BGA123L4 as Low Current Low Noise Amplifier for GNSS Applications

About this document

Scope and purpose

This application note describes Infineon’s GNSS MMIC: BGA123L4 as low current Low Noise Amplifier for GNSS applications (1550 – 1615 MHz) with 0402 components for matching.

1. The BGA123L4 is a Silicon Germanium Low Noise Amplifier supporting 1550 – 1615 MHz.
2. The target application is GNSS applications (1550 – 1615 MHz).
3. In this report, the performance of BGA123L4 is measured on a Rogers4003 board. This device is matched with 0402 size external components. Performance deviation, when matched with 0201 components, is also presented.
4. Key performance parameters at 1.8 V, 1575 MHz
 Noise figure = 0.75 dB
 Insertion gain = 18.3 dB
 Input return loss = 9.5 dB
 Output return loss = 14.8 dB
 Inband Input IP3 = -14.5 dBm
5. Key performance parameters at 1.2 V, 1575 MHz
 Noise figure = 0.80 dB
 Insertion gain = 18.0 dB
 Input return loss = 9.3 dB
 Output return loss = 13.8 dB
 Inband Input IP3 = -14.8 dBm
Introduction of Global Navigation Satellite Systems (GNSSs)

Table of Contents

About this document .. 1

Table of Contents .. 2

List of Tables .. 3

1 Introduction of Global Navigation Satellite Systems (GNSSs) .. 4
 1.1 Global Navigation Satellite Systems (GNSSs) .. 4
 1.2 Infineon Product Portfolio for GNSS Applications ... 4
 1.3 Key Features of GNSS Low Noise Amplifiers ... 5

2 BGA123L4 Overview .. 6
 2.1 Features ... 6
 2.2 Key Applications of BGA123L4 .. 6
 2.3 Description .. 7

3 Application Circuit and Performance Overview ... 8
 3.1 Summary of Measurement Results ... 8
 3.2 Schematics and Bill-of-Materials .. 10

4 Measurement Graphs .. 11

5 Evaluation Board and Layout Information .. 20

6 Authors ... 22

7 Reference .. 23

Revision History .. 23
List of Figures and Tables

List of Figures

1) The graphs are generated with the simulation program AWR Microwave Office®.

Figure 1 Application Diagram: Receiver Frontend of the Global Navigation Satellite System 4
Figure 2 BGA123L4 in TSLP-4-11 .. 6
Figure 3 Package and pin connections of BGA123L4 .. 7
Figure 4 Insertion Power Gain (Narrowband) of BGA123L4 for GNSS Applications 11
Figure 5 Insertion Power Gain (Wideband) of BGA123L4 for GNSS Applications .. 11
Figure 6 Noise Figure of BGA123L4 for GNSS Applications (SMA and Connector Losses Deembedded) 12
Figure 7 Input Return Loss of BGA123L4 for GNSS Applications ... 12
Figure 8 Input Return Loss (Smith Chart) of BGA123L4 for GNSS Applications .. 13
Figure 9 Output Return Loss of BGA123L4 for GNSS Applications ... 13
Figure 10 Output Return Loss (Smith Chart) of BGA123L4 for GNSS Applications 14
Figure 11 Reverse Isolation of BGA123L4 for GNSS Applications ... 14
Figure 12 Stability K-factor of BGA123L4 for GNSS Applications ... 15
Figure 13 Stability Mu1-factor of BGA123L4 for GNSS Applications ... 15
Figure 14 Stability Mu2-factor of BGA123L4 for GNSS Applications ... 16
Figure 15 Input 1dB Compression Point (1.2V) of BGA123L4 for GNSS Applications 16
Figure 16 Input 1dB Compression Point (1.8V) of BGA123L4 for GNSS Applications 17
Figure 17 Third-order Interception Point (1.2V) of BGA123L4 for GNSS Applications (Output referred) 17
Figure 18 Third-order Interception Point (1.8V) of BGA123L4 for GNSS Applications (Output referred) 18
Figure 19 Out-of-band Third-order Intermodulation (1.2V) of BGA123L4 for GNSS Applications (Output referred) .. 18
Figure 20 Out-of-band Third-order Intermodulation (1.8V) of BGA123L4 for GNSS Applications (Output referred) .. 19
Figure 21 Photo Picture of Evaluation Board (overview) .. 20
Figure 22 Photo Picture of Evaluation Board (detailed view) ... 20
Figure 23 PCB Layer Information ... 21

List of Tables

Table 1 Pin Assignment of BGA123L4 ... 7
Table 2 Mode Selection of BGA123L4 ... 7
Table 3 Electrical Characteristics at 1.8 V (at room temperature) ... 8
Table 4 Electrical Characteristics at 1.2 V (at room temperature) ... 9
Table 5 Schematics of the BGA123L4 Application Circuit .. 10
Table 6 Bill-of-Materials .. 10
1 Introduction of Global Navigation Satellite Systems (GNSSs)

1.1 Global Navigation Satellite Systems (GNSSs)

Global Navigation Satellite Systems (GNSSs) are among the fastest growing businesses in the electronic industry. Today, four GNSS systems are in operation: the United States GPS, the Russian GLobal Orbiting Navigation Satellite System (GLONASS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Union Galileo navigation system. Main market segments include the Personal Navigation Devices (PND), GNSS-enabled mobile phones and GNSS-enabled portable devices.

The main challenges for the growing GNSS-enabled mobile phone segment are to achieve high sensitivity and high immunity defined by government regulations against interference of cellular signals for safety and emergency reasons. This means GNSS signals must be received at very low power levels (down to less than -130 dBm) in mobile phones in the vicinity of co-existing high-power cellular signals.

The main challenges for the GNSS-enabled portable devices are to obtain a long battery operation time, and low Time-To-First Fix (TTFF) to quickly locate the device.

<table>
<thead>
<tr>
<th>System</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>1563 – 1587 MHz (L1), 1215 - 1240 MHz (L2), 1164 – 1189 MHz (L5)</td>
</tr>
<tr>
<td>Galileo</td>
<td>1559 – 1591 MHz (E1), 1259 -1299 MHz (E6), 1164 MHz – 1214 MHz (E5)</td>
</tr>
<tr>
<td>GLONASS</td>
<td>1598 - 1609 MHz (G1), 1237 -1254 MHz (G2), 1189 MHz – 1214 MHz (G3)</td>
</tr>
<tr>
<td>Beidou</td>
<td>1559 – 1591 MHz (B1), 1193 – 1221 MHz (B2), 1257 – 1281 MHz(B3)</td>
</tr>
</tbody>
</table>

Figure 1 Application Diagram: Receiver Frontend of the Global Navigation Satellite System

1.2 Infineon Product Portfolio for GNSS Applications

Infineon offers a complete product portfolio to all customers designing high-performance flexible RF frontend solutions for all GNSS systems:

- **Low Noise Amplifiers (LNAs):** Infineon offers a wide range of products such as high-performance Monolithic Microwave Integrated Circuits (MMICs) as well as cost effective and high-end RF transistors

- **Transient Voltage Suppression (TVS) Diodes:** Infineon devices can protect GNSS antennas reliably up to 20 kV
Infineon Technologies is among the market leaders in GNSS Low Noise Amplifiers (LNAs) for navigation applications. The GNSS MMIC LNA products offer low Noise Figure (NF), high gain and low power consumption. In addition they are designed with high out-of-band linearity performance to enhance interference immunity.

1.3 Key Features of GNSS Low Noise Amplifiers

Low Noise Figure & High Gain

The power levels of satellite signals received by a GPS/GNSS receiver are as low as -130 dBm. Such systems must be very sensitive. An external LNA with low NF and high gain is required to boost the sensitivity of the system and Time-To-First Fix (TTFF).

High robustness against coexistence of out-of-band jammer signals

In the presence of very weak GNSS satellite signals, there is no inband interference signal in the GNSS receiver frontends.

In case of mobile phone systems, GNSS signals coexist with strong jammer signals from other RF applications, e.g. 3G/4G, wireless LAN, etc. The above out-of-band jammer signals can mix to produce intermodulation products in the GNSS receiver frequency band. Compared with the received signal level from GNSS satellites, the resulted intermodulation products are significant interference, LNAs with high robustness against out-of-band interference signals are required.

Low Current Consumption

Power consumption is an important feature in many GNSS systems that are mainly battery-operated mobile devices. Infineon’s LNAs have an integrated power on/off feature which provides for low power consumption and increased stand-by time for GNSS handsets. Moreover, the low current consumption (e.g. 1.1 mA) makes Infineon’s LNAs suitable for portable devices such as GNSS enabled wearables and connected IoT devices.

Please visit www.infineon.com for more details on LNA products for navigation in mobile phones and portable devices.
2 BGA123L4 Overview

2.1 Features

- Operating frequencies: 1550 - 1615 MHz
- Ultra low current consumption: 1.1 mA
- Wide supply voltage range: 1.1 V to 3.6 V
- High insertion power gain: 18.2 dB
- Low noise figure: 0.75 dB
- 2 kV HBM ESD protection (including AI pin)
- Ultra small TSLP-4-11 leadless package (footprint: 0.7 x 0.7 x 0.31 mm³)
- RF output internally matched to 50 Ohm
- Only one external SMD component necessary
- Pb-free (RoHS complaint) package
- B7HF Silicon Germanium technology

2.2 Key Applications of BGA123L4

BGA123L4 is designed to enhance GNSS signal sensitivity especially in wearables and mobile cellular IoT devices. With 18.2 dB gain and only 0.75 dB noise figure it ensures high system sensitivity. The current needed is only 1.1 mA which means just 1.3 mW power consumption, which is critical to help to conserve batteries. The wide supply voltage range of 1.1 V to 3.6 V ensures flexible design and high compatibility. It supports all GNSS systems including GPS, GLONASS, Beidou and Galileo.
BGA123L4 Overview

2.3 Description

The BGA123L4 is an ultra low noise amplifier for Global Navigation Satellite Systems (GNSS) which covers all GNSS frequency bands from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 18.2 dB gain and 0.75 dB noise figure at a current consumption of only 1.1 mA in the application configuration described in Figure 4. The BGA123L4 is based upon Infineon Technologies’ B7HF Silicon Germanium technology. It operates from 1.1 V to 3.6 V supply voltage.

Figure 3 Package and pin connections of BGA123L4

Table 1 Pin Assignment of BGA123L4

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>DC supply</td>
</tr>
<tr>
<td>2</td>
<td>AO</td>
<td>LNA output</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>AI</td>
<td>LNA input</td>
</tr>
</tbody>
</table>

Table 2 Mode Selection of BGA123L4

To select the mode for BGA123L4, one option is to control the mode directly via the Vcc pin; an alternative option is to connect the Vcc pin to the GPIO port. Below table provides the voltage range required at the Vcc pin to set the device to ON mode or OFF mode.

<table>
<thead>
<tr>
<th>LNA Mode</th>
<th>ON/OFF Control Voltage at Vcc pin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>ON</td>
<td>1.1 V</td>
</tr>
<tr>
<td>OFF</td>
<td>0 V</td>
</tr>
</tbody>
</table>

Please visit the product page of BGA123L4 for more information.
3 Application Circuit and Performance Overview

In this chapter the performance of the application circuit, the schematic and bill-on-materials are presented.

Device: BGA123L4

Application: GNSS Applications

PCB Marking: GL05

EVB Order No.: AN551

3.1 Summary of Measurement Results

The performance of BGA123L4 for GNSS applications is summarized in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Comment/Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Freq</td>
<td>1550</td>
<td>1575</td>
<td>1615 MHz</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>Vcc</td>
<td>1.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>Icc</td>
<td>1.10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>18.2</td>
<td>18.3</td>
<td>18.3 dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>0.80</td>
<td>0.75</td>
<td>0.80 dB</td>
</tr>
<tr>
<td>LQW15 inductor for matching, Loss of input line of 0.08 dB is deembedded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>0.80</td>
<td>0.75</td>
<td>0.80 dB</td>
</tr>
<tr>
<td>LQP03T inductor for matching, loss of input line of 0.08 dB is deembedded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>9.2</td>
<td>9.5</td>
<td>9.7 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>ROut</td>
<td>12.6</td>
<td>14.8</td>
<td>15.1 dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>IRev</td>
<td>37.0</td>
<td>37.7</td>
<td>38.6 dB</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>IP1dB</td>
<td>-14.0</td>
<td>-14.1</td>
<td>-14.5 dB</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>OP1dB</td>
<td>3.2</td>
<td>3.2</td>
<td>2.8 dB</td>
</tr>
<tr>
<td>Input IP3</td>
<td>IIP3</td>
<td>-14.5</td>
<td>dBm</td>
<td>Power @ Input: -30 dBm f1 = 1575 MHz, f2 = 1576 MHz</td>
</tr>
<tr>
<td>Output IP3</td>
<td>OIP3</td>
<td>3.8</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Out-of-band IM3 input referred</td>
<td>Oob_IIM3</td>
<td>-68.5</td>
<td>dBm</td>
<td>Power @ Input: -25 dBm f1 =1712.7 MHz f2= 1850 MHz</td>
</tr>
<tr>
<td>Out-of-band IM3 output referred</td>
<td>Oob_OIM3</td>
<td>-50.2</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>>1</td>
<td>--</td>
<td>Measured up to 8 GHz</td>
</tr>
</tbody>
</table>
Table 4 Electrical Characteristics at 1.2 V (at room temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Comment/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Freq</td>
<td>1550</td>
<td>1575</td>
<td>1615 MHz</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>Vcc</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC Current</td>
<td>Icc</td>
<td>1.05</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>17.9</td>
<td>18.0</td>
<td>18.0 dB</td>
</tr>
<tr>
<td>Noise Figure(^1)[(^4)]</td>
<td>NF</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LQW15 inductor for matching, Loss of input line of 0.08 dB is deembedded(^1)[(^2)]</td>
</tr>
<tr>
<td>Noise Figure(^1)[(^2)][(^4)]</td>
<td>NF</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LQP03T inductor for matching, loss of input line of 0.08 dB is deembedded(^1)[(^2)]</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>9.0</td>
<td>9.3</td>
<td>9.5 dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>RLout</td>
<td>11.7</td>
<td>13.8</td>
<td>14.0 dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>IRev</td>
<td>37.5</td>
<td>37.7</td>
<td>38.5 dB</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>IP1dB</td>
<td>-16.8</td>
<td>-17.0</td>
<td>-17.5 dB</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>OP1dB</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.5 dB</td>
</tr>
<tr>
<td>Input IP3</td>
<td>IIP3</td>
<td>-14.8</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Power @ Input: -30 dBm f1 = 1575 MHz, f2 = 1576 MHz</td>
</tr>
<tr>
<td>Output IP3</td>
<td>OIP3</td>
<td>3.2</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Out-of-band Input IM3</td>
<td>Oob_IIM3</td>
<td>-64.3</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Power @ Input: -25 dBm f1 =1712.7 MHz f2= 1850 MHz</td>
</tr>
<tr>
<td>Out-of-band Output IM3</td>
<td>Oob_OIM3</td>
<td>-46.3</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>k</td>
<td>>1</td>
<td>--</td>
<td>Measured up to 8 GHz</td>
</tr>
</tbody>
</table>
3.2 Schematics and Bill-of-Materials

The schematic of BGA123L4 for GNSS applications is presented in Table 5 and its bill-of-materials is shown in Table 5.

![Schematic of BGA123L4](image)

Table 5 Schematics of the BGA123L4 Application Circuit

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>nF</td>
<td>0402/0201</td>
<td>Various</td>
<td>DC block</td>
</tr>
<tr>
<td>C2</td>
<td>>=1</td>
<td>nF</td>
<td>0402/0201</td>
<td>Various</td>
<td>RF bypass</td>
</tr>
<tr>
<td>L1</td>
<td>10</td>
<td>nH</td>
<td>0402/0201</td>
<td>Murata LQW15 / Murata LQP03TN</td>
<td>Input Matching</td>
</tr>
<tr>
<td>N1</td>
<td>BGA123L4</td>
<td></td>
<td></td>
<td>Infineon Technologies</td>
<td>SiGe LNA</td>
</tr>
</tbody>
</table>

Note: DC block function is NOT integrated at input of BGA123L4. The DC block might be realized with pre-filter in GNSS applications.

Note: The RF bypass capacitor C2 at the DC power supply pin filters out the power supply noise and stabilizes the DC supply. The RF bypass capacitor C2 is not necessary if a clean and stable DC supply can be ensured.
4 Measurement Graphs

Figure 4 Insertion Power Gain (Narrowband) of BGA123L4 for GNSS Applications

Figure 5 Insertion Power Gain (Wideband) of BGA123L4 for GNSS Applications
Figure 6 Noise Figure of BGA123L4 for GNSS Applications (SMA and Connector Losses Deembedded)

Figure 7 Input Return Loss of BGA123L4 for GNSS Applications
Measurement Graphs

Figure 8 Input Return Loss (Smith Chart) of BGA123L4 for GNSS Applications

Figure 9 Output Return Loss of BGA123L4 for GNSS Applications
Measurement Graphs

Figure 10 Output Return Loss (Smith Chart) of BGA123L4 for GNSS Applications

Figure 11 Reverse Isolation of BGA123L4 for GNSS Applications
BGA123L4 as Low Current Low Noise Amplifier for GNSS Applications

Measurement Graphs

Figure 12 Stability K-factor of BGA123L4 for GNSS Applications

Figure 13 Stability Mu1-factor of BGA123L4 for GNSS Applications
BGA123L4 as Low Current Low Noise Amplifier for GNSS Applications

Measurement Graphs

Figure 14 Stability Mu2-factor of BGA123L4 for GNSS Applications

Figure 15 Input 1dB Compression Point (1.2V) of BGA123L4 for GNSS Applications
Measurement Graphs

Figure 16 Input 1dB Compression Point (1.8V) of BGA123L4 for GNSS Applications

Figure 17 Third-order Interception Point (1.2V) of BGA123L4 for GNSS Applications (Output referred)
Measurement Graphs

Figure 18 Third-order Interception Point (1.8V) of BGA123L4 for GNSS Applications (Output referred)

Figure 19 Out-of-band Third-order Intermodulation (1.2V) of BGA123L4 for GNSS Applications (Output referred)
Figure 20 Out-of-band Third-order Intermodulation (1.8V) of BGA123L4 for GNSS Applications (Output referred)
5 Evaluation Board and Layout Information

In this application note, the following PCB is used:

PCB Marking: GL05 V1.0
PCB material: Rogers 4003
\(\varepsilon_r \) of PCB material: 3.6

Figure 21 Photo Picture of Evaluation Board (overview)

Figure 22 Photo Picture of Evaluation Board (detailed view)
Evaluation Board and Layout Information

Figure 23 PCB Layer Information
6 Authors

Xiang Li, Senior Engineer of Business Unit “Radio Frequency and Sensors”

Ines Ben Hmida, Working Student of Business Unit “Radio Frequency and Sensors”
7 Reference

Revision History

Major changes since the last revision Rev 1.0 2017-12-20

<table>
<thead>
<tr>
<th>Page or Reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,9,10</td>
<td>Added Noise Figure when matched with 0201 LQP03TN components</td>
</tr>
<tr>
<td>8,9,18,19</td>
<td>Added Out-of-band IM3 measurement results</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE
The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Trademarks of Infineon Technologies AG
µHVIC™, µPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolIDP™, CoolGaN™, COOLIr™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, Di-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EicElRIVER™, eupec™, FCOS™, GaNpowIR™, HETFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDriver™, LITIX™, MIPaQ™, ModSTACK™, my-d™, NovalithIC™, OPTiGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupiIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.