

www.cypress.com Document No. 001-58009 Rev. *E 1

AN58009

Serial (UART) Port Debugging of EZ-USB® FX1/FX2LP™ Firmware

Author: Praveen Kumar
Associated Project: Yes

Associated Part Family: EZ-USB
®
 FX1, FX2LP™

Software Version: Keil µVision2
Related Resources: Click here

More code examples? We heard you.
For a consolidated list of USB Hi-Speed Code Examples, visit the Cypress webpage.

AN58009 explains the code implementation required for debugging EZ-USB® FX1/FX2LP™ firmware through a serial

port (UART). This code enables you to print debug messages over the UART using any serial communication

application.

Contents

1 Introduction ... 1
2 Hardware Requirements ... 1
3 Software Requirements .. 2
4 Serial Debug Files .. 2

4.1 FX2LPSerial.h .. 2
4.2 FX2LPSerial.c .. 2

5 Demonstration .. 3
5.1 Adding Files to the Target Code 3
5.2 Firmware Modifications 4

5.3 HyperTerminal Settings 5
5.4 Testing ... 7

6 Summary .. 9
A Cypress Design Resources 10
B Application Notes and Reference Designs 12

B.1 Application Notes ... 12
B.2 Reference Designs .. 13

Document History .. 14
Worldwide Sales and Design Support 15

1 Introduction

When developing firmware projects, designers must be able to debug code. The Keil tools supplied with the EZ-USB
FX2LP family of development kits let you debug code using single-step, start, stop, and other features. For more
details, see GS51.pdf, available at C:\Keil\C51\HLP (location varies based on installation) after you install Keil
µVision2. However, this ability may not be useful when any of the code to be debugged is real time, as the delay
caused by stopping or single-stepping the firmware execution causes failure. A typical example would be debugging
within a USB ISR, which must finish execution within a specific time period as per USB specifications. Single-step
debugging may violate the timing constraint.

Printing debug messages through the UART in the HyperTerminal program on the computer or capturing them in a
file enables easy debugging and tracking of the firmware code flow. This application note discusses the code that you
must add to any FX2LP firmware that requires this debugging feature.

Note: This application note uses the name “FX2LP” to refer to both FX1 and FX2LP unless noted otherwise.

2 Hardware Requirements

To perform UART debugging, you must have a serial cable, an FX2LP (or FX1) DVK, and a Windows computer with
a serial port. Computers that do not have a serial port can use a USB-to-UART cable, which provides a virtual COM
(serial) port on the computer. Most USB-to-UART cables come with a customized driver. Be sure to install those
drivers and verify whether a COM port is available in the Device Manager.

There are two serial ports on the FX2LP development board: SIO-0 and SIO-1. Connect the serial cable to SIO-0 on
the FX2LP DVK. (SIO-0 is configured in this example firmware.)

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/usb-hi-speed-code-examples?source=search&keywords=hi-speed%20code%20examples

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 2

3 Software Requirements

The computer must have the HyperTerminal application installed to capture or print the debug messages.

HyperTerminal (Serial Communication software) is not present in Windows 7 and higher PC, by default. You need to
install it manually for Windows 7 and higher PC. To download and install HyperTerminal, click here. Alternatively, any
other serial communication software like TeraTerm can also be installed. TeraTerm is attached with this application
note for installation.

 You need the USB Control Center to download the firmware into FX2LP. It is available in EZ-USB FX3 SDK.

4 Serial Debug Files

This section describes the files that are used for debugging. They are provided with this application note in the folder
FX2LPSerialDebug.

4.1 FX2LPSerial.h

The FX2LPSerial.h header file contains the function definitions for all the functions in FX2LPSerial.c. This header file
must be included in the project to access the functions in FX2LPSerial.c.

4.2 FX2LPSerial.c

FX2LPSerial.c includes all the required functions for serial debugging.

4.2.1 FX2LPSerial_Ini t ()

This function initializes Timer2 as a baud rate generator and sets the values of the register RCAP2H/L for a baud rate
of 38,400. Because the RCAP2H/L value has been calculated with the assumption that the CPU clock is running at
48 MHz, this function sets the clock frequency to 48 MHz by writing to the CPUCS register. Refer to chapter 14 of the
EZ-USB Technical Reference Manual for more information on the configuration values based on the serial port used,
timer used, and CPU clock frequency. Following is the code snippet of the function:

T2CON = 0x34 ;

RCAP2H = 0xFF ;

RCAP2L = 0xD9;

SCON0 = 0x5A ;

TI = 1;

CPUCS = ((CPUCS & ~bmCLKSPD)|bmCLKSPD1); //Setting up the clock frequency

FX2LPSerial_XmitString("\r\n->") ; //Clearing the output screen

4.2.2 FX2LPSerial_XmitStr ing (char *str)

This function calls the intermediate function FX2LPSerial_XmitChar(char ch) in a while loop to print the characters of
the input string. FX2LPSerial_Xmitchar() prints one character at a time. Following is the code snippet of the
FX2LPSerial_XmitChar() function:

while (TI == 0) ;

TI = 0 ;

SBUF0 = ch ; //print the character

Following is the code snippet of the FX2LPSerial_XmitString() function:

while (*str)

 FX2LPSerial_XmitChar(*str++) ;

4.2.3 FX2LP_XmitHex2 (BYTE Variable)

This function calls the intermediate function FX2LPSerial_XmitHex1(BYTE b) with the upper nibble as input and then
the lower nibble as input to print the hex value of a variable of BYTE type. Following is the code snippet of the
FX2LP_XmitHex1() function:

if (b < 10)

 FX2LPSerial_XmitChar(b + '0') ;

else

 FX2LPSerial_XmitChar(b-10+'A');

http://www.cypress.com/
https://www.hilgraeve.com/hyperterminal-trial/
http://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit
http://www.cypress.com/?rID=38232

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 3

Following is the code snippet of the FX2LP_XmitHex2() function:

FX2LPSerial_XmitHex1((b >> 4) & 0x0f) ;

FX2LPSerial_XmitHex1(b & 0x0f) ;

4.2.4 FX2LP_XmitHex4 (WORD Variable)

This function calls the FX2LPSerial_XmitHex1(BYTE b) function with the upper BYTE as input and then the lower
BYTE as input to print the hex value of a variable of WORD type. Following is the code snippet of the
FX2LP_XmitHex4() function:

FX2LPSerial_XmitHex2((w >> 8) & 0xff) ;

FX2LPSerial_XmitHex2(w & 0xff) ;

5 Demonstration

This section uses the bulkloop example firmware available at C:\Cypress\USB\CY3684_EZ-
USB_FX2LP_DVK\1.0\Firmware\Bulkloop after installing the CY3684 EZ-USB FX2LP Development Kit (or CY3674
EZ-USB FX1 Development Kit for FX1) to demonstrate the debugging procedure discussed in this application note.

Modified bulkloop example code with the addition of relevant serial debug files and code is attached with this
application note.

5.1 Adding Files to the Target Code

1. Add the file FX2LPSerial.c to the target Keil project.

2. In the project window on the left side of the μVision IDE, select “Target 1.”

3. In the project menu, select “Options for Target ‘Target 1’.” The Options for Target ‘Target 1’ window appears.

4. Click the C51 tab. In the Include Paths text box, add the path of the FX2LPSerial.h header file (see Figure 1 and
Figure 2).

Figure 1. Selecting Options for Target ‘Target 1’ in Project Menu

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14317
http://www.cypress.com/?rID=14317

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 4

Figure 2. Options for Target ‘Target1’ Window

5. Compile once and make sure that the file FX2LPSerial.c and the header file location are included in the project.

5.2 Firmware Modifications

This section describes various serial functions, which are added in the above bulkloop.c example project, which is
present at C:\Cypress\USB\CY3684_EZ-USB_FX2LP_DVK\1.0\Firmware\Bulkloop after installing the CY3684 EZ-
USB FX2LP Development Kit (or CY3674 EZ-USB FX1 Development Kit for FX1) . The function FX2LPSerial_Init() is
called in the TD_Init() function in bulkloop.c. This ensures that the serial port is initialized and ready for use at any
point in the code execution. The other required functions are called wherever necessary as described in sections
below.

Please note that the modified Bulkloop example is included along with this application note.

5.2.1 TD_Ini t ()

The following code snippet initializes the serial port and prints a string to reflect the same. Then the value of
IFCONFIG is printed.

//CPUCS=((CPUCS & ~bmCLKSPD)|bmCLKSPD1); //Commented since the CPU frequency is

configured in FX2LPSerial_Init()

FX2LPSerial_Init();// Serial Debug Code Start

FX2LPSerial_XmitString("Serial port initialized\r\n");

// set the slave FIFO interface to 48MHz

IFCONFIG |= 0x40;

FX2LPSerial_XmitHex2(IFCONFIG); //Printing the value of IFCONFIG

FX2LPSerial_XmitString("\r\n");

5.2.2 TD_Poll ()

The following code snippet prints a string to indicate the transfer of a packet from EP2 to EP6 and the byte count of
the packet.

FX2LPSerial_XmitChar('P');

FX2LPSerial_XmitString("acket of Byte Count = ");

FX2LPSerial_XmitHex4(count);

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=14317

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 5

FX2LPSerial_XmitString(" being moved to EP6\r\n");

5.2.3 ISR_Ures()

The following code snippet prints a string from the USB Reset ISR to indicate that the bus reset ISR was triggered.

FX2LPSerial_XmitString("USB Reset ISR triggered\r\n");

After the required debugging code is added to the source, compile the project. The target .hex file is generated for
testing purposes.

Please note that if UART debug prints are added in USB ISRs, then it should be ensured that the UART prints will not
result in the violation of the USB specification timings. To be compliant with USB specification timings, keep the
messages as short as possible. Only flags can be set in ISR and UART messages can be printed in the main thread
(TD_Pol()) if UART messages are long. In this way, ISRs will not be blocked for longer time.

5.3 HyperTerminal Settings

1. On the Windows computer, choose Start > All Programs > Accessories > Communications and then click
HyperTerminal. As shown in Figure 3, a new connection opens and asks for the Connection Description in a
separate dialog box.

2. Enter the name of the connection and click OK.

Figure 3. Entering the Connection Name

3. In the Connect To window, go to the Connect using drop-down list and select the appropriate COM port (the
COM port to which the FX2LP DVK serial port is connected) and click OK, as shown in Figure 4.

http://www.cypress.com/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 6

Figure 4. Selecting the COM Port

4. In the Port Settings tab of the COM Properties window (Figure 5), change the Bits per second to “38400” and
the Flow control to “None,” click Apply, and then click OK.

Figure 5. Select the Serial Port Configuration

The HyperTerminal is now ready to print the debug messages received through the serial port.

http://www.cypress.com/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 7

5.4 Testing

The USB control center uses USB to download the compiled .hex file. Following are the steps to test the example
firmware:

1. Plug the CY3684 EZ-USB FX2LP DVK board into the computer using a USB cable and bind it to the driver
CyUSB.sys. Download and install EZ-USB FX3 SDK to launch USB Control Center.

2. Choose START >> All Programs >> Cypress >> EZ-USB FX3 SDK >> Cypress USBSuite >> Control Center

3. The application launches, and the window shown in Figure 6 appears.

Figure 6. USB Control Center Window

The USB interface dialog box

is to select USB device for

communication.

4. Click Program >> FX2 >> RAM, as shown in Figure 7 . In the pop-up window that appears, navigate to and select
bulkloop.hex, which is available in the Bulkloop folder in the attachment that comes with this application note.

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 8

Figure 7. Download the Firmware

As the code is executed by FX2LP, debug messages are printed to the HyperTerminal, as shown in Figure 8.

Figure 8. Debug Messages Printed to HyperTerminal

5. The debug messages can be captured in a separate text file instead of displaying them using the HyperTerminal.
To capture the debug messages in a text file, go to the Transfer tab and select “Capture Text,” as shown in
Figure 9.

http://www.cypress.com/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 9

Figure 9. Configuring HyperTerminal to Capture Text

6. Enter the path and name of the target file and click Start, as shown in Figure 10.

Figure 10. Entering File Name for Capture Text

The debug messages are captured in a separate .txt file and saved for analysis.

6 Summary

This application note explained the procedure for serial debugging, using the bulkloop example project as a
reference. The FX2LPSerial.c and FX2LPSerial.h files attached to this application note can be added to any other
project for debugging purposes.

http://www.cypress.com/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 10

A Cypress Design Resources
Cypress FX2LP design resources include datasheets, application notes, evaluation kits, reference designs, firmware
examples, and software tools. The resources are summarized in Table 1.

Table 1. FX2LP Resource Summary

Design Available Resources Where To Find Resources

Hardware Development Board – Schematic, Board files and
documentation

Development Kit (DVK) Schematic

Board files available with FX2LP DVK
installation

DVK User Guide

DVK Quick Start Guide

Hardware design guidelines including recommendations
for crystals, decoupling capacitors for power supplies and
PCB layout

Application note – AN15456

IBIS model http://www.cypress.com/?id=193&rtID=114

FX2LP Firmware Free version of Keil IDE (up to 4KB of code size) Available with FX2LPDVK installation

Firmware examples

Sync Slave FIFO firmware example in a complete design
with FPGA

Application note - AN61345

Firmware Debug Setting Up, Using, and Troubleshooting the Keil
Debugger Environment

Application note - AN42499

Code Example A comprehensive list of all USB high speed (FX2LP)
code examples

USB Hi-Speed Code Examples

Host PC Software USB2.0 driver – cyusb.sys Available with Suite USB installation. This
Suite USB installation file (.exe) is also
available with the FX2LP DVK installation.

Suite USB for Mac OS is also available.
Use FX3 SDK for Linux to get the host
application similar to Control Center for
Linux platform.

Host application examples – Control Center and
Streamer applications

GPIF Interface
Design

GPIF Designer Tool that enables you to design a GPIF
waveform and generate code to be integrated into
firmware

Available with GPIF Designer installation.
The GPIF Designer installation file (.exe)
is also available with the FX2LP DVK
installation.

Examples of popular GPIF implementations Application notes - AN57322 – Interfacing
SRAM with FX2LP over GPIF

AN66806 – EZ-USB
®
 FX2LP™ GPIF

Design Guide

AN63787 – EZ-USB
®

FX2LP™ GPIF and
Slave FIFO Configuration Examples using
8-bit Asynchronous Interface

Documentation on GPIF and instructions for using the
tool

GPIF Designer’s User Guide – available
with GPIF Designer Tool

http://www.cypress.com/
http://www.cypress.com/?id=193&rtID=76
http://www.cypress.com/?rID=14321
http://www.cypress.com/?docID=37298
http://www.cypress.com/?docID=37300
http://www.cypress.com/?rID=12956
http://www.cypress.com/?id=193&rtID=114
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=12960
http://www.cypress.com/documentation/code-examples/usb-hi-speed-code-examples
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=14448
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 11

Other Collateral

FX2LP Datasheet http://www.cypress.com/?rID=38801

FX2LP Technical Reference Manual http://www.cypress.com/?rID=38232

Application Notes http://www.cypress.com/?id=193&rtID=76

Reference Designs http://www.cypress.com/?id=193&rtID=201

Knowledge Base Articles http://www.cypress.com/?id=193&rtID=118

Material on USB 2.0 http://www.beyondlogic.org/usbnutshell/usb1.shtml

AN57294 - USB 101: An Introduction to Universal Serial Bus 2.0

Third-party Development Kits http://www.ztex.de/usb-fpga-1

http://www.opalkelly.com/products/xem6010/

http://www.cypress.com/
http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=38232
http://www.cypress.com/?id=193&rtID=76
http://www.cypress.com/?id=193&rtID=201
http://www.cypress.com/?id=193&rtID=118
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.cypress.com/?rID=39327
http://www.ztex.de/usb-fpga-1
http://www.opalkelly.com/products/xem6010/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 12

B Application Notes and Reference Designs

B.1 Application Notes

 AN65209 - Getting started with FX2LP™

AN65209 introduces you to the EZ-USB® FX2LP™ USB 2.0 device controller. This application note helps you
build a project for FX2LP and explore its various development tools, and then guides you to the appropriate
documentation to accelerate in-depth learning about FX2LP.

 AN15456 - Guide to Successful EZ-USB
®
 FX2LP™ and EZ-USB FX1™ Hardware Design and Debug

This application note identifies possible USB hardware design issues, especially when operating at high-speed. It
also facilitates the process of catching potential problems before building a board and assists in the debugging
when getting a board up and running.

 AN50963 - EZ-USB® FX1™/FX2LP™ Boot Options

This application note discusses the various methods to download firmware in to FX1/FX2LP.

 AN66806 - EZ-USB
®
 FX2LP™ GPIF Design Guide

This application note describes the steps necessary to develop GPIF waveforms using the GPIF Designer.

 AN61345 - Implementing an FX2LP™- FPGA Interface

This application note provides a sample project to interface an FX2LP with an FPGA. The interface implements
Hi-Speed USB connectivity for FPGA-based applications such as data acquisition, industrial control and
monitoring, and image processing. FX2LP acts in Slave-FIFO mode and the FPGA acts as the master. This
application note also gives a sample FX2LP firmware for Slave-FIFO implementation and a sample VHDL and
Verilog project for FPGA implementation.

 AN57322 - Interfacing SRAM with FX2LP over GPIF

This application note discusses how to connect the Cypress CY7C1399B SRAM to FX2LP using the General
Programmable Interface (GPIF). It describes how to create read and write waveforms using GPIF Designer. This
application note is also useful as a reference to connect FX2LP to other SRAMs.

 AN42499 - Setting Up, Using, and Troubleshooting the Keil Debugger Environment

This application note is a step-by-step beginner's guide to using the Keil Debugger. This guide covers the serial
cable connection from PC to SIO-1/0, the monitor code download, and required project settings. Additionally, it
gives guidelines to start and stop a debug session, set break points, step through code, and solve potential
problems.

 AN4053 - Streaming Data through Isochronous/Bulk Endpoints on EZ-USBR FX2 and EZUSB FX2LP

This application note provides background information for a streaming application using the EZ-USB FX2 or the
EZ-USB FX2LP part. It provides information on streaming data through BULK endpoints, ISOCHRONOUS
endpoints, and high bandwidth ISOCHRONOUS endpoints along with design issues to consider when using the
FX2/FX2LP in high-bandwidth applications.

 AN58069 - Implementing an 8-Bit Parallel MPEG2-TS Interface Using Slave FIFO Mode in FX2LP

This application note explains how to implement an 8-bit parallel MPEG2-TS interface using the Slave FIFO
mode. The example code uses the EZ-USB FX2LP at the receiver end and a data generator as the source for
the data stream. Hardware connections and example code are included.

 AN58170 - Code/Memory Banking Using EZ-USB

The EZ-USBFX2 family of chips contains an 8051 core. The 8051 core has 16-bit address lines and is able to
access 64KB of memory. However, some applications require more than 64KB. This application note describes
methods of overcoming this 64KB boundary.

 AN1193 - Using Timer Interrupt in Cypress EZ-USB FX2LP Based Applications

This application note helps EZ-USBR FX2LP firmware developers to use timer interrupts in their applications.

http://www.cypress.com/
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=12956
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=12937
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=12960
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=39714
http://www.cypress.com/?rID=40118
http://www.cypress.com/?rID=12919

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 13

 AN63787 - EZ-USB
®

FX2LP™ GPIF and Slave FIFO Configuration Examples using 8-bit Asynchronous Interface

This application note discusses how to configure the General Programmable Interface (GPIF) and slave FIFOs in
EZ-USB FX2LP in both manual mode and auto mode to implement an 8-bit asynchronous parallel interface. This
application note is tested with two FX2LP development kits connected back-to-back; the first one operating in
master mode and the second operating in slave mode.

 AN61244 - Firmware Optimization in EZ-USB

This application note describes firmware optimization methods in EZ-USB. Some of these methods are common
to any processor and some are specific to the 8051 core of EZ-USB FX2LP.

 AN74505 – EZ USB FX2LP - Developing USB Application on MAC OS X using LIBUSB

This application note describes a host application built on the MAC OS platform that uses libusb. The host
application (Cocoa application) communicates with the BULK IN and BULK OUT endpoints ofFX2LP, using the
interfaces provided by the APIs of libusb. This host application implements the transfer with devices that pass the
particular VID/PID (=0x04B4/0x1004) identification.

 AN58764 - Implementing a Virtual COM Port in FX2LP

This application note explains how to implement a virtual COM port device using the standard Windows driver in
FX2LP. This information helps to migrate from UART to USB.

 AN45471 - Vendor Command Design Guide for FX2LP

This application note demonstrates how to code USB vendor commands to perform specific product. In addition,
the note explains how to use the Cypress CyConsole utility to issue vendor commands.

B.2 Reference Designs

Several reference designs of FX2LP for popular applications are available. The reference designs include
demonstration source code, reference schematics, and a BOM, where appropriate, for the design.

The reference designs available on the Cypress website are:

 CY4661 - External USB Hard Disk Drives (HDD) with Fingerprint Authentication Security

The CY4661 reference design kit from Cypress and UPEK provides customers with a turnkey solution for an
external USB hard disk drive (HDD), with fingerprint authentication, and security to protect and authenticate data.
The reference design uses UPEK's Touch Strip Fingerprint Authentication Solution (TCS3 swipe fingerprint
sensor and TCD42 security ASIC).

 FX2LP DMB-T/H TV Dongle reference design

This reference design kit is based on the Cypress FX2LP and Legend Silicon’s chipset. A captured and
demodulated RF signal converted to an MPEG2 TS stream by the Legend Silicon chipset is sent to the PC
through an FX2LP.The PC plays these streams using a media player. This is a complete design, including all
required files.

http://www.cypress.com/
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=43047
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=40248
http://www.cypress.com/?rID=34485
http://www.cypress.com/?rID=14410
http://www.cypress.com/?rID=37775

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 14

Document History

Document Title: AN58009 - Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

Document Number: 001-58009

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2824643 PRKU 12/09/2009 New application note

*A 3167023 AASI 02/08/2011 Major content update

Name change

Added bulkloop example with debug prints to demonstrate the debugging
methodology.

*B 3841353 PRJI 12/14/2012 Updated to new template.

*C 4810700 MVTA 07/27/2015 Updated to new template.

Added Appendix A and Appendix B.

*D 5194845 MVTA 03/29/2016 Updated abstract

Added link to code examples

Updated template

Removed reference of CyConsole and SuiteUSB 3.4.7

Added reference of USB Control Center and EZ-USB FX3 SDK

Updated figures 6 and 7

*E 5688160 AESATMP8 04/19/2017 Updated logo and Copyright.

http://www.cypress.com/

Serial (UART) Port Debugging of EZ-USB
®
 FX1/FX2LP™ Firmware

www.cypress.com Document No. 001-58009 Rev. *E 15

 Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/about-us/sales-offices
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 Hardware Requirements
	3 Software Requirements
	4 Serial Debug Files
	4.1 FX2LPSerial.h
	4.2 FX2LPSerial.c
	4.2.1 FX2LPSerial_Init ()
	4.2.2 FX2LPSerial_XmitString (char *str)
	4.2.3 FX2LP_XmitHex2 (BYTE Variable)
	4.2.4 FX2LP_XmitHex4 (WORD Variable)

	5 Demonstration
	5.1 Adding Files to the Target Code
	5.2 Firmware Modifications
	5.2.1 TD_Init()
	5.2.2 TD_Poll()
	5.2.3 ISR_Ures()

	5.3 HyperTerminal Settings
	5.4 Testing

	6 Summary
	B.1 Application Notes
	B.2 Reference Designs

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

