

www.cypress.com Document No. 001-52705 Rev. *K 1

AN52705

PSoC® 3 and PSoC 5LP - Getting Started with DMA

 Authors: Anu M D, Lakshmi Natarajan

 Associated Project: Yes

 Associated Part Families: All PSoC® 3 and PSoC 5LP parts

 Software Version: PSoC® Creator™ 3.0 SP1 and higher

 Related Application Notes: AN61102, AN84810

AN52705 provides an introduction to direct memory access (DMA) in PSoC® 3 and PSoC 5LP. PSoC DMA can transfer
data between on-chip peripherals and memory with no CPU intervention. The application note illustrates how to configure
the DMA for simple data transfers, including peripheral to memory, memory to peripheral, peripheral to peripheral and
memory to memory, using example projects.

Contents

1 Introduction .. 1
2 Basic Concepts of DMA ... 2
3 DMA Configuration .. 3

3.1 Channel Configuration .. 3
3.2 TD Configuration ... 4

4 DMA component overview ... 5
4.1 Hardware Connections of DMA component 5

5 Firmware Configuration of DMA 6
6 Example 1: Peripheral-to-Peripheral Transfer 7

6.1 Example 1 DMA Configuration 8
6.2 Example 1 Project Files 8
6.3 Example 1 DMA Configuration Code 9

7 Example 2: Peripheral-to-Memory Transfer 10
7.1 Example 2 DMA Configuration 11
7.2 Example 2 Project Files 12

8 Example 3: Memory-to-Peripheral Transfer 12
8.1 Example 3 DMA Configuration 13
8.2 Example 3 Project Files 14

9 Example 4: Memory-to-Memory Transfer 14
9.1 Example 4 DMA Configuration 15
9.2 Example 4 Project Files 16

10 Example 5: TD Chaining .. 16

10.1 Example 5 DMA Configuration 17
10.2 Example 5 Project Files 17

11 Summary ... 18
12 About the Author ... 18
Appendix A. DMA Configuration Steps 19

A.1 Other Important DMA API Functions 21
Appendix B. DMA Wizard Configuration 22
Appendix C. Setting DMA Channel Priority 25
Appendix D. Example Projects – Test Setup 26

D.1 Example 1: Peripheral-to-Peripheral
Transfer – Eg1_ADC_DMA_DAC 26

D.2 Example 2: Peripheral-to-Memory
Transfer – Eg2_ADC_DMA_Mem 26

D.3 Example 3: Memory-to-Peripheral
Transfer – Eg3_Mem_DMA_DAC 27

D.4 Example 4: Memory-to-Memory
Transfer – Eg4_Mem_DMA_Mem 27

D.5 Example 5: TD Chaining–
Eg5_TD_Chaining... 28

Appendix E. Frequently Asked Questions 30
Worldwide Sales and Design Support 32

1 Introduction

The DMA controller (DMAC) in PSoC 3 and PSoC 5LP can transfer data from a source to a destination with no CPU
intervention. This allows the CPU to handle other tasks while the DMA does data transfers, thereby achieving a
‘multiprocessing’ environment.

The PSoC DMA Controller (DMAC) is highly flexible – it can seamlessly transfer data between memory and on chip
peripherals including ADCs, DACs, Filter, USB, UART, and SPI. There are 24 independent DMA channels.

This application note describes how to configure the DMA for simple data transfers. It includes projects that show
several different types of DMA transfers:

http://www.cypress.com/
http://www.cypress.com/?rID=44335
http://www.cypress.com/?rID=82680

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 2

▪ Peripheral-to-Memory

▪ Memory-to-Peripheral

▪ Peripheral-to-Peripheral

▪ Memory-to-Memory

This application note assumes that you are familiar with developing applications using PSoC Creator for PSoC 3 or
PSoC 5LP. If you are new to PSoC 3 or PSoC 5LP, introductions can be found in AN54181, Getting Started with
PSoC 3 and AN77759, Getting Started with PSoC 5. Advanced DMA topics are documented in AN84810. If you are
new to PSoC Creator, see the PSoC Creator home page.

2 Basic Concepts of DMA

The DMAC in PSoC 3 and PSoC 5LP is a part of a central hub called the Peripheral HUB (PHUB) that connects on-
chip peripherals, as Figure 1 shows. The DMAC is one of the two PHUB bus masters.

Figure 1. Peripheral HUB
S

p
o

k
e

 0

32 bit 32 bit

16 bit 16 bit

16 bit 16 bit

32 bit 16 bit

Spoke

Arbitration
S

p
o

k
e

 6

S
p

o
k

e
 4

S
p

o
k

e
 2

S
p

o
k

e
 3

S
p

o
k

e
 1

S
p

o
k

e
 7

S
p

o
k

e
 5

IO Interface

External

memory

interface

(EMIF)

ADCs

DACs

Digital filter

block (DFB)

Univarsal

Digital Blocks

(UDB)

CAN

Fixed

Function I2C

Fixed

Function

Timers

USB

System

resources

EEPROMSRAM

CPU

DMAC

PHUB

Other Analog

Peripherals

Univarsal

Digital Blocks

(UDB)

The PHUB has eight data buses that are called spokes. Each spoke connects the CPU and DMAC to one or more
peripherals. Spokes can have widths of either 16 bits or 32 bits. Peripherals attached to a spoke can have widths of 8
bits, 16 bits, or 32 bits.

The data width of a peripheral is usually less than or equal to the data width of the spoke to which it is attached. If a
peripheral data width is greater than that of the spoke attached to it, the PHUB can transact with the peripheral at the
width of the spoke.

The PHUB has two bus masters, the CPU and the DMAC. The CPU and the DMAC can access different PHUB spokes
at the same time. If the CPU and DMAC try to access the same spoke at the same time, bus arbitration occurs. See
the PSoC 3 and PSoC 5LP Technical Reference Manuals for details.

Each of the 24 DMA channels can independently transfer data. Each channel has a Transaction Descriptor (TD) chain,
as Figure 2 shows. The TD contains information such as source address, destination address, transfer count, and the
next TD in the chain. There can be as many as 128 TDs. The combination of channel and TD describes the complete
DMA transfer.

http://www.cypress.com/
http://www.cypress.com/index.cfm?rID=39157
http://www.cypress.com/index.cfm?rID=39157
http://www.cypress.com/index.cfm?rID=60890
http://www.cypress.com/?rID=82680
http://www.cypress.com/?id=2494
http://www.cypress.com/?rID=35180

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 3

Figure 2. DMA Channel

DMA Request

Signal

DMA done signal -

typically tied to interrupt

Source Read Write

DRQ

TD

Pointer

Source Destination
Transfer

Count
Next TD

Destination

NRQ

TD0

Source Destination
Transfer

Count
Next TD

TD1

DMA Channel

Each DMA channel has a separate DMA request input that initiates a transaction. A DMA request can be initiated by
the CPU or by a peripheral. When a DMA request is received, the DMAC accesses the spokes attached to the source
and destination and moves data as configured in the channel and the associated TD.

3 DMA Configuration

A DMA transfer is configured using channel and TD configuration registers. Figure 3 shows the channel and the TD
configuration parameters.

Figure 3. DMA Configuration

Channel

Configuration

Destination Address

(Upper 16 bits)

Source Address

(Upper 16 bits)

Burst Count

(1-127)

Request per Burst

(TRUE or FALSE)

First TD of Channel

Preserve TD

(TRUE or FALSE)

TD

Configuration

Destination Address

(Lower 16 bits)

Source Address

(Lower 16 bits)

Transfer Count

(0 to 4095)

TD Property

Next TD

3.1 Channel Configuration

DMA channel configuration parameters are explained as follows:

▪ Upper Source Address (16 bits)

The upper 16 bits of the 32-bit source address is configured in channel configuration register

▪ Upper Destination Address (16 bits)

The upper 16 bits of the 32-bit destination address is configured in this channel configuration register

▪ Burst Count (1 to 127)

Defines the number of bytes the DMA channel must move from the source to destination before it releases the
spoke. The DMAC acquires the spoke, transfers the specified number of bytes from the source to the destination
and then releases the spoke. For the next burst transfer, it re-acquires the spoke.

Limit burst count for intra spoke DMA transfers to less than or equal to16.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 4

▪ Request Per Burst (0 or 1)

When multiple burst transfers are required to finish the DMA data transfer, this bit determines the nature of the
bursts.

0: All subsequent bursts after the first burst are automatically done without a separate DMA request. Only the first
burst transfer must have a DMA request.

1: Every burst transfer requires a separate request.

▪ Initial TD

Defines the first TD associated with the channel. The pointer to the first TD is stored in channel configuration
memory. Subsequent TD pointers are stored in TD configuration memory, similar to a linked list.

▪ Preserve TD (0 or 1)

Defines whether to save the original TD configuration for re-use, for subsequent DMA transfers. Typically TD
configurations are preserved.

0: Do not preserve the TD configuration.

1: Preserve the TD configuration.

If TDs are preserved, the channel uses a separate TD memory (corresponding to the channel number) to track the
ongoing transaction; otherwise the original TD configuration registers are used as working registers to track the
ongoing transaction.

3.2 TD Configuration

TD configuration parameters are explained below:

▪ Lower Source Address (16-bit)

The lower 16 bits of the 32-bit source address configured in TD configuration registers

▪ Lower Destination Address (16-bit):

The lower 16-bits of the 32-bit destination address

▪ Transfer Count (0 to 4095 bytes)

The total number of bytes to be transferred from the source to the destination.

The transfer count is used along with the burst count parameter. For example, if you want to move 50
2-byte words of data from a 16-bit peripheral to a memory buffer, the burst count is set to 2 and transfer count is
set to 100.

▪ Next TD

The next TD, similar to a linked list

▪ TD Properties

Table 1 shows the TD properties defined by the bit fields in the TD property configuration register.

Table 1. TD Properties

Property Description

Increment Source Address If this bit is set, the source address is incremented as the DMA transaction proceeds.

Increment Destination Address If this bit is set, the destination address is incremented as the DMA transaction proceeds

Swap Enable If set, DMA swaps the data bytes while it moves data from the source to destination.

Swap Size Defines the size of the swap performed, if Swap Enable is set.

0: Every 2 bytes are endian swapped during the DMA transfer.

1: Every 4 bytes are endian swapped during the DMA transfer

Auto Execute Next TD 0: The next TD in the chain is executed only after the next DMA request.

1: The next TD in the chain is automatically executed after the current TD transfer is finished.

DMA Completion Event If set, generates a DMA “done signal” after the data transfer is finished. This is typically used
to create an interrupt after the transfer is finished.

Enable TD termination If set, the ongoing transaction can be terminated using hardware signal

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 5

The PSoC 3 Keil Compiler uses big endian format to store 16-bit and 32-bit variables. But the PSoC 3 peripheral
registers use little endian format. For this reason, the DMA must be configured to swap bytes when it moves multi-byte
data between the peripheral registers and memory in PSoC 3. This is not required for PSoC 5LP as both peripherals
and memory uses the same endian format.

Now let us see how to configure the DMA using PSoC Creator.

4 DMA component overview

Figure 4 shows the DMA channel component in PSoC Creator. This component can be found under the Systems tab
in the Component Catalog.

Figure 4. DMA Channel Component

Optional

Terminals

The DMA channel component and an associated API are used to configure the DMA to transfer data.

4.1 Hardware Connections of DMA component

You can set the following parameters in the component configuration window as Figure 5 shows.

Figure 5. DMA component Configuration

Hardware Request (drq): This setting defines the type of signal (rising edge/level) used to trigger the DMA channel.
Any selection for this parameter except "Disabled" adds a drq terminal to the component. The drq can be connected to
any hardware signal, to trigger the DMA channel.

Without the drq terminal, the DMA transaction is triggered only by the CPU.

When this parameter is set to “derived”, the DMA trigger type - edge/level is determined from the source of the DMA
trigger. For more information, see the DMA component datasheet.

Hardware Termination (trq): When this option is set to true, another input terminal (trq) is displayed in the component.
If TD termination is enabled, a rising edge on this terminal stops an ongoing DMA transaction. Note that trq terminates
a TD chain only if there is an ongoing DMA burst transaction. Refer to the component datasheet for more details.

Transfer complete (nrq): In order to indicate that the DMA transfer is finished, the TD can be configured to create a
pulse of width 2 bus clocks at the NRQ terminal of the DMA channel, when the transfer is finished. The nrq terminal
can be connected to an interrupt, or to another component for further actions.

Set the TD properties to define whether or not to generate a signal on the nrq terminal, and whether or not to enable
TD termination using trq.

http://www.cypress.com/
http://www.cypress.com/?rID=46450

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 6

5 Firmware Configuration of DMA

The DMA component generates a source file and corresponding header file for each DMA instance during the project
build process. For example, if there is a DMA component instance in your design that has the name DMA_1, then the
files - DMA_1_dma.c and DMA_1_dma.h are created during the build process. These files include the “DmaInitialize”
API that is used to initialize the DMA channel. Other channel and TD configuration functions are included in CyDmac.c
and CyDmac.h files in the Generated Source folder.

Following are the firmware configuration steps for DMA:

1. Start the DMA channel

Channel_Handle = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST,

 HI16(Source Address), HI16(Destination

Address))

2. Create an instance of a TD

TD_Handle = CyDmaTdAllocate();

3. Set the TD configuration

CyDmaTdSetConfiguration(TD_Handle,Transfer_Count,Next_TD,TD_Property);

4. Set the TD address

CyDmaTdSetAddress(TD_Handle, LO16(Source Address), LO16(Destination Address))

5. Set the channel’s initial TD

CyDmaChSetInitialTd(Channel_Handle, TD_Handle)

6. Enable the DMA channel

CyDmaChEnable(Channel_Handle, preserve_TD)

The above firmware steps are detailed in DMA Configuration Steps on page 19. A DMA wizard can be used to
automatically generate the code to configure the DMA channel; see DMA Wizard Configuration on page 22 for more
details.

Note that the DMA wizard supports DMA transactions between only a limited set of PSoC peripherals. If the DMA
wizard does not support a peripheral, you must manually configure the DMA channel using the functions detailed in
Appendix A.

Following are a set of four examples that show in detail how to do DMA transfers between memory and peripherals. A
fifth example shows how to build a multiple-TD chain.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 7

6 Example 1: Peripheral-to-Peripheral Transfer

This example shows how to use DMA to do a simple peripheral-to-peripheral transfer, that is, from an ADC data out
register to a DAC data input register as Figure 6.

Figure 6. Block Diagram, Peripheral-to-Peripheral Transfer

As Figure 7 shows, the ADC is configured in 8-bit, single-ended mode to match the data format of the VDAC, which is
a single-ended 8-bit voltage DAC. The hardware request (DRQ) of the DMA channel is enabled and connected to the
ADC EoC signal so that ADC can make a request for data transfers whenever an ADC result is available.

After it receives the request, the DMA channel reads one byte of data from the ADC output register and writes to the
DAC data register.

Figure 7. Top Design, Peripheral-to-Peripheral Transfer

Source – ADC

1 Byte

Destination – DAC

1ByteRead Write

DMA

Request

(DRQ)
TD

Pointer

DMA

Done

(NRQ)

DACADC

EoC

Source Destination
Transfer

Count
Next TD

TD[0]

DMA Channel

TD Property: None

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 8

6.1 Example 1 DMA Configuration

The DMA channel and TD configurations for this project are given in Table 2 and Table 4.

Table 2. Channel Configuration Settings

Parameter Project Setting

Upper Source Address HI16(CYDEV_PERIPH_BASE)

Upper Destination Address HI16(CYDEV_PERIPH_BASE)

Burst Count 1 (One byte)

Request Per Burst 1 (True)

Initial TD TD[0]

Preserve TD 1 (True)

The channel configuration has the upper 16 bits of the 32-bit address for both the source and destination addresses.

CYDEV_PERIPH_BASE, defined in the PSoC Creator auto-generated file cydevice.h, defines the base address of all
PSoC peripherals including the ADC and the DAC.

HI16 is a PSoC Creator macro that returns the upper 16 bits of a 32-bit value. This macro is used to get the upper 16
bits of the source and destination address.

As an alternative, you can assign the upper source and destination addresses relative to the component registers, as
Table 3 shows. The address definitions can be found in the component files ADC_DelSig.h, and VDAC8.h, respectively.

Table 3. Alternative Upper Addresses

Parameter Project Setting

Upper Source Address HI16(ADC_Delsig_DEC_OUTSAMP_PTR)

Upper Destination Address HI16(VDAC8_DATA_PTR)

The TDs can be viewed as an array of chained TDs; in this case we need only a one-element array TD[0].

Table 4. TD[0] Configuration Settings

Parameter Project Setting

Lower Source Address LO16(ADC_Delsig_DEC_OUTSAMP_PTR)

Lower Destination Address LO16(VDAC8_DATA_PTR)

Transfer Count 1 (One byte)

TD property None(0)

Next TD TD[0] (Loop back to the same TD)

The LO16 macro returns the lower 16-bits of a 32-bit value.

The DMA channel must move one byte for each DMA request, so the burst count is set to 1 byte and the request per
burst is set to True.

The next TD to be executed is set to the same TD (looped), so the same transaction is repeated on each DMA request.
The Preserve TD parameter is set to True.

6.2 Example 1 Project Files

The project Eg1_ADC_DMA_DAC in the AN52705.zip file attached to this application note demonstrates this example.
See Example Projects – Test Setup for details on how to test this project

The DMA configuration code for this example is given below. See DMA Wizard Configuration for details on how to
generate this configuration code using the DMA wizard.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 9

6.3 Example 1 DMA Configuration Code
/* Define for DMA Configuration */

#define DMA_BYTES_PER_BURST 1

#define DMA_REQUEST_PER_BURST 1

#define DMA_SRC_BASE (CYDEV_PERIPH_BASE)

#define DMA_DST_BASE (CYDEV_PERIPH_BASE)

/* Variable declarations for the DMA channel.

 * DMA_Chan is used to store the DMA channel */

uint8 DMA_Chan;

/* DMA_TD array is used to store all of the TDs associated with the channel

 * Since there is only one TD in this example, DMA_TD array contains only one element

*/

uint8 DMA_TD[1];

/* DMA Configuration steps */

/* Step 1 */

/* DMA Initializations done for both the DMA Channels

 * Burst count = 1, (8 bit data transferred to VDAC one at a time)

 * Request per burst = 1 (transfer burst only on new request)

 * High byte of source address = Upper 16 bits of ADC data register

 * High byte of destination address = Upper bytes of the VDAC8 data register

 * DMA_Chan holds the channel handle returned by the ‘DmaInitialize’ function. This is

 * used for all further references of the channel */

DMA_Chan = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST,

 HI16(DMA_SRC_BASE), HI16(DMA_DST_BASE));

/* Step 2 */

/* Allocate TD for DMA Channel

 * DMA_TD[0] is a variable that holds the TD handle returned by the TD allocate

function.

 * This is used for all further references of the TD */

DMA_TD[0] = CyDmaTdAllocate();

/* Step 3 */

/* Configure TD[0]

 * Transfer count = 1 (total number of bytes to transfer from the ADC to DAC)

 * Next Td = DMA_TD[0]. The same td has to repeat itself for every ADC EoC.

 * Configuration = No special TD configurations required */

CyDmaTdSetConfiguration(DMA_TD[0], 1, DMA_TD[0], 0);

/* Step 4 */

/* Configure the td address

 * Source address = Lower 16 bits of ADC data register

 * Destination address = Lower 16 bits of VDAC8 data register */

CyDmaTdSetAddress(DMA_TD[0], LO16((uint32)ADC_DelSig_DEC_SAMP_PTR),

 LO16((uint32)VDAC8_Data_PTR));

/* Step 5 */

/* Map the TD to the DMA Channel */

CyDmaChSetInitialTd(DMA_Chan, DMA_TD[0]);

/* Step 6 */

/* Enable the channel

 * The Channel is enabled with Preserve TD parameter set to 1. This preserves the

 * original TD configuration and reload it after the transfer is complete so that the

TD

 * can be repeated */

CyDmaChEnable(DMA_Chan, 1);

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 10

7 Example 2: Peripheral-to-Memory Transfer

This example shows how to do a peripheral-to-memory transfer from an ADC data out register to a 16-bit memory
array, as Figure 8 shows.

Figure 8. Block Diagram, Peripheral-to-Memory Transfer

Source : ADC
Sample 1

Sample 2

...

...

….

Destination : RAM Buffer

(adc_sampleArray)

DMA Transaction

complete

 Burst1

Burst ‘N’

 Burst2

ADC

EoC

Read Write

DMA

Request

(DRQ)

Increment

Destination

Address2 Bytes

TD Pointer

DMA_DISABLE_TD

Sample ‘N’

TD Properties : Increment Destination address,

 : Generate transaction complete signal

Source Destination
Transfer

Count
Next TD

TD[0]

DMA

Done

(NRQ)

DMA Channel

16 bit

Interrupt

(ISR)

Figure 9 shows the top design of the project. Each time the Pin_Switch is pressed; ISR_Switch is triggered, and a flag
is set in the isr to enable the DMA channel. Once the DMA channel is enabled, the EoC signal from ADC activates the
DMA channel request.

On each DMA request, the DMA fetches 2 bytes from the source – the ADC output register - writes them to the
destination RAM buffer, and increments the destination address by 2. The transfer count is decremented by 2 after
each burst transfer. This repeats until the transfer count is 0, which generates a transaction complete signal at the NRQ
terminal of the DMA component, which activates the ISR_DMA_Done interrupt.

In the interrupt service routine a flag is set to indicate that the transaction is complete. The DMA channel is disabled
when the transaction is completed, and re-enabled when the switch is pressed again.

Figure 9. Top Design, Peripheral-to-Memory Transfer

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 11

7.1 Example 2 DMA Configuration

The DMA channel and TD configurations for the project are given in Table 5 and Table 6.

Table 5. Channel Configuration Setting

Parameter Project Setting

Upper Source Address HI16(CYDEV_PERIPH_BASE)

Upper Destination Address HI16(CYDEV_SRAM_BASE)

Burst Count 2 (Two bytes)

Request Per Burst 1 (True)

Initial TD TD[0]

Preserve TD 1 (True)

The channel configuration has the upper 16 bits of the 32-bit address for both the source and destination addresses.
The source address is same as in Example1.

CYDEV_SRAM_BASE, defined in the PSoC Creator auto-generated file cydevice.h, defines the base address of
SRAM. This is used with HI16 macro to specify the upper 16 bits of destination address.

As an alternative, the RAM array pointer can be used with HI16 macro to specify upper 16bits of source address for
PSoC 5LP but not for PSoC 3. This is because the upper 16 bits of the address of RAM variables is zero for PSoC 3,
but the Keil compiler stores Keil-specific information in the upper 16 bits of the variable address. For this reason, HI16
(&adc_sampleArray) returns an incorrect address when used with PSoC 3 – Keil compiler.

In this example, a 2-byte ADC result must be moved from ADC to RAM array on each DMA request and therefore the
burst count is set to 2 and the request per burst is set to true.

The Preserve TD is set to 1 (TRUE) so that the original TD setting, i.e. source address, destination address and transfer
count, are preserved and the transactions can be repeated.

The lower 16 bits of source and destination address are specified in the transaction descriptor (TD[0]) configuration as
given in Table 5.

Table 6. TD[0] Configuration Settings

Parameter Project Setting

Lower Source Address LO16(ADC_Delsig_DEC_OUTSAMP_PTR)

Lower Destination Address LO16(&adc_sampleArray)

Transfer Count 200 x 2 No. of samples × Bytes per sample)

TD properties

Increment Destination Address,

 Generate DMA done event,

 Swap Enable required only for PSoC 3.

(TD_INC_DST_PTR | DMA__TD_TERMOUT_EN | TD_SWAP_EN)

Next TD DMA_DISABLE_TD

The transfer count is set to ‘400’ which is equal to the ‘Number of samples to be buffered × Bytes per Sample’.

The TD property is set to increment the destination address after each burst transfer and generate a transaction
complete signal once the specified number of samples is buffered. In PSoC 3 project, the TD is also configured to swap
the bytes while moving data from ADC to memory as explained in TD property section. The bits corresponding to each
of the TD property is defined in the PSoC Creator auto-generated file CyDmac.h. The required property bit fields are
OR-ed together to set the TD property.

In order to stop the DMA transfers after buffering the specified number of samples, TD[0] is chained to
‘DMA_DISABLE_TD’ which disables the DMA channel.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 12

7.2 Example 2 Project Files

The project Eg2_ADC_DMA_Mem in the AN52705.zip file attached to this application note demonstrates this example.
The DMA configuration code for the example is similar to Example 1. The arguments passed to the functions are given
in the channel and TD configuration tables above. See Example Projects – Test Setup for details on how to test this
project.

8 Example 3: Memory-to-Peripheral Transfer

This example shows how to use the DMA for a memory-to-peripheral data transfer. The example demonstrates wave
generation using a DAC, as Figure 10 shows.

Figure 10. Block Diagram, Memory-to-Peripheral Transfer

A sine lookup table with 128 points is stored in flash memory. These values are sequentially sent to a DAC, using DMA,
to create a sine wave. Figure 11 shows the top design for the project.

A clock component is used to periodically generate DMA requests (drq). When the request is received, the DMA channel
fetches one byte of data from the lookup table and writes it to the DAC data register. The source address is incremented
by one and the transfer count is decremented by one after each burst transfer. This continues until all table values are
sent to DAC.

The TD configuration is preserved and reloaded at the end of the transfer so as to generate a continuous sine wave.
The frequency of the sine wave is equal to the DMA trigger clock frequency divided by number of points in the lookup
table.

Source : Memory Look up table

Location 1

Location 2

...

...

….

 Location

Loop back to

same TD

Burst1

Burst2

BurstN

Read Write

DMA

Request

(DRQ)

TD Pointer

Destination : DAC

DAC1 Byte

DMA Trigger Clock

‘N’

Source Destination
Transfer

Count
Next TD

TD[0]

TD Property : Increment Source address

DMA

Done

(NRQ)

DMA Channel

 8 Bit

Increment

Source

Address

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 13

Figure 11. Top Design, Memory-to-Peripheral Transfer

8.1 Example 3 DMA Configuration

The DMA channel and TD configurations for the project are given in Table 7 and Table 8.

Table 7. Channel Configuration

Parameter Project Setting

Upper Source Address
HI16(CYDEV_FLS_BASE) for PSoC 3

HI16 (&sineTable) for PSoC 5LP

Upper Destination Address
HI16(CYDEV_PERIPH_BASE)

Burst Count 1 (One byte)

Request Per Burst 1 (True)

Initial TD TD[0]

Preserve TD 1 (True)

The source for DMA transfer is the sineTable array that is kept in flash memory. The HI16(&sineTable) sets the upper
16 bits of the source address for PSoC 5LP whereas HI16(CYDEV_FLS_BASE) is used to identify the upper 16 bits of
source address for PSoC 3 for the reasons mentioned in the previous examples.

The DMA channel must move one byte from look up table array to DAC for each DMA request. So, the burst count is
set to 1 byte and the request per burst is set to true.

The original TD configurations are preserved so that it can be re-used.

The lower 16 bits of source and destination addresses are set using the LO16 macro as given in Table 8.

Table 8. TD[0] Configuration

Parameter Project Setting

Lower Source Address LO16 (&sineTable)

Lower Destination Address LO16(VDAC8_DATA_PTR)

Transfer Count 128 (No. of bytes in the sine look up table)

TD property Increment source address (TD_INC_SRC_ADR)

Next TD TD[0] - Loop back to the same TD again

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 14

The transfer count is set to the total number of bytes in the sine look up table.

The TD is configured to increment the source address, i.e. look up table pointer, after each burst transfer.

At the end of the transfer, one complete cycle of sine wave is generated at the DAC output. The TD is preserved and
looped back to itself so as to generate a continuous wave.

8.2 Example 3 Project Files

The project Eg3_Mem_DMA_DAC in the AN52705.zip file attached to this application note demonstrates this example.
The DMA configuration code for the example is similar to Example 1. The arguments passed to the functions are given
in the channel and TD configuration tables above. See Example Projects – Test Setup for details on how to test this
project

9 Example 4: Memory-to-Memory Transfer

This example shows how to use DMA to do a memory-to-memory transfer. It also demonstrates how to trigger a DMA
channel using the CPU. In this example, an 8-byte flash array is copied to an 8-byte RAM array on a CPU request, as
Figure 12 shows.

Figure 12. Block Diagram, Memory-to-Memory Transfer

SrcArray[0]

SrcArray[1]

...

...

….

SrcArray[N-1]

Source – 8 bit flash array

1 byte

CPU Request

 8 Bit

Read Write

DestArray[0]

DestArray[1]

...

...

….

DestArray[N-1]

Increment

Destination

Address

1 byte

 8 Bit

Destination – 8 bit RAM array

DMA transaction

complete
DMA

Request

DMA

Done

(NRQ)

Interrupt

(ISR)

DMA_DISABLE_TD

TD Properies : Increment Source address,

 : Increment Destination address,

 : Generate transaction complete signal

Source Destination
Transfer

Count
Next TD

TD[0]

TD Pointer

DMA Channel

Increment

Source

Address

…

…

…

…

Figure 13 shows the top design of the project. The CyDmaChSetRequest function is used to activate the DMA transfer
approximately one second after device power up.

When it receives a request from the CPU, the DMA transfers 8 bytes from the flash array to the RAM array as configured
in the channel and TD configuration registers. The TD source and destination addresses are incremented as the
transfer proceeds.

When the transfer is complete, a pulse is generated at the nrq signal terminal of the DMA. This activates the
ISR_DMADone interrupt which sets the flag to indicate that the transfer is complete. The new RAM contents are then
displayed on the LCD.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 15

Figure 13. Top Design: Memory-to-Memory Transfer

9.1 Example 4 DMA Configuration

The DMA channel and TD configurations for the project are given in Table 9 and Table 10.

Table 9. Channel Configuration

Parameter Project Setting

Upper Source Address
HI16(CYDEV_FLS_BASE), for PSoC 3

HI16(&sourceArray), for PSoC 5LP

Upper Destination Address HI16(CYDEV_SRAM_BASE)

Burst Count 1 (One byte)

Request Per Burst 0 (False)

Initial TD TD[0]

Preserve TD 0 (False)

The source for DMA transfer is the ‘sourceArrray’ defined in the flash memory. The destination is ‘destinationArray’ in
RAM. The upper 16 bits of the source address in flash are set to HI16(&sourceArray) in PSoC 5LP and
HI16(CYDEV_FLS_BASE) in PSoC 3, as explained in previous examples. Similarly, the upper 16 bits of the destination
address in SRAM are set using the macro HI16(CYDEV_SRAM_BASE).

The burst count is set to 1 byte so that the DMA reads byte by byte from flash and writes it to the RAM array. You can
set the burst count to 8 bytes for faster data transfers. However, you should also generally set the burst count to a low
value so as to allow the spoke to be shared by other DMA channels.

The request per burst parameter is set to false so that separate requests are not required for each burst transfer.

Table 10. TD[0] Configuration

Parameter Project Setting

Source Address LO16(&sourceArray)

Destination Address LO16(&destinationArray)

Transfer Count 8 (bytes)

TD property

Increment source address

Increment destination address

Generate DMA done signal

 (TD_INC_SRC_ADR | TD_INC_DST_ADR | DMA__TD_TERMOUT_EN)

Next TD DMA_DISABLE_TD (0xFE)

The lower 16 bits of the source and the destination addresses for the TD configuration are identified by the LO16 macro.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 16

The transfer count is set to 8 so that a total of 8 bytes are transferred from the source to the destination.

The TD is configured to increment the source address i.e., the flash array pointer, and the destination address i.e., the
RAM array pointer, after each burst transfer. The TD is also configured to send a termout pulse on the nrq line after all
the 8 bytes are moved from the flash to the RAM array. This pulse is used to trigger an ISR to indicate that the transfer
is complete. The next TD is set to DMA_DISABLE_TD (0xFE) to disable the DMA channel after the transfer is finished.

Since the transaction has to happen only one time, the TD configuration does not need to be preserved.

9.2 Example 4 Project Files

The project Eg4_Mem_DMA_Mem in the AN52705.zip file attached to this application note demonstrates this example.
The DMA configuration code for the example is similar to Example 1. The arguments passed to the functions are given
in the channel and TD configuration tables above. See Example Projects – Test Setup for details on how to test this
project.

10 Example 5: TD Chaining

This example project shows how to use multiple TDs with a single channel and chain them to one another. In this
example the ADC data is sent to two separate RAM buffers, one after the other, using a single DMA channel and two
TDs.

The DMA channel is configured to do two transactions:

▪ Transaction 1: ADC to RAM buffer1

▪ Transaction 2: ADC to RAM buffer2

These two transactions are configured using two separate transaction descriptors - TD[0] and TD[1] - and are chained
to one another using the TD chaining feature of the DMA, as Figure 14 shows.

Figure 14. Block Diagram, TD Chaining

Sample 1

Sample 2

...

...

….

Sample N1

Increment

Destination

Address

Sample 1

Sample 2

...

...

….

Sample N2

Destination2 : RAM

Buffer2

DMA Transaction

complete signal

TD0àTD1 TD1àTD0

 Burst2

 Burst N1 Burst (N1+1)

B
urst (N

1+N
2)

Burs
t1

Source : ADC

ADC

EoC

Read Write

DMA

Request

(DRQ)

2 Bytes

TD Pointer

DMA

Done

(NRQ)

DMA Channel

Source Destination
Transfer

Count
Next TD

TD[0]

Interrupt

(ISR)

Source Destination
Transfer

Count
Next TD

TD[1]

TD0 Property : Increment Destination address TD1 Properties : Increment Destination address,

 : Generate transaction complete signal

Destination1 : RAM

Buffer1

16 bit

16 bit

This form of TD configuration can also be used to overcome the maximum transfer count limit of a single TD, which is
4096 bytes for a single DMA channel. Note that the upper 16 bits of the source and the destination addresses must be
the same for all of the TDs in a chain.

The top design for the project is the same as in Example 2.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 17

10.1 Example 5 DMA Configuration

The channel and TD configurations for this project are given in Table 11, Table 12 and Table 13.

Table 11. Channel Configuration

Parameter Setting

Upper Source Address HI16(CYDEV_PERIPH_BASE)

Upper Destination Address HI16(CYDEV_SRAM_BASE)

Burst Count 2 (Two Bytes)

Request Per Burst 1 (True)

Initial TD TD[0]

Preserve TD 1 (True)

The channel and TD configurations are similar to Example 2. The Next TD parameter of TD[0] is set to TD[1], and vice
versa, to chain the transactions.

Table 12. TD[0] Configuration

Parameter Project Setting

Lower Source Address LO16(ADC_Delsig_DEC_OUTSAMP_PTR)

Lower Destination Address LO16(adc_sampleArray1)

Transfer Count
N1×2

 (No. of samples × Bytes per sample)

TD properties

Increment Destination Address : TD_INC_DST_ADR

Generate DMA done event : DMA__TD_TERMOUT_EN

Swap Enable required for PSoC 3 : TD_SWAP_EN

Next TD TD[1]

Table 13. TD[1] Configuration

Parameter Project Setting

Lower Source Address LO16(ADC_Delsig_DEC_OUTSAMP_PTR)

Lower Destination Address LO16(adc_sampleArray2)

Transfer Count
N2×2

 (No. of samples × Bytes per sample)

TD properties

Increment Destination Address : TD_INC_DST_ADR

Generate DMA done event : DMA__TD_TERMOUT_EN

Swap Enable required for PSoC 3 : TD_SWAP_EN

Next TD TD[0]

10.2 Example 5 Project Files

Eg5_TD_Chaining in the AN52705.zip file that is attached to this application note demonstrates the TD chaining
example. The DMA configuration code for the example is similar to Example 1. The arguments passed to the functions
are given in the channel and TD configuration tables above. See Example Projects – Test Setup on page 26 for details
on how to test this project.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 18

11 Summary

This application note has described the DMA controller in PSoC 3 and PSoC 5LP. Using simple PSoC Creator example
projects, the application note has also shown how to configure the DMA for different types of data transfers. For more
advanced information, see the PSoC 3 and PSoC 5LP Technical Reference Manuals and the PSoC Creator DMA
component datasheet.

12 About the Author

Name: Anu M D

Title: Sr. Applications Engineer

Background: BE in Electronics and Communication from Model Engineering College, Cochin.

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=46450
http://www.cypress.com/?rID=46450

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 19

Appendix A. DMA Configuration Steps

Step 1: DMA Channel Initialization

Channel_Handle = DMA_DmaInitialize(

 DMA_BYTES_PER_BURST,

 DMA_REQUEST_PER_BURST,

 HI16(Source Address),

 HI16(Destination Address))

The API function DmaInitialize() configures several DMA channel parameters as follows:

▪ DMA_BYTES_PER_BURST: the number of bytes to be read and written by the DMA channel in one burst

For example, if you want to define DMA to collect 8-bit ADC data, set this parameter to 1 because the DMA channel
must move 1 byte from source to destination on each request. Or, if you want to collect 16-bit ADC data, set this
parameter to 2.

▪ DMA_REQUEST_PER_BURST: whether each burst must have a separate request.

If set to 1, each burst transfer must be individually requested. If set to 0, all subsequent bursts after the first burst
are automatically carried out without separate request. (Only the first burst transfer must have a DMA request.)

▪ HI16(Source Address): the upper 16 bits of the source address. HI16 is a macro created by PSoC Creator to
specify the upper 16 bits of a 32-bit value or address.

▪ HI16(DestinationAddress): the upper 16 bits of the destination address. Use macros provided in the previous
table to identify the upper 16 bits of source and destination addresses in PSoC 3.

The PSoC 3 Keil compiler stores Keil-specific information in the upper 16 bits of the variable addresses. For this
reason, use the following constants shown in Table 14. They are defined in CyDevice.h along with HI16 macro to
configure the upper 16 bits of source and destination address for PSoC 3 especially when the source or destination
for the DMA transfer is RAM or flash memory.

Table 14. Upper 16-bit Address Macros

Source DMA_SRC_BASE

Peripheral CYDEV_PERIPH_BASE

RAM CYDEV_SRAM_BASE

Flash CYDEV_FLS_BASE

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 20

Step2: TD allocation

TD_Handle = CyDmaTdAllocate();

The API function CyDmaTdAllocate() creates an instance of a TD and returns the handle to that TD. The TD handle is
used by other APIs to configure the TD. To create multiple TDs, call the function multiple times.

Step 3: TD configuration

CyDmaTdSetConfiguration(TD_Handle,

 Transfer_Count,

 Next_TD,

 TD_Property);

The API function CyDmaTdSetConfiguration() configures a TD, using the following parameters:

▪ TD_Handle: a handle previously returned by the CyDmaTdAllocate() function

▪ Transfer_Count: the total number of bytes to be moved from source to destination.

▪ Next_TD: the index of the next TD in the TD chain. If this TD is to be the last in the chain, use the macro
DMA_DISABLE_TD (0xFE) as to disable the DMA channel after the TD transfer is complete.

▪ TD_Property: use the TD Configuration register flags shown in Table 15 on page 20 to set the properties of the
DMA transaction. OR the flags together to configure the TD property. For example, to configure the TD to swap 4
bytes during the data transfer, use:

(TD_SWAP_EN | TD_SWAP_SIZE4)

Table 15. TD Properties

Configuration Flag Function

TD_SWAP_EN Perform endian swap; swap bytes while moving data from source to destination.

TD_SWAP_SIZE4 Set swap size = 4 bytes. Default swap size is 2 bytes.

TD_AUTO_EXEC_NEXT The next TD in the chain is activated automatically when the current TD finishes.

TD_TERMIN_EN
End this TD if a positive edge on the trq input line occurs. The positive edge must occur
during a burst. That is the only time the DMAC listens for it.

DMA__TD_TERMOUT_EN

If this flag is used, a pulse is generated on the nrq line when the TD transfer is complete.
This flag is specific to a DMA component instance and is defined in the component instance
header file. For example, if the DMA component instance name is DMA_1 in the top design,
the termout macro for the instance is ‘DMA_1__TD_TERMOUT_EN’ which is included in
DMA_1_dma.h.

TD_INC_DST_ADR Increments destination address according to the size of each data burst transaction.

TD_INC_SRC_ADR Increments source address according to the size of each data burst transaction.

Step 4: Configuring TD source and destination

CyDmaTdSetAddress(TD_Handle,

 LO16(source),

 LO16(destination))

The API function CyDmaTdSetAddress() sets the source and destination addresses of a TD, using the following
parameters:

▪ TD_Handle: a handle previously returned by the CyDmaTdAllocate() function

▪ LO16(source): the lower 16 bits of the source address

▪ LO16(destination): the lower 16 bits of the destination address

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 21

PSoC is highly programmable - many components are created from the programmable digital and analog blocks, and
the physical location of a peripheral may change based on the design. Therefore, a conventional register map listing
all the source and destination addresses is not possible

Instead, the registers for each component are defined in the component API header files generated by PSoC Creator
during the build process. You should review these header files to identify the component’s register addresses.

Step 5: Attach the TD to the channel

CyDmaChSetInitialTd(Channel_Handle,

 TD_Handle)

The API function CyDmaChSetInitialTD() sets the first TD of a DMA channel:

▪ Channel_Handle: the handle of the DMA instance returned by the DMA_DmaInitialize() function

▪ TD_Handle: a handle previously returned by the CyDmaTdAllocate() function

Step 6: Enable DMA channel

CyDmaChEnable(Channel_Handle,

 Preserve_TD)

The API function CyDmaChEnable() enables the DMA channel:

▪ Channel_Handle: the handle of the DMA instance returned by the DMA_DmaInitialize() function

▪ Preserve_TD: if TRUE, the DMA channel retains the TD configurations (source, destination and transfer count) so
that the TD can be repeated

A.1 Other Important DMA API Functions

To activate a DMA channel from a CPU request, use this function:

CyDmaChSetRequest(Channel_Handle, CPU_REQ);

To disable a DMA channel, use this function:

CyDmaChDisable(Channel_Handle);

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 22

Appendix B. DMA Wizard Configuration

As an alternative to the steps described in Appendix A, the DMA Wizard can make it easy to define the firmware
configuration of a DMA channel and TD. However, the wizard supports only a few peripherals as DMA source or
destination. If a peripheral is not supported, follow the configuration steps described in Appendix A.

To start the DMA wizard, go to PSoC Creator > Tools > DMA Wizard.

Step 1: Select a DMA channel (DMA component instance)

Select the DMA channel to be configured, as Figure 15 shows:

Figure 15. Select DMA Channel

Select the dialog parameters as follows:

▪ Project: name of the PSoC Creator project

▪ DMA: the name DMA component instance in your project

Click Next when done.

Step 2: Select global settings

Select the DMA transfer global settings, as Figure 16 shows:

Figure 16. Global Settings

Use this dialog to select the DMA channel configuration parameters:

Source and Destination: the upper 16 bits of the source and destination addresses

Bytes per Burst: the number of bytes to be moved in a single burst

Each Burst Requires a Request: whether each burst requires a separate request

Number of TDs: the number of transaction descriptors to be associated with the DMA channel (1 to 128).

DMA component
instance name

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 23

Single Chain or Loop: this defines what ‘Next TD’ for the last TD in the chain. If single chain, the next TD is
DMA_DISABLE_TD (0xFE). If loop, it is the first TD.

Click Next when done.

Step 3: Define the transaction descriptors for the channel

Select the DMA transfer global settings, as Figure 17 shows. Table 16 describes each TD configuration parameter.

Figure 17. Add Transaction Descriptors

Table 16. TD Configuration Details

Field Description

TD# Displays the logical number for the Transaction Descriptor.

Endian
Enables 2- or 4-byte endian byte swapping. This enables swapping the byte while the data moves from source to
destination. The Bytes per Burst setting must be set as a multiple of the endian selection. This is usually used for
DMA transfers between PSoC 3 memory and peripherals because of the difference in endianess.

Term In Enables ending the TD transaction on a rising edge of the TERMIN (trq) signal.

Term Out Enables the creation of the TERMOUT (nrq) signal when the TD finishes.

Length
This specifies the transfer count for the TD in bytes (0 to 4095). This is the total number of bytes that the DMA
should transfer to complete the transaction.

Source
The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses for the source is given
by the DMA wizard if the source selected is a component (not memory). You can also edit or enter the source
address manually.

Inc (Source)
Enables incrementing of the source address as the DMA does the transaction. If this is enabled, every time the
DMA reads the data from source, the source address is incremented by the number of bytes that the DMA has
read. The DMA increments the source address until the entire transaction (transfer count) is finished.

Destination
The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses for the destination is
given by the DMA wizard if the destination selected is a component (not memory). You can also edit or enter the
destination address manually.

Inc(Destination)
Enables incrementing of the destination address as the DMA does the transaction. The DMA increases the
destination address until the entire transaction (transfer count) is finished.

Auto Next Automatically execute the next TD without another DMA request.

Next TD The next logical TD in the chain of TDs. Set to END if this TD chain is finished with this TD.

Click Next when done. The required code is then generated.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 24

Step 4: Copy the code created by the DMA Wizard

After the DMA channels and TD configuration are finished, the wizard creates code for the DMA channel. This code
includes the configuration for the DMA channel and the TDs The code is generated in a window in the DMA Wizard
dialog, as Figure 18 shows. To use the code, select all in the window, copy it, and paste it in your main.c.

Figure 18. Generated Code

For more information on the wizard, see the PSoC Creator Help file.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 25

Appendix C. Setting DMA Channel Priority

When multiple DMA channel requests are active, the DMA channels are processed by DMAC based on channel priority
settings. Each DMA channel can be given one of the eight different priorities. DMA channel priority is set in PSoC
Creator in Design Wide Resources (*.cydwr) > DMA, as Figure 19 shows.

Figure 19. Setting DMA Channel Priority

When both the CPU and DMAC request access to the same spoke on PHUB at the same time, the CPU has priority
by default. The PHUB manages arbitration between DMA and CPU, and among the DMA channels. For more
information, see PSoC® 3, PSoC® 5LP Architecture TRM.

http://www.cypress.com/
http://www.cypress.com/?rID=35180

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 26

Appendix D. Example Projects – Test Setup

D.1 Example 1: Peripheral-to-Peripheral Transfer – Eg1_ADC_DMA_DAC

In this example project the ADC sampling frequency (fs) is 384 kHz. The output is reconstructed best if the input
frequency is less than or equal to ~84kHz because the delta sigma ADCs have a low pass nature with a -3dB drop at
0.22 fs. The test setup is as follows:

1. Connect the function generator to pin P0[2], the input to the ADC.

2. Set the function generator to make a sine wave of 100 Hz.

3. Connect the oscilloscope probe to pin P0[0], the VDAC output.

4. Build the project and program the device.

5. Look at the output from pin P0[0] on the oscilloscope. It should be a sine wave of frequency 100 Hz, the same as

the input.

D.2 Example 2: Peripheral-to-Memory Transfer – Eg2_ADC_DMA_Mem

The test setup is as follows:

1. Connect the input signal to pin P0[2], the input to the ADC. Make sure that the input is within the ADC range VSSA
to 2.048 V.

2. Connect P6[1] to switch(SW1) on the DVK.

3. Build the project.

4. Press F5 or click the debug icon, as Figure 20 shows, to download the program and start debugging.

Figure 20. Debug Button

5. Add adc_sampleArray as a watch variable, as Figure 21 shows:

Figure 21. Watch Variable

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 27

6. Put a breakpoint inside the if(DMADone_flag) loop, as Figure 22 shows:

Figure 22. Add a Breakpoint

7. Press F5 to run the program. Press the switch (SW1) connected to P6[1] to enable the DMA to start ADC sample
buffering. The execution stops at the breakpoint after the DMA has transferred the specified number of samples
from ADC to memory. The result can be verified by monitoring the adc_sampleArray in the watch window, as
Figure 23 shows:

Figure 23. ADC Samples in Watch Window

D.3 Example 3: Memory-to-Peripheral Transfer – Eg3_Mem_DMA_DAC

The test setup is as follows:

1. Connect the oscilloscope probe to pin P0[0], the VDAC output.

2. Build the project and program the device.

3. Observe a sine wave of frequency 7.8 kHz on the oscilloscope.

D.4 Example 4: Memory-to-Memory Transfer – Eg4_Mem_DMA_Mem

The test setup is as follows:

1. Connect a character LCD module to header P18 (LCD Module - Port 2) of the CY8CKIT-001 PSoC Development
Kit.

2. Make sure jumper J12 is in the ON position to power the LCD.

3. Build the project and program the device.

4. Look at the LCD display. The first row displays the contents of the destination array. Initially all values are zero.
After a delay of one second the first row displays 00 to 07, showing that the DMA has successfully transferred the
data from flash to RAM. The second row displays the message TRANSFERRED. Figure 24 shows an example of

the LCD display:

http://www.cypress.com/
http://www.cypress.com/?rID=37464
http://www.cypress.com/?rID=37464

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 28

Figure 24. LCD Display of DMA Transfer

0 0 1 2 0 3 0 4 0 5 0 6 0 7

T R A N S F E R R E D

00

D.5 Example 5: TD Chaining– Eg5_TD_Chaining

The test setup for this example is same as that of Example 2. The test setup is as follows:

1. Connect the input signal to pin P0[2], the input to the ADC. Make sure that the input is within the ADC range VSSA
to 2.048 V.

2. Connect P6[1] to switch(SW1) on the DVK.

3. Build the project.

4. Press F5 or click the debug icon, as Figure 25 shows, to download the program and start debugging.

Figure 25. Debug Button

5. Add adc_samplearray1 and adc_samplearray2 as watch variables as Figure 26 shows.

Figure 26. Watch Variables

6. Put a breakpoint inside the if(DMADone_flag) loop, as Figure 27 shows.

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 29

Figure 27. Add a Breakpoint

7. Press F5 to run the program. Press the switch (SW1) connected to P6[1] to enable the DMA to start ADC sample

buffering. The execution stops at the breakpoint after the DMA has transferred the specified number of samples
from ADC to memory. To verify the result, monitor adc_sampleArray1 and adc_sampleAv rray2 in the watch
window, as Figure 28 shows.

Figure 28. ADC Samples in Watch Window

http://www.cypress.com/

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 30

Appendix E. Frequently Asked Questions

1. How can you buffer more than 4095 bytes using DMA?

The maximum transfer count of a TD is limited to 4095 bytes. If you need to transfer more than 4095 bytes using
a single DMA channel, use multiple TDs and chain them as shown in Example 5.

2. How do you find the source and destination addresses of the peripherals for DMA data transfer?

PSoC is highly programmable - many components are created from the programmable digital and analog blocks,
and the physical location of a peripheral may change based on the design. Therefore, a conventional register map
listing all the source and destination addresses is not possible

Instead, the registers for each component are defined in the component API header files generated by PSoC
Creator during the build process. You should review these header files to identify the component’s register
addresses.

3. How do you use DMA with communication protocols such as UART, SPI etc.?

When using communication protocols such as UART and SPI with DMA, set the buffer size to 4 or less so that
internal interrupts are not triggered for data transfers . Use hardware FIFO pointers as read and write data
addresses for the DMA and trigger the DMA using FIFO level status configured as interrupts. Make the Hardware
Request of the DMA channel as level triggered in order to use it with FIFO levels.

4. Timing Details of DMA transfer?

The timing details of DMA transfer can be found in the PSoC 3, PSoC 5LP Technical Reference Manual. A detailed
discussion on DMA timing is beyond the scope of this application note.

http://www.cypress.com/
http://www.cypress.com/?rID=35180

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 31

Document History

Document Title: AN52705 - PSoC® 3 and PSoC 5LP - Getting Started with DMA

Document Number: 001-52705

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2710860 LNAT 05/25/2009 New Application Note.

*A 2768731 LNAT 09/24/2009 Updated the projects for PSoC Creator Beta 3 version.

Added information about configuring the Termout signals

*B 2951774 LNAT 06/14/2010 Updated the projects for PSoC Creator Beta 4.1

Added more information regarding the DMA configuration

*C 2966485 LNAT 08/26/2010 Updated the projects for PSoC Creator Beta 5.

Used DMA Wizard in the projects.

*D 3269575 LRDK 06/06/2011 Rewritten in Simplified English.

*E 3355465 ANUP 08/26/2011 Updated Introduction

Updated TD0 Configuration section

Updated channel configuration table

Updated Figure 8

Updated operation section.

*F 3444066 ANMD 11/22/2011 Project updates for PSoC Creator 2.0.

Updated in new template.

*G 3822782 ANCY 11/27/2012 Updated for PSoC 5LP.

*H 3844498 ANMD 12/18/2012 Re-written to improve clarity

*I 4445042 KRIS 07/16/2014 Updated Software Version in page 1 as “PSoC® Creator™ 3.0 SP1 and higher”.

Updated Related Application Notes in page 1 as “AN61102, AN84810”.

Updated Introduction.

Updated attached example projects for PSoC Creator 3.0 SP1.

Completing Sunset Review.

*J 5701881 BENV 04/19/2017 Updated logo and copyright

*K 6328274 SNVN 10/01/2018 Updated template

http://www.cypress.com/
http://www.cypress.com/?rID=44335
http://www.cypress.com/?rID=82680

 PSoC® 3 and PSoC 5 - Getting Started with DMA

www.cypress.com Document No. 001-52705 Rev. *K 32

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2009-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 Basic Concepts of DMA
	3 DMA Configuration
	3.1 Channel Configuration
	3.2 TD Configuration

	4 DMA component overview
	4.1 Hardware Connections of DMA component

	5 Firmware Configuration of DMA
	6 Example 1: Peripheral-to-Peripheral Transfer
	6.1 Example 1 DMA Configuration
	6.2 Example 1 Project Files
	6.3 Example 1 DMA Configuration Code

	7 Example 2: Peripheral-to-Memory Transfer
	7.1 Example 2 DMA Configuration
	7.2 Example 2 Project Files

	8 Example 3: Memory-to-Peripheral Transfer
	8.1 Example 3 DMA Configuration
	8.2 Example 3 Project Files

	9 Example 4: Memory-to-Memory Transfer
	9.1 Example 4 DMA Configuration
	9.2 Example 4 Project Files

	10 Example 5: TD Chaining
	10.1 Example 5 DMA Configuration
	10.2 Example 5 Project Files

	11 Summary
	12 About the Author
	Appendix A. DMA Configuration Steps
	A.1 Other Important DMA API Functions

	Appendix B. DMA Wizard Configuration
	Appendix C. Setting DMA Channel Priority
	Appendix D. Example Projects – Test Setup
	D.1 Example 1: Peripheral-to-Peripheral Transfer – Eg1_ADC_DMA_DAC
	D.2 Example 2: Peripheral-to-Memory Transfer – Eg2_ADC_DMA_Mem
	D.3 Example 3: Memory-to-Peripheral Transfer – Eg3_Mem_DMA_DAC
	D.4 Example 4: Memory-to-Memory Transfer – Eg4_Mem_DMA_Mem
	D.5 Example 5: TD Chaining– Eg5_TD_Chaining

	Appendix E. Frequently Asked Questions
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

