

SFR Space

As noted previously, direct addresses of addresses 80–FF access the SFRs. Almost all registers in the 8051, including the
accumulator (ACC), program status word (PSW), and stack pointer (SP), are actually SFRs. Also, some PSoC 3 I/O port

registers can be accessed as SFRs. Check the PSoC 3 datasheet and Technical Reference Manual for details on these SFRs;
see also Table 2. Note that many of the SFRs are unpopulated; reading or writing to them yields unpredictable results.

Table 2. PSoC 3 8051 SFR Map

Address 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0xF8 SFRPRT15DR SFRPRT15PS SFRPRT15SEL

0xF0 B SFRPRT12SEL

0xE8 SFRPRT12DR SFRPRT12PS MXAX

0xE0 ACC

0xD8 SFRPRT6DR SFRPRT6PS SFRPRT6SEL

0xD0 PSW

0xC8 SFRPRT5DR SFRPRT5PS SFRPRT5SEL

0xC0 SFRPRT4DR SFRPRT4PS SFRPRT4SEL

0xB8

0xB0 SFRPRT3DR SFRPRT3PS SFRPRT3SEL

0xA8 IE

0xA0 P2AX SFRPRT1SEL

0x98 SFRPRT2DR SFRPRT2PS SFRPRT2SEL

0x90 SFRPRT1DR SFRPRT1PS DPX0 DPX1

0x88 SFRPRT0PS SFRPRT0SEL

0x80 SFRPRT0DR SP DPL0 DPH0 DPL1 DPH1 DPS

As noted previously, bits 00–7F access a region in lower SRAM. Bits 80–FF access some of the SFRs, in the following

manner: Bits 80–87 access the individual bits in SFR 80, SFRPRT0DR. Bits 88–8F access the individual bits in SFR 88, which

is unpopulated, and so on. So individual bits can be accessed in SFRs at addresses 80, 88, 90, 98, …, F0, F8. The most
frequently used PSoC 3 / 8051 registers are located at these SFR addresses.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 4

Keil 8051 Memory Models

Based on the 8051 architecture and instruction set, the Keil C compiler defines three memory models: small, compact, and
large. These memory models control the addressing mode in the 8051 assembly language output, and thus allow precise
control of code size and execution speed, as Code 1 shows.

Code 1. C Code with Keil Keywords and Corresponding 8051 Assembler, for Different Keil Memory Models

 /* C variable definitions, in different memory spaces */

 data char small_direct_var;

 idata char small_indirect_var;

 pdata char compact_var;

 char large_var; /* large memory model default */

 /* usage of the variables: simple increment operations in C */

 small_direct_var++;

 small_indirect_var++;

 compact_var++;

 large_var++;

 ; assembler equivalents of the above lines of C code

 ; small_direct_var++;

0500 INC small_direct_var ; 2 bytes, 3 cycles

 ; small_indirect_var++;

7800 MOV R0,#LOW small_indirect_var ; 3 bytes, 5 cycles

06 INC @R0

 ; compact_var++;

7800 MOV R0,#LOW compact_var ; 5 bytes, 8 cycles

E2 MOVX A,@R0

04 INC A

F2 MOVX @R0,A

 ; large_var++;

900000 MOV DPTR,#large_var ; 6 bytes, 9 cycles

E0 MOVX A,@DPTR

04 INC A

F0 MOVX @DPTR,A

In Code 1, you can see that successively larger memory models require more flash bytes and more CPU cycles. The default
model for PSoC Creator is large (to maintain compatibility with PSoC 5LP), but that default can be overridden for individual
variables, functions, and even entire modules.

The keywords ‘data’ and ‘idata’ are used to designate small model variables in direct and indirect modes, respectively. The
keyword ‘pdata’ is used to designate the compact model, and ‘xdata’ (or default) is used for the large model. For details see
Table 5 on page 24.

The small model accesses the 8051 internal space described previously.

The compact and large models access the “external” space, which is “external” to the 8051 core but of course is “internal” to
the PSoC 3 device. All of the PSoC 3 SRAM, registers, EMIF space, and so on are in this “external” space. The size of this
space is 16 Mbytes, so three address bytes are required to access this space. For more information see Topic #2: Pointers.

You can also see that in the compact (pdata) model, the “external” space is accessed using R0 or R1. The other two bytes

come from the SFRs MXAX and P2AX, so that the three-byte address, formed from the three registers, is:

[MXAX : P2AX : Ri]

So before accessing pdata variables the SFRs MXAX and P2AX must be loaded with appropriate values. For more information

see Topic #8: Compact Data Space.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 5

And, finally, you can see that in the large (xdata or default) model, the “external” space is accessed using the 16-bit DPTR

register (which is composed of the SFRs DPH and DPL). The third byte comes from the SFR DPX, so that the three-byte

address, formed from the three registers, is:

[DPX : DPTR]

Before accessing xdata variables, the SFR DPX must be loaded with an appropriate value. Note that because the PSoC 3

8051 has two DPTR registers, there are actually six SFRs: DPX0, DPH0, DPL0, DPX1, DPH1, and DPL1. The SFR DPS controls

which DPTR is currently active.

The Guidelines

Now that you understand the PSoC 3 8051 memory layout and the Keil memory models, consider some guidelines to optimize
your C code. Using these guidelines will, in most cases, yield improvements in both code size and execution time. The
guidelines are in prioritized order of most effective first.

Guideline #1: Use Bit Variables

The simplest and best way to get dramatic improvements
in efficiency is to look for all variables that will have only
binary values (0 and not 0), and define them as type ‘bit’:

bit myBitVar;

Variables of type bit are treated similarly to standard C
variables:

/* assign a value to the variable */

myBitVar = 1;

myBitVar = 0;

/* toggle the variable */

myBitVar = ~myBitVar;

/* do bit-level operations */

bitVar1 |= bitVar2;

/* test the variable */

if (myBitVar)

{

 . . .

}

Function parameters and return values can be of type bit:

bit myFunction(bit x, bit y);

There are some limitations – you cannot have arrays of
type bit, and you cannot have pointers to variables of type
bit:

/* illegal statements */

bit myBitArray[10];

bit *myBitPointer;

With bit variables, the extensive set of 8051 bit-level
assembler instructions can be used to generate very fast
and compact code. For example, the following C code:

myVar = ~myVar;

if (!myVar)

{

 ...

}

Generates only two assembler instructions:

B200 CPL myVar

200006 JB myVar,?C0002

When you use bit variables, you can frequently implement
a nontrivial C statement with just a single assembler
instruction.

The above example uses only 5 flash bytes and 8 CPU
cycles. Compare it to the assembler code that is
generated if you change the variable type ‘bit’ to type
‘char’:

900000 MOV DPTR,#myVar

E0 MOVX A,@DPTR

F4 CPL A

F0 MOVX @DPTR,A

E0 MOVX A,@DPTR

7002 JNZ ?C0001

The code now uses 9 flash bytes and 15 CPU cycles,
almost a 2x increase.

You are limited to a total of 128 bit variables in your code;
this is the number of bits in the 8051 bit-addressable
space. (You get a linker error if you overflow the bit
space.)

Finally, it is easy to port this code to PSoC 5LP by using
the CYBIT macro provided in PSoC Creator, instead of the
‘bit’ keyword:

CYBIT myBitVar;

PSoC Creator has a complete set of macros to ease
portability of PSoC 3 C code to PSoC 5LP. For details,
see the auto-generated file cytypes.h, in the cyboot

folder.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 6

Guideline #2: Do Not Call Functions from ISRs

When compiling C code for an interrupt service routine
(ISR), the Keil compiler attempts to push onto the stack
only those registers that it thinks will be changed by the
ISR code. However, if the ISR code includes a function
call, the compiler cannot tell which registers are modified
by the called function, and therefore pushes everything
onto the stack. For this reason, the C code in a very
simple ISR:

CY_ISR(myISR)

{

 UART_1_ReadRxStatus();

}

Generates a massive amount of push/pop overhead in the
corresponding assembler code:

C0F0 PUSH B

C083 PUSH DPH

C082 PUSH DPL

C085 PUSH DPH1

C084 PUSH DPL1

C086 PUSH DPS

758600 MOV DPS,#00H

C000 PUSH ?C?XPAGE1SFR

750000 MOV ?C?XPAGE1SFR,#?C?XPAGE1RST

C0D0 PUSH PSW

75D000 MOV PSW,#00H

C000 PUSH AR0

C001 PUSH AR1

C002 PUSH AR2

C003 PUSH AR3

C004 PUSH AR4

C005 PUSH AR5

C006 PUSH AR6

C007 PUSH AR7

120000 LCALL UART_1_ReadRxStatus

D007 POP AR7

D006 POP AR6

D005 POP AR5

D004 POP AR4

D003 POP AR3

D002 POP AR2

D001 POP AR1

D000 POP AR0

D0D0 POP PSW

D000 POP ?C?XPAGE1SFR

D086 POP DPS

D084 POP DPL1

D085 POP DPH1

D082 POP DPL

D083 POP DPH

D0F0 POP B

D0E0 POP ACC

32 RETI

This code uses 79 flash bytes and 101 CPU cycles just to
make one function call.

Now, this particular function call just reads a register, so
we can modify the C code to read the register directly:

CY_ISR(myISR)

{

 /* copied from UART_1.c */

 UART_1_RXSTATUS;

}

This yields some reduction in push/pop overhead, as the
following assembler code shows:

C0E0 PUSH ACC

C083 PUSH DPH

C082 PUSH DPL

C085 PUSH DPH1

C084 PUSH DPL1

C086 PUSH DPS

758600 MOV DPS,#00H

C000 PUSH ?C?XPAGE1SFR

750000 MOV ?C?XPAGE1SFR,#?C?XPAGE1RST

C0D0 PUSH PSW

75D000 MOV PSW,#00H

C007 PUSH AR7

906465 MOV DPTR,#06465H

E0 MOVX A,@DPTR

FF MOV R7,A

D007 POP AR7

D0D0 POP PSW

D000 POP ?C?XPAGE1SFR

D086 POP DPS

D084 POP DPL1

D085 POP DPH1

D082 POP DPL

D083 POP DPH

D0E0 POP ACC

32 RETI

This code uses 51 bytes and 65 cycles, a reduction of
36% in the number of cycles, and the code is still easily
portable to PSoC 5LP. This is good, but you can get even
more improvement by using flags.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 7

A flag is a global variable that is used to signal state
changes between multiple independent functions.

It is simple to implement a flag – in the ISR, set a global
variable (of type bit), and then have the background code
read the register when the variable is set:

CYBIT flag;

CY_ISR(myISR)

{

 flag = 1;

}

void main()

{

 /* Wait for the ISR to set the

 * flag, then reset it before

 * taking any action.

 */

 if (flag)

 {

 flag = 0;

 UART_1_ReadRxStatus();

 . . .

The ISR portion of this C code generates the following
assembler code:

D200 SETB flag

32 RETI

which uses 3 bytes and 7 cycles, for a 93% reduction in
number of cycles from the original ISR code.

The cost of having a flag-based design is that you need to
make sure that the status register is read by the
background code in a timely fashion, which may be
difficult in some cases.

Making the flag type uint8 instead of bit does not yield any
similar reductions, because the variable is in the same
default xdata space as the register. However, this can be
solved by placing the variable in an 8051 internal memory
space, as explained in the next section.

Guideline #3: Place Your Variables in the Correct Memory Spaces

As shown previously, significant efficiencies can be gained when a variable is placed in one of the 8051 internal memory
spaces. Therefore, in order of frequency of access, variables should be of type ‘data’, then ‘idata’, ‘pdata’, and lastly ‘xdata’
(xdata is the PSoC Creator default). See Table 5 on page 24 for details.

Also, because of limited stack space, the Keil compiler does not save local variables on the stack as is normally done in C.
Instead, it uses fixed memory locations to store local variables and shares those locations among local variables in functions
that don’t call each other. See Topic #1: Variable Overlay on page 10 for details.

So this guideline is actually twofold:

1. As much as possible, make variables local within functions. Not only is it good programming practice to have as few
global variables as possible, but the Keil compiler can try to store locals in auxiliary registers R0–R7, which further

improves efficiency.

2. Make as many local variables as possible of type ‘data’ or ‘idata’. (You get a linker error if you overflow the data space.)
Check your function / ISR calling depth to make sure that you don’t run out of stack space, which is shared with the
data and idata spaces in internal SRAM.

Guideline #4: Decrement Loop Variables

Try to make your loop variables decrement instead of
increment, because it’s faster to test for equality to zero
than for less than a constant. For example, the following C
code:

void main()

{

 data uint8 i;

 /* loop 10 times */

 for (i = 10; i != 0; i--)

 {

 ...

 }

Generates the following small amount of assembler:

75000A MOV i,#0AH ; i = 10

 ?C0002:

E500 MOV A,i ; i != 0

6006 JZ ?C0003

 . . .

1500 DEC i ; i--

80EF SJMP ?C0002

 ?C0003:

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 8

If you write the C code such that the loop variable
increments instead of decrements:

void main()

{

 data uint8 i;

 /* loop 10 times */

 for (i = 0; i < 10; i++)

 {

 ...

 }

You get a larger amount of assembler:

E4 CLR A ; i = 0

F500 MOV i,A

 ?C0002:

E500 MOV A,i ; i < 10

C3 CLR C

940A SUBB A, #0AH

5006 JNC ?C0003

 . . .

0500 INC i ; i++

80EF SJMP ?C0002

 ?C0003

Guideline #5: Use Bits for Bitwise Operations

As Guideline #1 shows, defining bit variables can greatly
increase code efficiency by generating bit-level assembler
instructions. Bit-level assembler instructions can also be
used to implement C bitwise operations. Consider a
variable with a bit that you want to set or test. In C, you
would write the following:

uint8 x;

x |= 0x10; /* set bit 4 */

x &= ~0x10; /* clear bit 4 */

x ^= 0x10; /* toggle bit 4 */

if (x & 0x10) /* test bit 4 */

{

 . . .

}

To implement C bitwise operations using 8051 bit-level
assembler instructions, you must use the ‘sbit’ keyword
and the special operator ‘^’ (which in this case does NOT
do a C exclusive-or operation).

There are two ways to do this. The first is to place the
variable in the internal bit-addressable space 20–2F, using
the ‘bdata’ keyword. Then, define the bit of interest using
sbit and ^:

/* This places myVar in the 8051

 * internal data space, in 20–2F.

 */

bdata uint8 myVar;

/* this is bit 4 of myVar */

sbit mybit4 = myVar^4;

/* set bit 4 of myVar */

mybit4 = 1;

/* clear bit 4 of myVar */

mybit4 = 0;

/* toggle bit 4 of myVar */

mybit4 = ~mybit4;

/* test bit 4 of myVar */

if (mybit4)

{

 . . .

}

This technique yields all of the efficiencies noted in
Guideline #1. It even works for variables larger than 8 bits;
for example, uint16, int32, and so on. Note that the bdata
and sbit definitions must be done on global or static
variables, not locally within a function.

The second method, which is useful only for testing bits, is
to temporarily place the value of interest in one of the bit-
addressable SFRs. As an example, the bits in the SFR
PSW are defined in the PSoC Creator generated source file

PSoC3_8051.h, in the cy_boot folder:

sfr PSW = 0xD0;

sbit P = PSW^0;

sbit F1 = PSW^1;

sbit OV = PSW^2;

sbit RS0 = PSW^3;

sbit RS1 = PSW^4;

sbit F0 = PSW^5;

sbit AC = PSW^6;

sbit CY = PSW^7;

Because the Program Status Word (PSW) is in SFR D0, its

bits are directly accessible. Each of the bits in the PSW are

defined using the sbit keyword. For this reason, each bit
can be accessed in the same manner as Guideline #1
shows. For example:

F0 = ~F0;

Note PSW bits F0 and F1 are flag bits that are conveniently

available for general-purpose use.

Two SFRs are usually available for temporary use in
bitwise operations – the accumulator (ACC) and an

auxiliary register called B. However, only the SFRs

themselves are defined in PSoC3_8051.h; you must
define the bits within those SFRs yourself:

/* bit 4 of ACC SFR */

sbit A4 = ACC^4;

/* bit 3 of B SFR */

sbit B3 = B^3;

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 9

Then, for faster testing of a bit you can do the following:

/* assume return value is 8 bits */

ACC = UART_1_ReadRxStatus();

if (A4) /* test bit 4 */

{

 . . .

}

You can also test multiple bits quickly. Try to rewrite the
following using traditional C bitwise instructions:

/* assume return value is 8 bits */

ACC = UART_1_ReadRxStatus();

/* test if bit 4 == 1 AND

 * bit 3 == 0

 */

if (A4 && !A3)

{

 . . .

}

This second method is useful only for testing a bit (or bits),
however it has the advantage that you don’t have to use
any SRAM in the bit-addressable space.

IO Port Contro l SF Rs

Also, as Table 2 on page 3 shows, certain registers for
every PSoC 3 IO port are available as SFRs. You can
read the input port pins’ states by reading the

corresponding SFRPRTxPS SFR, and you can then test

individual pin states using the bit-level techniques
described above.

You can also control the output port pins by writing to the
corresponding SFRPRTxDR SFR. Because the

SFRPRTxDR registers are located in bit-addressable SFRs,

pin outputs can be quickly changed using bit-level
assembler instructions.

All of the port SFR definitions are available in
PSoC3_8051.h, but, again, you must create your own sbit

definitions for individual pins. You must also set the SFR
SFRPRTxSEL to control whether the pin is changed by

CPU / DMA register access as is normally done, or by
SFR access.

The following example shows a very fast toggle of GPIO
pin P1.6 using SFR bit-level access:

/* port 1 pin 6 DR */

sbit P1_6 = SFRPRT1DR^6;

void main()

{

 /* P1.6 to be changed by SFR

 * access

 */

 SFRPRT1SEL = 0x40;

 for(;;) /* do forever */

 {

 /* toggle P1.6 by SFR/sbit

 * access

 */

 P1_6 = ~P1_6;

 }

}

The for loop is implemented using only two assembler
instructions:

 ?C0001

B296 CPL P1_6

80D3 SJMP ?C0001

Guideline #6: Use the B Register for Temporary Storage

In the 8051 architecture, the B register (in SFR address F0) is used by the assembler instructions MUL and DIV. At all other

times, it’s just an auxiliary register and is usually not used. But as an auxiliary register, it can be handy, for example, when
swapping two 8-bit variables:

uint8 x, y;

B = x;

x = y;

y = B;

The B register can also be used for rapid bit-level testing, as noted previously.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 10

Advanced Topics

The guidelines shown previously introduced some of the Keil C keywords and showed some simple C coding techniques that,
using the keywords, yield increased efficiency.

The following topics build on the guidelines, but are more on an architecture level. They show how to design C code for the
8051 to get further reductions in code size and CPU cycles.

Topic #1: Variable Overlay

As seen previously in Code 1 and Guideline #3, you get the greatest amount of code efficiency by using the 8051 internal data
spaces (data, idata, bit, bdata, SFRs).

Also, because of limited stack space, the Keil compiler does not save local variables on the stack as is normally done in C.
Instead, it uses fixed memory locations to store local variables and shares those locations among local variables in functions
that don’t call each other. Keil calls this “data overlaying”.

The following example has two functions, olTest1() and olTest2(), that are called only from main(). Each function, plus main(),
manipulates two automatic 32-bit variables.

void olTest1()

{

 uint32 x = 1;

 uint32 y = x + 2;

 x = y - 1;

}

void olTest2()

{

 uint32 a = 3;

 uint32 b = a + 5;

 a = b - 1;

}

void main()

{

 uint32 m = 10;

 uint32 n = m + 20;

 m = n - 7;

 olTest1();

 olTest2();

An 8-bit processor requires a lot of code to handle 32-bit variables. To increase the efficiency of that code, you could move the
automatic variables from the (default) xdata space to the data space, but that would use up a lot of valuable bytes in the data
space. To solve this problem, Keil automatically shares storage for the variables x, y, a, and b in the two test functions.
(Variables m and n in main() must have dedicated storage.)

In PSoC Creator, Workspace Explorer window, click the Results tab and find the .map file for your project. (PSoC Creator
projects have map file creation enabled by default. If you don’t see a .map file, check your project build settings, under Linker.)
In the .map file, find a line like this:

START STOP LENGTH ALIGN RELOC MEMORY CLASS SEGMENT NAME

===

. . .

000051H 000060H 000010H BYTE UNIT XDATA _XDATA_GROUP_

The segment _XDATA_GROUP_ includes the space that is shared by all overlaid variables. The segment occupies 16 bytes: 8

for the overlaid variables in the test functions and 8 for the non-overlaid variables in main(). Build a PSoC Creator project with
the code shown above, run the debugger, and bring up a memory window to monitor this segment. Step into both test
functions and see that their automatic variables share the same memory.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 11

Now exit the debugger and look in the .map file for a line like this:

START STOP LENGTH ALIGN RELOC MEMORY CLASS SEGMENT NAME

===

. . .

000008H 00000FH 000008H BYTE UNIT DATA _DATA_GROUP_

This line shows that 8 bytes in the data space are already being used by some other functions. You should be able to reuse
the same space for the overlaid automatic variables. Do this by adding the ‘small’ (or the PSoC Creator macro CYSMALL)
keyword to the two test functions:

void olTest1() small

void olTest2() small

When applied to a function, the ‘small’ keyword causes that function’s arguments and automatic variables to be placed in the
data space. You can instead add the ‘data’ (or CYDATA) keyword to the automatic variable declarations, but this does not
affect storage of function arguments.

Now rebuild and check the .map file – there is no increase in the use of data space bytes. The debugger also shows that these
bytes are being shared by the test functions. You have gained the efficiencies of the 8051 internal data space without using
any additional bytes within that space.

Fewer than 128 data space bytes are available; if you run out, you can add the ‘idata’ keyword to automatic variables. This
allows you to use some of the other 128 bytes in the 8051 internal space (leave room for stack growth), and creates an overlay
segment _IDATA_GROUP_ for the idata space. Similarly, automatic variables of type ‘bit’ can be placed in an overlay segment

_BIT_GROUP_.

The significance of this topic is that your code should be constructed such that the further up in the calling tree a function is,
the fewer local variables and arguments it should have. Ideally, main() should have none. Your code’s calling tree depth
should be as small as possible; this also reduces stack usage. Functions at the bottom of the calling tree can be declared
‘small’ to maximize efficient use of their local variables. Finally, there should be as few global and static variables as possible,
as these cannot be overlaid.

This brings up another issue, C library functions. For example, try adding to one of the test functions a call to memset() to clear
one of the variables:

memset((void *)&a, (char)0, sizeof(a));

Examine the .map file before and after adding the call. You should see no difference in the amount of data or xdata memory
being used (the code size increases, of course). Keil does not supply the source for most library functions. However, because
no additional SRAM is used, and from a review of the assembler code (in the PSoC Creator debugger’s Disassembler
window), you can infer that the function is using registers, variable overlay, or both. This is generally true of Keil library
functions, although some may behave differently.

Another point from this topic is the need to check the .map file to understand how your code is being implemented in the 8051
architecture. The .map file provides a wealth of information on usage of the different memory spaces, in addition to many other
subjects. For more information, see the Keil LX51 Linker User’s Guide.

http://www.keil.com/support/man/docs/lx51/

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 12

Topic #2: Pointers

Most CPUs have a single linear address space, and so the size of C pointer variables for these CPUs is determined by the
size of the address space. For example, a CPU with a 64 K address space has 2-byte pointer variables, while a 32-bit CPU
(such as the ARM Cortex in PSoC 4 and PSoC 5LP) has 4-byte pointer variables.

The 8051 CPU is different in that it has multiple address spaces, ranging from 128 bytes to 64 K bytes in size. To handle this,
the Keil C compiler defines two types of pointers – generic and memory-specific.

A generic pointer accesses data regardless of the memory in which it is stored. It uses 3 bytes – the first is the memory type,
the second is the high-order byte of the address, and the third is the low-order byte of the address. A memory-specific pointer
uses only one or two bytes depending on the specified memory type. The following example demonstrates each type:

char idata *ip = &ival; /* memory-specific pointer to idata space */

char xdata *xp = &xval; /* memory-specific pointer to xdata space */

char *p = &xval; /* generic pointer (to xdata space) */

char val = *ip; /* read a value from the idata space */

val = *xp; /* read a value from the xdata space */

val = *p; /* read a value using the generic pointer */

; Corresponding assembler

750000 MOV ip,#LOW ival ; 1-byte ptr to idata space

750000 MOV xp,#HIGH xval ; 2-byte ptr to xdata space

750000 MOV xp+01H,#LOW xval

750001 MOV p,#01H ; 3-byte generic ptr (01H = xdata)

750000 MOV p+01H,#HIGH xval

750000 MOV p+02H,#LOW xval

A800 MOV R0,ip ; read from the idata space

E6 MOV A,@R0 ; 5 bytes, 7 cycles

F500 MOV val,A

850082 MOV DPL,xp+01H ; read from the xdata space

850083 MOV DPH,xp ; 9 bytes, 11 cycles

E0 MOVX A,@DPTR

F500 MOV val,A

AB00 MOV R3,p ; read using the generic ptr

AA00 MOV R2,p+01H ; 11 bytes, 19+ cycles

A900 MOV R1,p+02H

120000 LCALL ?C?CLDPTR ; Keil library function

F500 MOV val,A

The main point of this topic is that memory-specific pointers are more efficient. Generic pointers should be used only when the
memory type is unknown. Note that most Keil library functions take generic pointers as arguments; memory-specific pointers
are automatically cast to generic pointers.

Function Pointers

As Topic #4 describes, the Keil compiler does not pass C function arguments on the stack. Instead, it uses either registers or
fixed memory locations. This can cause problems with function pointers, because the linker cannot predict where the pointed-
to function resides in the calling tree and therefore may not put the parameters in a safe location in memory.

To address this issue, Keil provides an OVERLAY linker directive. Keil also provides a detailed application note on this topic,
see http://www.keil.com/appnotes/files/apnt_129.pdf for details.

http://www.keil.com/appnotes/files/apnt_129.pdf

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 13

Topic #3: Constants and Flash

C has a qualifier keyword ‘const’ that can be added to a variable or array declaration. The keyword tells the compiler that the
variable may not be changed; code that tries to change the variable gives a compile error. However, the ‘const’ qualifier says
nothing about where the variable is stored, as this example shows:

const char testvar = 37;

void main()

{

 char testvar2 = testvar;

The corresponding 8051 assembler shows that the const variable ‘testvar’ is stored in SRAM.

900000 MOV DPTR,#testvar

E0 MOVX A,@DPTR ; MOVX accesses xdata space

900000 MOV DPTR,#testvar2

F0 MOVX @DPTR,A

And, to initialize the SRAM the value is also stored in flash, and copied to the correct SRAM location in the C startup code.

PSoC 3 has 8 times more flash than SRAM. If SRAM is being used up, it may make sense to keep some const variables,
strings, or arrays in flash. In the Keil C compiler, to force storage of a variable or array in flash, you must use the keyword
‘code’ (or CYCODE) in the declaration:

code const char testvar = 37;

void main()

{

 char testvar2 = testvar;

The corresponding 8051 assembler shows that the const variable ‘testvar’ is now stored in flash:

900000 MOV DPTR,#testvar

E4 CLR A

93 MOVC A,@A+DPTR ; MOVC accesses code space

900000 MOV DPTR,#testvar2

F0 MOVX @DPTR,A

Because of the nature of the MOVC instruction, this actually costs at least one extra byte to set up the index in the
accumulator. For this reason, use this method only when truly necessary.

Be careful about the syntax. The ‘const’ is not necessary but may be needed for portability, and one declaration results in a
compile error:

code const char testvar = 37; /* stores in flash */

code char testvar = 37; /* stores in flash */

const char code testvar = 37; /* stored in flash */

char code testvar = 37; /* stores in flash */

const char testvar = 37; /* stores in SRAM */

const code char testvar = 37; /* compile error */

The syntax for keeping arrays and strings in flash is similar:

const float code array[512] = { . . . };

code const char hello[] = "Hello World";

Finally, by forcing location of a variable or array in flash, you can use memory-specific pointers, which increases code
efficiency (see Topic #2: Pointers). Of course, the same is true if you force a variable into any other memory space.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 14

Also, with regard to the differing syntax in the previous examples, the following is from Keil’s documentation on declaring
memory space:

/* older method, may not be supported in future versions of the compiler

 [Memory space] [Qualifier and Data type] variable_name */

code const int testvar; // example

/* preferred method

 [Qualifier and Data type] [Memory space] variable_name */

int idata testvar; // example

/* preferred method for declaring pointer variables

 [Qualifier and Data type] [Data type memory space]

 * [Variable memory space] var_name */

/* pointer stored in xdata points to an integer stored in data */

int data * xdata p;

Topic #4: Passing Arguments to Functions

C function arguments are usually passed on a CPU’s hardware stack. But because the 8051 hardware stack size is limited to
less than 256 bytes, the Keil compiler does not pass arguments on the stack. Instead, it uses either registers R1–R7 or fixed

memory locations. The preferred method is to use registers because it’s faster and uses fewer code bytes. However, this
method has some limitations, as Table 3 shows.

Table 3. Keil Scheme for Passing Function Arguments in Registers

Argument
Number

char,
1-byte ptr

int,
2-byte ptr long, float generic ptr

1 R7 R7, R6 (MSB) R7–R4 (MSB) R3 (mem type), R2 (MSB), R1

2 R5 R5, R4 (MSB) R7–R4 (MSB) R3 (mem type), R2 (MSB), R1

3 R3 R3, R2 (MSB) - R3 (mem type), R2 (MSB), R1

If an argument does not fit into the scheme in Table 3 then it is passed in a fixed memory location. So as much as possible,
functions should be limited to three arguments, but even then the compiler may not pass all three arguments in registers. For
example, the following C code might be written to search an array:

/* search function, with three arguments */

int search(char *addr, int nbytes, char c);

char array[300];

void main()

{

 search(array, sizeof(array), 'X');

And the following is the corresponding 8051 assembler:

7B01 MOV R3,#01H ; first argument in regs,

7A00 MOV R2,#HIGH array ; generic pointer

7900 MOV R1,#LOW array

900000 MOV DPTR,#?_search?BYTE+05H ; third argument,

7458 MOV A,#058H ; in memory

F0 MOVX @DPTR,A

7D00 MOV R5,#02CH ; second argument in regs

7C02 MOV R4,#01H

120000 LCALL _search ; 19 bytes, 23 cycles

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 15

According to Table 3, the third argument must be passed in a fixed memory location even though it’s just a char and R6 and

R7 are not being used. The code can be more efficient if all arguments are passed in registers. Two methods are available for

achieving that.

First, note that in Table 3, the third argument and generic pointer arguments both have only one placement option, that is, R1–

R3. (See Topic #2: Pointers for a discussion of generic pointers.) If you simply change the order of the arguments, to make the

generic pointer the third argument, then all of the arguments can be passed in registers:

/* search function, with three arguments */

int search(int nbytes, char c, char *addr);

7B01 MOV R3,#01H ; third argument

7A00 MOV R2,#HIGH array

7900 MOV R1,#LOW array

7D58 MOV R5,#058H ; second argument

7F00 MOV R7,#02CH ; first argument

7E02 MOV R6,#01H

120000 LCALL _search ; 15 bytes, 16 cycles

Another solution is to use a memory-specific pointer (see Topic #2: Pointers), which requires only two bytes instead of three:

/* search function to be called,

 with three arguments */

int search(char xdata *addr, int nbytes, char c);

7E00 MOV R6,#HIGH array ; first argument

7F00 MOV R7,#LOW array

7B58 MOV R3,#058H ; third argument

7D00 MOV R5,#02CH ; second argument

7C02 MOV R4,#01H

120000 LCALL _search ; 13 bytes, 14 cycles

In this case, you must have the array in external SRAM. If you move it to flash or internal SRAM then the function must be
changed.

In this example, by using one of the two techniques, you can save as much as 31% bytes and 40% cycles on a function call,
depending on the function’s arguments.

Note that arguments of type ‘bit’ cannot be passed in a register; they are always passed in a fixed memory location in the bi t
space in the 8051 internal memory. This is generally acceptable because very little code is needed to access a bit variable.
However bit variables should be declared at the end of a function’s argument list, to keep the other arguments within the
Table 3 scheme.

A similar concept applies to function return values, as Table 4 shows.

Table 4. Keil Scheme for Passing Function Return Values in Registers

Return Type Register

bit Carry flag

char, 1-byte pointer R7

int, 2-byte pointer R7, R6 (MSB)

long, float R7–R4 (MSB)

generic pointer R3 (mem type), R2 (MSB), R1

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 16

Function return values, including those of type ‘bit’, are always passed in registers. This can, in turn, affect the order of
function arguments. For example, suppose you want to use the search function’s return value as an argument for another
search. The following code finds in an array the last instance of a character before the first instance of another character:

int search(char xdata *addr, int nbytes, char c); /* search forward */

int searchb(char xdata *addr, int nbytes, char c); /* search backward */

char array[300];

void main()

{

 searchb(array, search(array, sizeof(array), 'X'), 'A');

Here’s the corresponding assembler:

7E00 MOV R6,#HIGH array

7F00 MOV R7,#LOW array

7B58 MOV R3,#058H

7D00 MOV R5,#00H

7C02 MOV R4,#02H

120000 LCALL _search

AC06 MOV R4,AR6 ; move return value to argument 2

AD07 MOV R5,AR7

7E00 MOV R6,#HIGH array

7F00 MOV R7,#LOW array

7B41 MOV R3,#041H

120000 LCALL _searchb

It costs an extra 4 bytes and 6 cycles to move the return value, which you can avoid if you reorder the arguments:

int search(int nbytes, char xdata *addr, char c); /* search forward */

int searchb(int nbytes, char xdata *addr, char c); /* search backward */

char array[300];

void main()

{

 searchb(search(sizeof(array), array, 'X'), array, 'A');

7E00 MOV R4,#HIGH array

7F00 MOV R5,#LOW array

7B58 MOV R3,#058H

7D00 MOV R7,#00H

7C02 MOV R6,#02H

120000 LCALL _search

7E00 MOV R4,#HIGH array ; return value is already in R6, R7

7F00 MOV R5,#LOW array

7B41 MOV R3,#041H

120000 LCALL _searchb

The main lesson from this example is that if a function argument may be the return value of another function, put that
argument first in the argument list whenever possible.

When you write a C function, you usually don’t need to care about the order of the function’s arguments. With Keil 8051 C, if
you pay attention to the argument order, you may gain significant reductions in code size.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 17

Topic #5: Passing Structures

In C, it is possible to pass a structure to a function. You can either pass the structure directly (if it is small) or pass a pointer to
a structure. The following is a simple example of passing a structure directly:

/* structure definition and instance */

struct myStruct

{

 char x, y;

} testvar = {1, 2};

/* function with structure passed in directly,

 returns the sum of the structure’s members

*/

char doAdd(struct myStruct str)

{

 return str.x + str.y;

}

void main()

{ /* test call for the above function */

 char testvar2 = doAdd(testvar); /* structure passed directly */

Note that the resulting assembler is large:

; doAdd:

900000 MOV DPTR,#str+01H ; get the structure members from

E0 MOVX A,@DPTR ; the fixed memory location,

FF MOV R7,A

900000 MOV DPTR,#str

E0 MOVX A,@DPTR

2F ADD A,R7 ; and add them

FF MOV R7,A

22 RET

; main:

7B01 MOV R3,#01H ; pass structure members in memory

7A00 MOV R2,#HIGH testvar

7900 MOV R1,#LOW testvar

7800 MOV R0,#LOW ?doAdd?BYTE

7C00 MOV R4,#HIGH ?doAdd?BYTE

7D01 MOV R5,#01H

7E00 MOV R6,#00H

7F02 MOV R7,#02H

120000 LCALL ?C?COPYAMD ; Keil library function

120000 LCALL doAdd

900000 MOV DPTR,#testvar2

EF MOV A,R7

F0 MOVX @DPTR,A

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 18

The alternative, passing by reference (passing a pointer to the structure), results in less code in main() but more code in
doAdd(), which makes the two methods approximately equal in this case:

/* function with structure passed in by reference,

 returns the sum of the structure’s members

*/

char doAdd(struct myStruct *str) {

 return str->x + str->y;

}

void main()

{ /* test call for the above function */

 char testvar2 = doAdd(&testvar); /* structure passed by reference */

; doAdd:

900000 MOV DPTR,#str ; store the pointer in memory

120000 LCALL ?C?PSTXDATA

900000 MOV DPTR,#str ; get the structure members from memory

120000 LCALL ?C?PLDXDATA

E9 MOV A,R1

2401 ADD A,#01H

F9 MOV R1,A

E4 CLR A

3A ADDC A,R2

FA MOV R2,A

120000 LCALL ?C?CLDPTR

FF MOV R7,A

900000 MOV DPTR,#str

120000 LCALL ?C?PLDXDATA

120000 LCALL ?C?CLDPTR

2F ADD A,R7 ; and add them

FF MOV R7,A

22 RET

; main:

7B01 MOV R3,#01H ; pass structure pointer in registers

7A00 MOV R2,#HIGH testvar

7900 MOV R1,#LOW testvar

120000 LCALL doAdd

900000 MOV DPTR,#testvar2

EF MOV A,R7

F0 MOVX @DPTR,A

The lesson from this topic is simple: try to avoid passing structures to functions, regardless of method. Consider passing
structure members instead, or just make the structures static or even global. Also, be careful when using the C operator ‘->’; it

is costly to implement.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 19

Topic #6: Switch Statements

When making a multipath decision based on the state of a
variable (for example, when implementing a state
machine) you can use either a series of if-else if-else
statements or a switch-case construct. To test which
method is less costly, first examine the switch option:

/* basic state machine

 note that C coding best practices

 require having:

 - a break statement at the end of

 each case, and

 - a default case

*/

char state = 0;

switch (state)

{

case 0:

 state++;

 break;

case 1:

 state--;

 break;

default:

 state = 0;

 break;

}

The resulting assembler uses a sequentially scanned jump
table with a library function:

900000 MOV DPTR,#state

E0 MOVX A,@DPTR

120000 LCALL ?C?CCASE

0000 DW ?C0002

00 DB 00H

0000 DW ?C0003

01 DB 01H

0000 DW 00H

0000 DW ?C0004

Now, examine the if-else if-else construct:

/* basic state machine */

if (state == 0)

{

 state++;

}

else if (state == 1)

{

 state--;

}

else

{

 state = 0;

}

The resulting assembler has a series of compares and jumps:

900000 MOV DPTR,#state ; if state == 0

E0 MOVX A,@DPTR

7005 JNZ ?C0001

E0 MOVX A,@DPTR ; state++

04 INC A

F0 MOVX @DPTR,A

8010 SJMP ?C0005

?C0001

900000 MOV DPTR,#state ; else if state == 1

E0 MOVX A,@DPTR

B40104 CJNE A,#01H,?C0003

14 DEC A ; state--

F0 MOVX @DPTR,A

8005 SJMP ?C0005

?C0003:

E4 CLR A ; else state = 0

900000 MOV DPTR,#state

F0 MOVX @DPTR,A

?C0005:

This code is smaller for a state machine of this size, but for larger state machines it grows at a faster rate than the jump table
in the previous code. The general rule for code of any complexity is to use the switch statement.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 20

This is also a perfect example for using a more efficient memory space (see Guideline #3). Moving the variable ‘state’ to the
data space, results in large reductions in code size:

data char state;

; switch code

E500 MOV A,state ; switch state

120000 LCALL ?C?CCASE

0000 DW ?C0002 ; jump table

00 DB 00H

0000 DW ?C0003

01 DB 01H

0000 DW 00H

0000 DW ?C0004

?C0002:

0500 INC state ; case 0: state++

8007 SJMP ?C0005

?C0003:

1500 DEC state ; case 1: state--

8003 SJMP ?C0005

?C0004:

E4 CLR A ; default: state = 0

F500 MOV state,A

?C0005:

; if – else if – else code

E500 MOV A,state ; if state == 0

7004 JNZ ?C0001

0500 INC state ; state++

80DE SJMP ?C0005

?C0001:

E500 MOV A,state ; else if state == 1

B40104 CJNE A,#01H,?C0003

1500 DEC state ; state--

80D5 SJMP ?C0005

?C0003:

E4 CLR A ; else state = 0

F500 MOV state,A

?C0005:

Further optimizations are available; for example, Keil compiler optimization level 4 optimizes switch / case statements. The
previous example has a sequentially scanned table to decide where to jump to, which means that it may take longer to reach
the case statement for some values than for others. Keil compiler optimization for speed as opposed to size may change that
to a true jump table, where the time to reach a case statement is the same regardless of switch value.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 21

Topic #7: Large Arrays and Structures

Large arrays and structures are handled efficiently by the Keil compiler. If you need to access a structure member or an array
element directly, the corresponding address is simply accessed, as the following example shows:

/* complex structure with multiple members */

struct myStruct

{

 char m1;

 int m2;

 long m3;

 float m4;

 long m5[256]; /* including an array member */

} testvar;

/* access one element of the array member */

testvar.m5[3] = 20;

E4 CLR A ; create and store a 32-bit value

7F14 MOV R7,#014H

FE MOV R6,A

FD MOV R5,A

FC MOV R4,A

900000 MOV DPTR,#testvar+017H

120000 LCALL ?C?LSTXDATA ; library function

The code gets more complicated, however, when array indices are calculated:

int i = 3;

testvar.m5[i] = 20;

900000 MOV DPTR,#i ; set i = 3

E4 CLR A

F0 MOVX @DPTR,A

A3 INC DPTR

7403 MOV A,#03H

F0 MOVX @DPTR,A

E4 CLR A ; create and save a 32-bit value

7F14 MOV R7,#014H

FE MOV R6,A

FD MOV R5,A

FC MOV R4,A

C004 PUSH AR4

C005 PUSH AR5

C006 PUSH AR6

C007 PUSH AR7

900000 MOV DPTR,#i ; calculate offset based on i,

E0 MOVX A,@DPTR ; offset should be i * 4

FE MOV R6,A

A3 INC DPTR

E0 MOVX A,@DPTR

7802 MOV R0,#02H

?C0004

C3 CLR C

33 RLC A

CE XCH A,R6

33 RLC A

CE XCH A,R6

D8F9 DJNZ R0,?C0004

2400 ADD A,#LOW testvar+0BH ; load value to address + offset

F582 MOV DPL,A

7400 MOV A,#HIGH testvar+0BH

3E ADDC A,R6

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 22

F583 MOV DPH,A

D007 POP AR7

D006 POP AR6

D005 POP AR5

D004 POP AR4

120000 LCALL ?C?LSTXDATA ; library function

A lot of code is required to calculate the offset. You can reduce the amount of code by making three changes, to only the index
variable:

 Size index variables appropriately. If the number of elements in the array is 256 or less, you need only a 1-byte index.
Don’t use a 2-byte index variable unless absolutely necessary.

 Make sure that index variables are unsigned. The previous example highlights a common problem in C for the 8051,
which is the use of the ‘int’ type:

int i;

for (i = 0; i < 100; i++)

{ /* do something with testvar[i] */

Although using ‘int’ is common practice, it causes variables to be 16-bit with the Keil compiler, which reduces code
efficiency. A better method is to use one of the macros supplied by PSoC Creator, and explicitly define the size of the
variable and whether it is signed: int8, uint8, int16, uint16, int32, uint32.

 To make offset calculations more efficient, keep index variables in the data space. Index variables are usually automatic
and can be overlaid (see Topic #1: Variable Overlay).

uint8 data i = 3;

testvar.m5[i] = 20;

975003 MOV i,#03H ; set i = 3

E4 CLR A ; load 32-bit value into registers

7F14 MOV R7,#014H

FE MOV R6,A

FD MOV R5,A

FC MOV R4,A

75F004 MOV B,#04H ; calculate offset and store the value

E500 MOV A,i ; using library functions

900000 MOV DPTR,#testvar+0BH

120000 LCALL ?C?OFFXADD

120000 LCALL ?C?LSTXDATA

Proper declaration and placement of index variables can greatly reduce the amount of code needed to process large
structures and arrays.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 23

Topic #8: Compact Data Space

The previous guidelines and topics have shown that the best place to store variables is in the 8051 internal data space or idata
space. But if you run out of room in these spaces (even with data overlaying), you don’t have to settle for the external (xdata)
space / large memory model. There is a more efficient way to use the xdata space: the ‘pdata’ space or ‘compact’ memory
model. To understand how it works, consider some 8051 assembler, specifically the two forms of the MOVX instruction. The

compact form uses R0 or R1 as a pointer into the external data space, and the large form uses DPTR:

; compact form

E2 MOVX A,@R0 ; 3 cycles

F2 MOVX @R0,A ; 4 cycles

E3 MOVX A,@R1 ; 3 cycles

F3 MOVX @R1,A ; 4 cycles

; large form

E0 MOVX A,@DPTR ; 2 cycles

F0 MOVX @DPTR,A ; 3 cycles

Although the compact form uses one more cycle than the large form, when you include the bytes to load the pointer register,
the number of cycles is the same and one less byte is used:

; compact form

A800 MOV R0,#testvar ; 3 bytes, 5 cycles

E2 MOVX A,@R0

A800 MOV R0,#testvar2 ; 3 bytes, 6 cycles

F2 MOVX @R0,A

; large form

900000 MOV DPTR,#testvar ; 4 bytes, 5 cycles

E0 MOVX A,@DPTR

900000 MOV DPTR,#testvar2 ; 4 bytes, 6 cycles

F0 MOVX @DPTR,A

Note that DPTR is a 16-bit “register” (formed from the DPL and DPH registers) and so the large form can address 64 K bytes in

the xdata space. R0 and R1 are 8-bit registers and can access only 256 bytes, so how is 64 K in the xdata space accessed

using the compact form?

(PSoC 3 actually has a 16 Mbyte xdata space; 3 bytes are used to address this space. The MS bytes, stored in SFRs DPX for

large model and MXAX for compact model, have default reset values of zero, so the first 64 K is always available as a default.

All PSoC 3 SRAM and most registers are addressed within the first 64 K of the xdata space. See the xdata memory map and
discussion in the device datasheet for details.)

For the compact form, the most significant byte is stored in the P2AX register, SFR #A0H. In the compact memory model, the

external space is split into 256-byte pages, where P2AX is the page register and R0 or R1 is the index into the page. Although

you can, in theory, access the entire 64K of xdata space using the compact form, usually just the first 256 bytes are used for
accessing data in a more efficient mode.

With the Keil C compiler, you can define a global, static or automatic variable, structure or array to be in the compact space by
using the Keil keyword ‘pdata’:

char pdata testvar[5];

void main()

{

 char pdata testvar2 = testvar[3];

 testvar[1] = 44;

And, similar to Topic #1: Variable Overlay, an overlay space exists for the compact data space, called _PDATA_GROUP_. Test

the example in Topic #1 with the ‘small’ keywords changed to ‘compact’ (or CYCOMPACT), and observe the shared usage of
the pdata space.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 24

The main takeaway from this topic is the same as in Guideline #3 – for maximum efficiency, place your data in the appropriate
memory space. Although your code may vary, you should generally follow the recommendations in Table 5.

Table 5. 8051 Memory Spaces and Recommended Usage

8051 memory space Keil compiler keywords Usage

Internal data, idata, bit, bdata, small Bit variables. Automatic variables, especially those used for
complex calculations.

External, compact mode pdata, compact Frequently accessed variables (global, static or automatic,
depending on program).

External, large mode xdata, large (PSoC Creator default) Large arrays or structures. Variables accessed less often.

Note that accessing multiple pages in compact mode, by changing P2AX, is possible but is not recommended. One reason is

that an interrupt handler might use a different page than the background thread. Unless P2AX is carefully managed (for

example through push / pop operations), your code may end up accessing a different page than intended and a hard-to-find
defect may result.

Topic #9: Use All of the Resources in Your PSoC

There is one final method available for reducing code size. It is based on the fact that PSoC is designed to be a flexible device
that enables you to build custom functions in programmable analog and digital blocks. For example, in PSoC 3 you have the
following peripherals that can act as “co-processors”:

 DMA Controller. Note that the most common CPU assembler instructions are MOV and MOVX, which implies that the
CPU spends a lot of cycles just moving bytes around. Let the DMA controller do that instead.

 Digital Filter Block (DFB) – a sophisticated 24-bit sum of products calculator

 Universal Digital Blocks (UDBs). There are as many as 24 UDBs, and each UDB has an 8-bit datapath that can add,
subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). The datapaths can be chained for word-
wide calculations. Consider offloading CPU calculations to the datapaths.

 The UDBs also have programmable logic devices (PLDs) which can be used to build state machines, c.f. the Lookup
Table (LUT) Component datasheet. LUTs can be an effective alternative to programming state machines in the CPU using
C switch / case statements.

 Analog components including ADCs, DACs, comparators, opamps, as well as programmable switched capacitor /
continuous time (SC/CT) blocks from which you can create programmable gain amplifiers (PGAs), transimpedance
amplifiers (TIAs), and mixers. Consider doing your processing in the analog domain instead of the digital domain.

PSoC Creator offers a large number of Components to implement various functions in these peripherals. This allows you to
develop an effective multiprocessing system in a single chip, significantly offloading functionality from the CPU. This in turn
can not only reduce code size but by reducing the number of tasks that the CPU must perform you can reduce CPU speed
and thereby reduce power.

For example, with PSoC 3 a digital system can be designed to control multiplexed ADC inputs, and interface with DMA to save
the data in SRAM, to create an advanced analog data collection system with zero usage of the CPU.

Cypress offers extensive application note support for PSoC peripherals, as well as detailed data in the device datasheets and
technical reference manuals (TRMs). For more information see the PSoC 3 home page at www.cypress.com.

http://www.cypress.com/?rid=46472
http://www.cypress.com/psoc3/?source=CY-ENG-HOMEPAGE&medium=Body-Products
http://www.cypress.com/

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 25

Summary

This application note has demonstrated that:

 The 8051 CPU can be made to work very efficiently when its core internal features are used. These resources must be
used carefully because they are limited.

 The efficiency gains can be realized without writing any 8051 assembler code. Keywords for the Keil 8051 C compiler
must be used; portability issues can be mitigated by the use of macros provided by PSoC Creator.

 The Keil C compiler provides a number of ways to make a C program work efficiently on the 8051.

After you compile your C code, you should review the resultant assembler and understand why the particular instructions are
there. There are two ways to do that in PSoC Creator.

1. Bring up the list file corresponding to the compiled C file (filename.lst). The default PSoC Creator project build setting is to
create a list file. To find it, in the PSoC Creator Workspace Explorer window click the Results tab.

2. Use the disassembly window in the debugger. That window shows mixed source and assembler, which helps in
debugging. However, the disadvantage is that you must have working target hardware and a project that builds correctly
before you can use the debugger.

Note that all of the techniques described in this application note were done using compiler optimization level 3. Further gains
may be achievable by using higher levels of compiler optimization, at the cost of possible difficulties in debugging. For details,
see the PSoC Creator Help topic “Compiler Build Settings” and the Keil help topic “OPTIMIZE Compiler Directive”.

The best way to learn more about coding for the 8051 is to review the Keil C keywords, which can be found in PSoC Creator
menu Help, Documentation, Keil, Cx51 Compiler User’s Guide, and Language Extensions.

About the Author

Name: Mark Ainsworth

Title: Applications Engineer Principal

Background: Mark Ainsworth has a BS in Computer
Engineering from Syracuse University
and an MSEE from University of
Washington, as well as many years
experience designing and building
embedded systems.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 26

Document History

Document Title: AN60630 - PSoC
®
 3 - 8051 Code and Memory Optimization

Document Number: 001-60630

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2901594 MKEA 03/30/10 New application note.

*A 3209904 MKEA 03/30/11 Changed title according new standards. Added clarifications for CY macros and
compiler optimization, and other text and code.

*B 3248324 MKEA 05/04/11 Added Advanced Topics and updated all sections.

*C 3259272 MKEA 05/17/11 Fixed PDF

*D 3275139 MKEA 06/06/11 Template Fix

*E 3535835 MKEA 02/28/2012 Updated template.

Modified Title and Abstract.

*F 3946665 MKEA 03/27/2013 Added text to the Keil 8051 Memory Models section. Added a section on function
pointers. Added keywords. Other minor text and formatting updates.

*G 4282039 MKEA 02/14/2014 Added examples of bit variable usage. Broke out separate Guideline #4 and
added Topic #9. Updated to *L template. Miscellaneous minor edits.

*H 5713610 AESATMP9 04/26/2017 Updated logo and copyright.

PSoC
®
 3 - 8051 Code and Memory Optimization

www.cypress.com Document No. 001-60630 Rev. *H 27

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Contents
	Introduction
	The 8051 “Inner Space”
	Direct and Indirect Access
	SFR Space

	Keil 8051 Memory Models
	The Guidelines
	Guideline #1: Use Bit Variables
	Guideline #2: Do Not Call Functions from ISRs
	Guideline #3: Place Your Variables in the Correct Memory Spaces
	Guideline #4: Decrement Loop Variables
	Guideline #5: Use Bits for Bitwise Operations
	IO Port Control SFRs

	Guideline #6: Use the B Register for Temporary Storage

	Advanced Topics
	Topic #1: Variable Overlay
	Topic #2: Pointers
	Function Pointers

	Topic #3: Constants and Flash
	Topic #4: Passing Arguments to Functions
	Topic #5: Passing Structures
	Topic #6: Switch Statements
	Topic #7: Large Arrays and Structures
	Topic #8: Compact Data Space
	Topic #9: Use All of the Resources in Your PSoC

	Summary
	About the Author
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

