BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

About this document

Scope and purpose

This application note describes Infineon’s GNSS MMIC: BGA824N6 as a Low Noise Amplifier (LNA) for GPS L2/GLONASS G2/Galileo E6 bands (1215 to 1254 MHz) and GPS L5/GLONASS G3/Galileo E5 bands (1164 to 1214 MHz) applications. The performances with both 0201 inch and 0402 inch components for matching have been investigated.

1. The BGA824N6 is a silicon germanium LNA supporting 1550 to 1615 MHz.
2. The target applications are GPS L2/GLONASS G2/Galileo E6 bands (1215 to 1254 MHz) and GPS L5/GLONASS G3/Galileo E5 bands (1164 to 1214 MHz) applications.
3. In this report, the performance of BGA824N6 is measured on an FR4 board. Two external components are added at the LNA output side to retune the device to L2 and L5 bands. This device is matched with 0201 size or 0402 size external components.
4. Key performance parameters at 1.8 V, 1214 MHz:
 - Noise Figure = 0.90 dB (LQP03 inductor, 0201 inch components)
 - Noise Figure = 0.70 dB (LQW15 inductor, 0402 inch components)
 - Insertion gain = 17.6 dB
 - Input return loss = 17.4 dB
 - Output return loss = 18.0 dB
 - Input P1dB = -11.6 dBm
Application Note

BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Table of contents

- **About this document**
- **Table of contents**
- **List of figures**
- **List of tables**

1 Introduction of Global Navigation Satellite Systems (GNSSs)

1.1 Global Navigation Satellite Systems (GNSSs)

1.2 Lower L bands (1164 to 1254 MHz) for the GNSSs

1.3 Infineon product portfolio for GNSS applications

1.4 Key features of GNSS LNAs

2 BGA824N6 overview

2.1 Features

2.2 Key applications of BGA824N6

2.3 Description

3 Application circuit and performance overview

3.1 Summary of measurement results

3.2 Schematics and BOM

4 Measurement graphs

5 Evaluation board and layout information

6 Authors

7 References

8 Revision history
List of figures

Figure 1 Application diagram: receiver front-end of the GNSS with LNAs and filter .. 5
Figure 2 BGA824N6 in TSNP-6-2 ... 7
Figure 3 Package and pin connections of BGA824N6 ... 8
Figure 4 Schematics of the BGA824N6 application circuit ... 12
Figure 5 Insertion power gain (narrowband) of BGA824N6 for L2/G2 and L5/G3 applications 13
Figure 6 Insertion power gain (wideband) of BGA824N6 for L2/G2 and L5/G3 applications 13
Figure 7 NF of BGA824N6 for GPS L2, L5 and other Applications (incl. 0402 components and 0201 components) .. 14
Figure 8 Input return loss (narrowband) of BGA824N6 for GPS L2, L5 and other Applications 14
Figure 9 Input return loss (Smith chart) of BGA824N6 for GPS L2, L5 and other Applications 15
Figure 10 Output return loss (narrowband) of BGA824N6 for GPS L2, L5 and other Applications 15
Figure 11 Output return loss (Smith chart) of BGA824N6 for GPS L2, L5 and other Applications 16
Figure 12 Reverse isolation (narrowband) of BGA824N6 for GPS L2, L5 and other Applications 16
Figure 13 Stability K-factor of BGA824N6 for GPS L2, L5 and other Applications 17
Figure 14 Stability K-factor of BGA824N6 for GPS L2, L5 and other Applications 17
Figure 15 Input 1 dB compression point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications 18
Figure 16 Input 1 dB compression point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications 18
Figure 17 Third-order interception point (h1.8 V) of BGA824N6 for GPS L2, L5 and other Applications 19
Figure 18 Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications 19
Figure 19 Third-order interception point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications 20
Figure 20 Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications 20
Figure 21 Out-of-band Third-order interception point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications .. 21
Figure 22 Out-of-band Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications .. 21
Figure 23 Photo of evaluation board (overview) .. 22
Figure 24 Photo of evaluation board (detailed view) ... 22
Figure 25 PCB layer information .. 23

1 The graphs are generated with the simulation program AWR Microwave Office®.
List of tables

Table 1 Pin assignment of BGA824N6 ... 8
Table 2 Mode selection of BGA824N6 ... 8
Table 3 Electrical characteristics at 1.8 V (at room temperature) .. 9
Table 4 Electrical characteristics at 2.8 V (at room temperature) ... 11
Table 5 BOM .. 12
1 Introduction of Global Navigation Satellite Systems (GNSSs)

1.1 Global Navigation Satellite Systems (GNSSs)

GNSSs are among the fastest growing applications in the electronic industry. Today, four GNSSs are in operation: the United States’ GPS, the Russian Global Orbiting Navigation Satellite System (GLONASS), the Chinese BeiDou Navigation Satellite System (BDS) and the European Union Galileo navigation system. Among the above systems, BDS and Galileo are expected to be fully operational by 2020. Main market segments include Personal Navigation Devices (PNDs) and GNSS-enabled cell phones and wearables.

The main challenges for the growing GNSS-enabled cell phone market are to achieve high sensitivity and high immunity defined by government regulations against interference of cellular signals for safety and emergency reasons. This means GNSS signals must be received at very low power levels (e.g. down to -130 dBm) in cell phones in the vicinity of coexisting high-power cellular signals. In addition, cell phones must have low power consumption to ensure long battery usage time.

<table>
<thead>
<tr>
<th>System</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>1563 to 1587 MHz (L1), 1215 to 1240 MHz (L2), 1164 to 1189 MHz (L5)</td>
</tr>
<tr>
<td>Galileo</td>
<td>1559 to 1591 MHz (E1), 1259 to 1299 MHz (E6), 1164 to 1214 MHz (E5)</td>
</tr>
<tr>
<td>GLONASS</td>
<td>1598 to 1609 MHz (G1), 1237 to 1254 MHz (G2), 1189 to 1214 MHz (G3)</td>
</tr>
<tr>
<td>BeiDou</td>
<td>1559 to 1591 MHz (B1), 1193 to 1221 MHz (B2), 1257 to 1281 MHz (B3)</td>
</tr>
</tbody>
</table>

Figure 1 Application diagram: receiver front-end of the GNSS with LNAs and filter

1.2 Lower L bands (1164 to 1254 MHz) for the GNSSs

The GPS L5 band centers on 1176.45 MHz, and its frequency ranges from 1164 to 1189 MHz. It hosts a civilian safety-of-life signal, and is intended to provide a means of radio navigation secure and robust enough for life-critical applications, such as aircraft precision approach guidance. The Galileo E5 band ranges from 1164 to 1214 MHz. The GLONASS G3 band ranges from 1189 to 1214 MHz.

The GPS L2 band centers on 1227.6 MHz, and its frequency ranges from 1215 to 1240 MHz. The Galileo E6 band ranges from 1259 to 1299 MHz. The GLONASS G2 band ranges from 1237 to 1254 MHz.

1.3 Infineon product portfolio for GNSS applications

Infineon offers a complete product portfolio to all customers designing high-performance flexible RF front-end solutions for GNSSs:
BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Introduction of Global Navigation Satellite Systems (GNSSs)

- **LNAs:** Infineon offers a wide range of high-performance products such as Monolithic Microwave Integrated Circuits (MMICs) as well as discrete RF transistors.
- **Transient Voltage Suppression (TVS) diodes:** Infineon devices can protect GNSS antennas reliably up to 20 kV.

1.4 **Key features of GNSS LNAs**

Infineon’s GNSS MMIC LNA products offer the following features:

Low Noise Figure (NF) and high gain

The power levels of satellite signals received by a GPS/GNSS receiver are as low as -130 dBm. Such systems must be very sensitive. An external LNA with low NF and high gain is required to boost the sensitivity of the system, and reduce the Time To First Fix (TTFF).

High linearity

In cell phones, GNSS signals often coexist with strong interfering cellular signals. The cellular signals can mix to produce intermodulation products in the GNSS receiver frequency band. To enhance interference immunity of the GNNSs, LNAs with high linearity characteristics are required. Some Infineon GNSS LNAs are designed with high in-band and out-of-band linearity performance to enhance interference immunity.

Low current consumption

Power consumption is an important feature in many GNSSs that are mainly battery operated. Infineon’s LNAs have an integrated power on/off feature which provides for low power consumption and increased stand-by time for GNSS handsets. Moreover, the low current consumption (e.g. 1.05 mA) makes Infineon’s LNAs suitable for portable technology such as GNSS-enabled wearable devices.

Please visit www.infineon.com for more details on LNA products for navigation in cell phones and portable devices.
2.1 Features

- High insertion power gain: 17.0 dB
- Out-of-band input third-order intercept point: +7 dBm
- Input 1 dB compression point: -6 dBm
- Low NF: 0.55 dB
- Low current consumption: 3.8 mA
- Operating frequencies: 1550 to 1615 MHz
- Supply voltage: 1.5 to 3.3 V
- Digital on/off switch (1 V logic high level)
- Ultra-small TSNP-6-2 leadless package (footprint: 0.7 × 1.1 mm²)
- B7HF silicon germanium technology
- RF output internally matched to 50 Ω
- Only one external SMD component necessary
- 2 kV HBM ESD protection (including AI-pin)
- Pb-free (RoHS compliant) package

2.2 Key applications of BGA824N6

Ideal for all GNSSs, such as GPS, GLONASS, BeiDou, Galileo, IRNSS, QZSS and others.
BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

BGA824N6 overview

2.3 Description

The BGA824N6 is a front-end LNA for GNSSs from 1550 to 1615 MHz, such as GPS, GLONASS, BeiDou, Galileo, IRNSS, QZSS and others. The LNA provides 17.0 dB gain and 0.55 dB NF at a current consumption of 3.8 mA only in the application configuration described in Chapter 3. The BGA824N6 is based on Infineon Technologies’ B7HF silicon germanium technology. It operates from 1.5 to 3.6 V supply voltage.

![Figure 3 Package and pin connections of BGA824N6](image)

Table 1 Pin assignment of BGA824N6

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Vcc</td>
<td>DC supply</td>
</tr>
<tr>
<td>3</td>
<td>AO</td>
<td>LNA output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>AI</td>
<td>LNA input</td>
</tr>
<tr>
<td>6</td>
<td>PON</td>
<td>Power on control</td>
</tr>
</tbody>
</table>

Table 2 Mode selection of BGA824N6

<table>
<thead>
<tr>
<th>LNA mode</th>
<th>Symbol</th>
<th>ON/OFF control voltage at PON pin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>ON</td>
<td>PON, on</td>
<td>0.6</td>
</tr>
<tr>
<td>OFF</td>
<td>PON, off</td>
<td>0</td>
</tr>
</tbody>
</table>

Please visit the product page of BGA824N6 for more information.
3 Application circuit and performance overview

In this chapter the performance of the application circuit, the schematic and Bill of Materials (BOM) are presented.

Device: BGA824N6

Application: GPS L2 / L5 band and other Lower L band applications

PCB marking: 161214

EVB order no.: AN542

3.1 Summary of measurement results

The performance of BGA824N6 for 1164 MHz – 1254 MHz is summarized in the following table. The performance is measured based on 0201 inch size components for matching, unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Unit</th>
<th>Comment/Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Freq</td>
<td>1164</td>
<td>1214</td>
<td>1254</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>DC voltage</td>
<td>V_{CC}</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC current</td>
<td>I_{CC}</td>
<td>4.1</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>17.4</td>
<td>17.6</td>
<td>17.3</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Noise Figure¹</td>
<td>NF</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>dB</td>
<td>Loss of input line of 0.1 dB is de-embedded, ¹LQP03TN 0201 inch inductor for matching</td>
</tr>
<tr>
<td>Noise Figure²</td>
<td>NF</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>dB</td>
<td>Loss of input line of 0.1 dB is de-embedded, ²LQW15 0402 inch inductor for matching</td>
</tr>
<tr>
<td>Input return loss</td>
<td>R_{lin}</td>
<td>11.3</td>
<td>17.4</td>
<td>24.9</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output return loss</td>
<td>R_{out}</td>
<td>15.3</td>
<td>18.1</td>
<td>12.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>I_{Rev}</td>
<td>26.3</td>
<td>25.5</td>
<td>25.4</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input P1dB</td>
<td>I_{P1dB}</td>
<td>-12.8</td>
<td>-11.6</td>
<td>-10.6</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Output P1dB</td>
<td>O_{P1dB}</td>
<td>3.6</td>
<td>5</td>
<td>5.7</td>
<td>dBm</td>
<td>Power at input: -30 dBm f1 = 1176.5 MHz, f2 = 1177.5 MHz</td>
</tr>
<tr>
<td>Input IP3</td>
<td>I_{IP3}</td>
<td>-6.3</td>
<td>-5.2</td>
<td></td>
<td>dBm</td>
<td>Power at input: -25 dBm f1 = 1850 MHz, f2 = 2485 MHz</td>
</tr>
<tr>
<td>Output IP3</td>
<td>O_{IP3}</td>
<td>11.2</td>
<td>12.3</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Out-of-band IM3 input</td>
<td>Oob IIM3</td>
<td>-86.5</td>
<td></td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
</tbody>
</table>
Application Note

BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Application circuit and performance overview

Table 3 Electrical characteristics at 1.8 V (at room temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Comment/Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-band IM3 input referred</td>
<td>Oob IIM3</td>
<td>-68.9</td>
<td>dBm</td>
<td>measured at 1215 MHz</td>
</tr>
<tr>
<td>Stability</td>
<td>K</td>
<td>> 1</td>
<td>–</td>
<td>Measured up to 8 GHz</td>
</tr>
</tbody>
</table>
Table 4 Electrical characteristics at 2.8 V (at room temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Unit</th>
<th>Comment/Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Freq</td>
<td>1164</td>
<td>1214</td>
<td>1254</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>DC voltage</td>
<td>V\text{CC}</td>
<td>2.8</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC current</td>
<td>I\text{CC}</td>
<td>4.2</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>G</td>
<td>17.4</td>
<td>17.6</td>
<td>17.4</td>
<td>dB</td>
<td>Loss of input line of 0.1 dB is de-embedded,(^1)\text{LQP03TN 0201} inductor for matching</td>
</tr>
<tr>
<td>Noise Figure(^1)</td>
<td>NF</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>dB</td>
<td>Loss of input line of 0.1 dB is de-embedded,(^1)\text{LQP03TN 0201} inductor for matching</td>
</tr>
<tr>
<td>Noise Figure(^2)</td>
<td>NF</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>dB</td>
<td>Loss of input line of 0.1 dB is de-embedded,(^2)\text{LQW15 0402} inductor for matching</td>
</tr>
<tr>
<td>Input return loss</td>
<td>RL\text{in}</td>
<td>11.6</td>
<td>17.8</td>
<td>26.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output return loss</td>
<td>RL\text{out}</td>
<td>14.3</td>
<td>17.8</td>
<td>12.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>I\text{Rev}</td>
<td>26.8</td>
<td>26.0</td>
<td>25.8</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input P1dB</td>
<td>I\text{P1dB}</td>
<td>-10.3</td>
<td>-9.1</td>
<td>-8.1</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Output P1dB</td>
<td>O\text{P1dB}</td>
<td>6.1</td>
<td>7.5</td>
<td>8.3</td>
<td>dBm</td>
<td>Power at input: -30 dBm f(_1) = 1176.5 MHz, f(_2) = 1177.5 MHz f(_1) = 1227.6 MHz, f(_2) = 1228.6 MHz</td>
</tr>
<tr>
<td>Input IP3</td>
<td>I\text{IP3}</td>
<td>-5.8</td>
<td>-4.9</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Output IP3</td>
<td>O\text{IP3}</td>
<td>11.7</td>
<td>12.6</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Out-of-band IM3 input referred</td>
<td>Oob IIM3</td>
<td>-86.6</td>
<td></td>
<td></td>
<td>dBm</td>
<td>Power at input: -25 dBm f(_1) = 1850 MHz, f(_2) = 2485 MHz, measured at 1215 MHz</td>
</tr>
<tr>
<td>Out-of-band IM3 output referred</td>
<td>Oob OIM3</td>
<td>-69.0</td>
<td></td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>K</td>
<td>> 1</td>
<td></td>
<td></td>
<td>–</td>
<td>Measured up to 8 GHz</td>
</tr>
</tbody>
</table>
3.2 Schematics and BOM

The schematic of BGA824N6 for GNSS band L2/G2/E6/L5/G3/E5 applications is presented in Figure 4, and its BOM is shown in Table 5.

![Schematics of the BGA824N6 application circuit](image)

Table 5 BOM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>>= 1</td>
<td>nF</td>
<td>0201</td>
<td>Various</td>
<td>DC block</td>
</tr>
<tr>
<td>C2</td>
<td>>= 1</td>
<td>nF</td>
<td>0201</td>
<td>Various</td>
<td>RF bypass</td>
</tr>
<tr>
<td>C3</td>
<td>3.9</td>
<td>pF</td>
<td>0201 (0402)</td>
<td>Various</td>
<td>Output matching</td>
</tr>
<tr>
<td>L1</td>
<td>12</td>
<td>nH</td>
<td>0201 (0402)</td>
<td>Murata LQP03TN Murata LQW15</td>
<td>Input matching</td>
</tr>
<tr>
<td>L2</td>
<td>3.9</td>
<td>nH</td>
<td>0201 (0402)</td>
<td>Murata LQP03TN Murata LQW15</td>
<td>Output matching</td>
</tr>
<tr>
<td>N1</td>
<td>BGA824N6</td>
<td></td>
<td>TSNP-6-2</td>
<td>Infineon Technologies</td>
<td>SiGe LNA</td>
</tr>
</tbody>
</table>

Note:
1) DC block function is NOT integrated at the input of BGA824N6. The DC block capacitor C1 is not necessary if the DC block function on the RF input line can be ensured by the previous stage.

2) The RF bypass capacitor C2 at the DC power supply pin filters out the power supply noise and stabilizes the DC supply. The RF bypass capacitor C2 is not necessary if a clean and stable DC supply can be ensured.

3) for comparison purposes, the impact of using 0402 inch high Q Murata inductor and 0402 inch capacitors for matching is also investigated; please refer to Tables 3 and 4 for the performance results.
4 Measurement graphs

Figure 5 Insertion power gain (narrowband) of BGA824N6 for L2/G2 and L5/G3 applications

Figure 6 Insertion power gain (wideband) of BGA824N6 for L2/G2 and L5/G3 applications
Figure 7 NF of BGA824N6 for GPS L2, L5 and other Applications (incl. 0402 components and 0201 components)

Figure 8 Input return loss (narrowband) of BGA824N6 for GPS L2, L5 and other Applications
BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Measurement graphs

Figure 9 Input return loss (Smith chart) of BGA824N6 for GPS L2, L5 and other Applications

Figure 10 Output return loss (narrowband) of BGA824N6 for GPS L2, L5 and other Applications
Measurement graphs

Figure 11 Output return loss (Smith chart) of BGA824N6 for GPS L2, L5 and other Applications

Figure 12 Reverse isolation (narrowband) of BGA824N6 for GPS L2, L5 and other Applications
BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Measurement graphs

Figure 13 Stability K-factor of BGA824N6 for GPS L2, L5 and other Applications

Figure 14 Stability Mu factors of BGA824N6 for GPS L2, L5 and other Applications
Measurement graphs

Figure 15 Input 1 dB compression point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications

Figure 16 Input 1 dB compression point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications
Figure 17 Third-order interception point (h1.8 V) of BGA824N6 for GPS L2, L5 and other Applications

Figure 18 Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications
Measurement graphs

Figure 19 Third-order interception point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications

Figure 20 Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications
BGA824N6 as Low Noise Amplifier for GPS L2 / GPS L5 and other Lower L band GNSS Applications

Measurement graphs

Figure 21 Out-of-band Third-order interception point (1.8 V) of BGA824N6 for GPS L2, L5 and other Applications

Figure 22 Out-of-band Third-order interception point (2.8 V) of BGA824N6 for GPS L2, L5 and other Applications
5 Evaluation board and layout information

In this application note, the following PCB is used:

PCB marking: 161214
PCB material: FR4
\(\varepsilon_r \) of PCB material: 4.8

Figure 23 Photo of evaluation board (overview)

Figure 24 Photo of evaluation board (detailed view)
Evaluation board and layout information

Figure 25 PCB layer information

Copper 35 µm
FR4, 0.2 mm
FR4, 0.8 mm
Vias
6 Authors

Xiang Li, Senior Engineer of Business Unit “Radio Frequency and Sensors”

Ines Ben Hmida, Working Student of Business Unit “Radio Frequency and Sensors”
References

Revision history

Major changes since the last revision, Rev. 1.1 2018-10-02

<table>
<thead>
<tr>
<th>Page or reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 8, 9,10,11</td>
<td>Added the performance data with 0402 size LQW15 inductors for matching, updated out-of-band IM3 values</td>
</tr>
<tr>
<td>9,11</td>
<td>Corrected the SMA and line loss, and the NF values</td>
</tr>
<tr>
<td>12</td>
<td>Updated BOM to include 0402 size components</td>
</tr>
<tr>
<td>14</td>
<td>Updated noise figure graph</td>
</tr>
<tr>
<td>21</td>
<td>Updated out-of-band IM3 graph</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.