

www.cypress.com Document No.001-52701 Rev. *L 1

AN52701

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

Author: Ranjith M
Associated Project: Yes

Associated Part Family: All PSoC 3 and PSoC 5LP parts with CAN
Related Code Example: CE95282, CE95283

Software Version: PSoC Creator™ 4.1

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples web
page. You can also explore the PSoC video library here.

This application note introduces the basic concepts of Controller Area Network (CAN) and demonstrates how CAN

bus communication is implemented using PSoC
®
 3 and PSoC 5LP.

Contents

1 Introduction .. 1
1.1 Why Use CAN? ... 2
1.2 Why Use PSoC? ... 2

2 CAN Basics ... 2
2.1 Physical Layer ... 2
2.2 Transfer Layer ... 3
2.3 Bus Arbitration .. 4
2.4 Error Management in CAN 5

3 CAN in PSoC ... 5
3.1 Hardware .. 5
3.2 The CAN Component .. 7
3.3 PSoC Creator Projects .. 7
3.4 Firmware ... 15

4 Implementing the Hardware 18
4.1 Working with a CAN Analyzer 18

5 Example Projects .. 19
5.1 Examples 1 and 2: Simplex Communication 19
5.2 Examples 3 and 4: RTR feature in CAN 21

6 Summary ... 23
7 Related Resources .. 23
Appendix A. Data Frames ... 24
Appendix B. Interfacing PSoC with
 TJA1050 CAN Transceiver .. 25
Document History .. 26
Worldwide Sales and Design Support 27

1 Introduction

Controller Area Network (CAN) is a serial communication protocol developed by Robert Bosch GmbH in the early
1980s. This protocol was initially developed for automotive applications, for communications between subsystems
with no central control. CAN is also being adopted in areas such as embedded systems (CANOpen) and factory
automation (DeviceNet). CAN was standardized by the ISO in 2003 (ISO 11898-1:2003).

This application note introduces the basic concepts of the CAN protocol and demonstrates how CAN bus
communication can be implemented using PSoC

®
 3 and PSoC 5LP. Four examples are included with this application

note. Examples 1 and 2 together illustrate a simplex communication between two PSoCs. Examples 3 and 4 together
demonstrate the Remote Transmission Request (RTR) feature of CAN.

This application note assumes that you are familiar with developing applications using PSoC Creator for PSoC 3 or
PSoC 5LP. If you are new to PSoC 3 or PSoC 5LP, introductions can be found in AN54181, Getting Started with
PSoC 3 and AN77759, Getting Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home
page.

http://www.cypress.com/
http://www.cypress.com/search/psg/1292#/?_facetShow=fs_pno_of_programmable_universal_digital_blocks,fs_pno_of_gpios,fs_pmin_operating_voltage_v_,fs_pmax_operating_voltage_v_,ss_pdedicated_adc___max_resolution_sample_rate_,ss_pdedicated_dac___max_resolution_sample_rate_,fs_pflash_kb_,ss_plcd_di
http://www.cypress.com/search/psg/1307#/?_facetShow=fs_pno_of_programmable_universal_digital_blocks,fs_pno_of_gpios,fs_pmin_operating_voltage_v_,fs_pmax_operating_voltage_v_,ss_pdedicated_adc___max_resolution_sample_rate_,ss_pdedicated_dac___max_resolution_sample_rate_,fs_pflash_kb_,ss_plcd_di
http://www.cypress.com/documentation/code-examples/ce95282-can-control-node-psoc-35lp
http://www.cypress.com/documentation/code-examples/ce95283-can-remove-node-psoc-35lp?source=search&keywords=CAN&cat=software_tools
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/video-library/PSoC
http://www.cypress.com/index.cfm?rID=39157
http://www.cypress.com/index.cfm?rID=39157
http://www.cypress.com/index.cfm?rID=60890
http://www.cypress.com/?id=2494
http://www.cypress.com/?id=2494

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 2

Cypress is a leading supplier of automotive microcontrollers. If you are interested in using CAN in our FM4 family of
microcontrollers, refer to our FM4 CAN code example. Cypress also provides Arduino-compatible CAN shield to be
used with our PSoC 4 family of devices. Refer to the CY8CKIT-026 webpage for more details on the CAN shield. An
example project that demonstrates PSoC 4 CAN communication using the CY8CKIT-026 shield is available in the
PSoC 4 CAN example webpage.

1.1 Why Use CAN?

CAN networks are designed for short messages with data length not more than 8 bytes, and a bit rate up to 1 Mbps.
The CAN protocol offers several advantages over other serial communication protocols:

 CAN is a message-based protocol; CAN network nodes are not assigned specific addresses. This provides
flexibility to add or remove a node from the network without affecting the rest of the network. In addition, if one of
the nodes fails, the others continue to work and communicate properly.

 CAN messages can be prioritized.

 CAN has five levels of error checking, to ensure reliable traffic and data integrity.

 The CAN network has system-wide data consistency, that is, if a message is corrupt at a receiving node, the
message is not accepted by any of the other receiving nodes.

 Corrupted messages are automatically retransmitted as soon as the bus is idle again.

1.2 Why Use PSoC?

PSoC 3 and PSoC 5LP integrate CAN functionality along with configurable analog, programmable digital, memory,
and a central processor on a single chip. PSoC Creator provides built-in application programming interfaces (APIs) to
abstract common tasks.

Moreover, all PSoC Creator Components, including the CAN Component, can be easily configured using a GUI,
rather than writing C code for them. See application note AN70630 - Event Data Recorder with Controller Area
Network using PSoC 3 and nvSRAM for a system-level application of the CAN Component.

2 CAN Basics

This section explains the basics of the CAN protocol. A more detailed description protocol is available in the CAN
specification. If you are familiar with CAN and want to see how it is implemented in PSoC 3 and PSoC 5LP, see the
section CAN in PSoC.

2.1 Physical Layer

Figure 1 shows how devices connect to a CAN bus. The CAN bus consists of two physical lines, CANH and CANL.
The CAN bus is typically terminated with a 120-Ω resistor at each end.

Figure 1. Nodes Connected to a CAN Network

CAN

Node A

CAN

Node B

CAN

Node C

1
2

0
Ω

1
2

0
Ω

CANL

CANH

The CAN bus carries differential signals, as Figure 2 shows. A '1' is represented by both lines at approximately the
same voltage (typically 2.5 V). A '0' is represented by a 1.5 V to 3 V difference in voltage between the lines. A ‗1‘ is
called a recessive bit and a ‗0‘ is called a dominant bit.

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/ce211027-can-communication-between-fm4-s6e2gx-series-and-psoc-4-m-series
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-026-can-and-lin-shield-kit
http://www.cypress.com/documentation/code-examples/ce97311-psoc-4-m-can-simplex-communication-capsense
http://www.cypress.com/?rID=58300
http://www.cypress.com/?rID=58300
http://www.kvaser.com/software/7330130980914/V1/can2spec.pdf
http://www.kvaser.com/software/7330130980914/V1/can2spec.pdf

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 3

Figure 2. CAN Bus Voltages

The CAN protocol specifies that if recessive and dominant bits are simultaneously applied to the CAN bus by two
different nodes, the bus must have the dominant bit. This can be related to a wired AND analogy—the bus does not
have a recessive bit unless all nodes drive recessive bits. While in an idle state, the bus holds recessive bits.

2.2 Transfer Layer

Any node can start transmitting a message when the CAN bus is idle. Messages are transmitted through the bus in a
fixed format called a frame. CAN defines four frame types:

 Data Frame—carries data from a transmitter to a receiver

 Remote frame—transmitted by a CAN node to request transmission of a data frame

 Error Frame—transmitted by any unit on detecting an error on the bus

 Overload Frame—used to provide extra delay between the preceding and the succeeding data or remote frame

See Appendix A for format details for these frames.

A data frame is composed of seven-bit fields, as Figure 3 shows.

Figure 3. CAN Data Frame

Data Frame

Start of Frame

Arbitration Field Control Field Data Field CRC Field

ACK Field

End of Frame

11-bit

identifier
0 to 8 Bytes

I

D

E

R

T

R

R0

Data

Length

Count

Arbitration Field: The arbitration field of a data frame consists of two parts: an IDENTIFIER and a Remote

Transmission Request (RTR) bit.

The identifier is used to describe the meaning of the data carried by the data frame. Each node on the bus checks the
identifier and decides whether to accept the message.

Based on the length of the identifier field, two types of CAN messages are defined: standard and extended.

A standard CAN message has an 11-bit identifier and an extended CAN message has a 29-bit identifier. Thus, a
standard CAN data frame can support 2

11
 different types of messages and an extended CAN data frame can support

2
29

 different messages.

The RTR bit is used to indicate whether the given frame is a data frame or a remote frame. The RTR bit is set
‗dominant‘ in a data frame and ‗recessive‘ in a remote frame.

Control Field: The control field of the data frame defines the number of data bytes in the data field. The control field

is six bits long, with four bits for data length and two bits reserved for future expansion.

Bit Pattern

1

0

CAN Bus

Voltages

2.5

1.4

3.6

0

V

CANL

CANH

DOMINANTRECESSIVE RECESSIVE

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 4

Data Field: The data field contains the data to be communicated.

CRC Field: The Cyclic Redundancy Check (CRC) field is for error checking. This field contains a bit sequence, which

is used to determine if the received frame contains any errors. The ACK field is used by the receiving nodes to
acknowledge that the frame was correctly received.

A node acting as a receiver can request the transmission of a particular message from its source. This is achieved
with the help of a remote frame. A remote frame is similar to a data frame except that it does not have a data field.

2.3 Bus Arbitration

If multiple nodes try to transmit at the same time, bus arbitration is done using identifier bits, as Figure 4 shows.
Using the property of dominant bits described previously, after transmitting a bit on to the bus, each node checks if
the bus state is the same as the bit that it transmitted. If they are the same, each node transmits the next bit. If they
are different, the node stops transmitting and starts to receive the message on the bus. This is called the ‗listen only‘
mode.

Figure 4. Bus Arbitration in CAN

Node A

Node B

Node C

Bus State

Control Data

Listen Only

Listen Only

Control Data

S

O

F

S

O

F

S

O

F

S

O

F

 10 9 8 7 6 5 4 3 2 1 0

R

T

R

R

T

R

Since each node reads back the bus after transmitting each bit, the bit duration must be larger than the largest
propagation delay in the bus, to ensure that a collision does not go undetected. Therefore, the transmitted bit is read
back after a delay to compensate for the propagation delay. The instant at which the bus is read back is called a
"sample point", as Figure 5 shows.

The amount of time required to transmit a single bit is called the "bit time". In the CAN specification, bit time is
expressed in terms of time quanta (TQ). A time quantum is a fixed unit of time derived from the oscillator period, as
Figure 5 shows. The oscillator frequency is divided by a factor called Baud Rate Prescaler (BRP) to obtain the CAN
clock frequency.

Figure 5. Derivation of Bit Time from Oscillator

Oscillator

Sync-Seg

(fixed)

1 TQ

TSEG1

N1 TQ, user definable

TSEG2

N2 TQ, user definable

1 Bit Time

10 - 20 TQ, user definable

Baud Rate Prescaler (BRP),

user definable

CAN Clock

CAN Bit

Period

Sample Point

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 5

At the start of the Sync Segment, or first TQ, the transmitter begins to drive the bit on to the bus. The transmitter
continues to drive the bus throughout the bit time, and after a defined amount of time samples the bus for a collision.
The time is determined by setting parameters TSEG1 and TSEG2; see Figure 18 on page 14. Generally, the sample
point should be 60% to 80% of the bit time.

2.4 Error Management in CAN

A CAN node detects and handles five types of errors:

 Bit error—A bit error is detected by the transmitter when it finds that the bit transmitted and the bit on the bus are
not the same.

 Form error—A form error is detected when there is any deviation in the message fixed format. A data length
count (DLC) greater than 8 bytes is also considered a form error.

 Stuff error—Whenever a transmitter detects five consecutive bits of identical value in the bit stream to be
transmitted, it automatically inserts a complementary bit into the stream. This is called bit stuffing. A stuff error is
detected when six consecutive bits of identical value are detected.

 CRC error—A CRC error is detected when the value indicated by the CRC field of a frame does not match the
frame's expected CRC value.

 Acknowledge error—An acknowledge error is detected by the transmitter if an acknowledgement (a ‗dominant‘
bit) is not obtained during the acknowledge field of frame.

Bit errors and acknowledge errors are detected by the transmitter, and stuff errors, CRC errors, and form errors are
detected by the receiver. If a message fails any of these error detection methods, the message is not accepted and
the receiving node generates an error frame. The transmitting node, then, re-transmits the message until it is
received correctly.

If a faulty node hangs the bus by continuously retransmitting an error frame, its transmit capability is removed after
the number of errors equals the error limit. Each node maintains error counters for transmit and receive errors, which
are incremented after detecting corresponding errors. Depending upon the value of the error counters, a CAN node
can be in three different states:

 Error Active State—A node is in the "error active" state if the transmit or receive error counters are less than or
equal to 127. An error active node can have normal bus communication.

 Error Passive State—A node is in the "error passive" state if the transmit or receive error counter value is greater
than or equal to 128. An error passive node can have normal bus communication.

 Bus Off State—A node is in the "bus off" state if the transmit error counter is greater than or equal to 256. A node
that is in bus off does not have any bus communication. It has no effect on the bus.

3 CAN in PSoC

3.1 Hardware

The CAN block in PSoC 3 and PSoC 5LP, shown in Figure 6 on page 6, is compliant with the CAN 2.0a and 2.0b
standards. However, it requires an external transceiver to level shift the output voltages and to make it compatible
with the CAN protocol. The TJA1050 from NXP or the SN65HVD1050-EP from TI can be used as an external
transceiver. These devices translate between the bit pattern and bus voltages, as Figure 2 on page 3 shows.

With this application note, the Cypress kit CY8CKIT-017 uses the TJA1050 as the external transceiver, as Figure 7
on page 6 shows.

http://www.cypress.com/
http://www.cypress.com/?rID=40215

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 6

Figure 6. CAN Block Diagram

Memory Buffer

(SRAM)

Memory

Arbiter

Transmit

Message

Handler

Receive

Message

Handler

CAN Framer

Advanced

Peripheral Bus

(APB) Coupler

Interrupt Controller

Control and

Command

Status and

Configuration

CAN Module

To

CPU/PHUB

CAN

Bus

Figure 7. Hardware Connections for Implementing CAN Network

VDD

VSS

Tx_En

RX

VDD

VSS

RX

Tx_En

C_TX

C_RX

C_EN

C_TX

C_RX

C_EN

CAN_H CAN_H

CAN_L CAN_L

5 V
5 V

CY8C3866AXI

PSoC 3

CY8C3866AXI

PSoC 3

CY8CKIT-017 CY8CKIT-017

TX TX

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 7

3.2 The CAN Component

Figure 8 shows how the CAN Component is displayed on the PSoC Creator schematic.

Figure 8. CAN Component in PSoC Creator

PSoC offers two different modes for CAN communication: Full CAN and Basic CAN. The following are the important
differences between a full CAN message and a Basic CAN message:

 A Full CAN communication can be easily set up with the help of a GUI, with a very limited amount of
programming involved. Basic CAN requires all of the parameters to be set in firmware.

 Full CAN uses hardware for message filtering. Basic CAN requires the CPU to be interrupted each time a
message is received, to determine whether it is accepted or not.

 Full CAN can only receive a single type of message for each mailbox
1
 whereas Basic CAN can accept messages

with a range of identifiers for each mailbox.

The following section explains how to configure the CAN Component for a Full CAN communication. The steps below
describe how to configure two PSoC devices, each in a separate development kit (DVK). The CAN Component in one
PSoC is configured as the transmitter and the CAN Component in the other PSoC is configured as the receiver.

Note: Only the options relevant to this application note are described. See the CAN Component datasheet for a
detailed description of all the options available with the CAN Component.

3.3 PSoC Creator Projects

Do the following steps to build projects to demonstrate basic CAN:

1. Open PSoC Creator and create a new project (File > New > Project). Name the project ‗Receiver‘.

2. Drag and drop the CAN Controller Macro from the Component Catalog to the TopDesign schematic, as Figure 9
shows.

Figure 9. CAN Controller Macro in Component Catalog

1
 A mailbox is a set of input / output buffers for receiving and transmitting CAN messages.

http://www.cypress.com/
http://www.cypress.com/?rID=46443

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 8

3. Drag and drop the character LCD Component from the Component Catalog to the TopDesign schematic. This is
available under the folder 'Display'. Figure 10 shows the complete schematic.

Figure 10. Completed TopDesign

4. Double-click on the CAN Component in the TopDesign to open the configuration window.

3.3.1 CAN General Configurat ion

Figure 11 shows the general configuration tab for the PSoC Creator CAN Component.

Figure 11. General Settings Tab for CAN Component

5. Ensure that the Add Transceiver Signal checkbox is checked. This is enabled by default.

The Add Transceiver Signal option in the General Configuration tab enables/disables the tx_en signal in the CAN
Component. This signal is used to connect to the enable pin of the external transceiver.

6. Set the Transmit Buffer Arbitration to be ‗Round-Robin‘.

The Round Robin option ensures that all transmit mailboxes are given equal opportunity to transmit, whereas the
fixed priority option assigns priorities to mailboxes according to which messages are transmitted.

7. Set the Bus-Off Restart method to be ‗Manual‘.

Bus-Off restart can be done either manually or automatically, monitoring the number of transmit errors.

8. Select the CAN Bus Synchronization Logic to be 'R' to 'D'.

A clock signal is not transmitted in a CAN network. Instead, clocks of all the receiving nodes are synchronized at
the falling edge of the start of frame (SOF) bit sent by the transmitter. Subsequent edges are also used for
synchronizing the clocks, to accommodate for the small drifts in clocks between different nodes.

The synchronization can be done on either recessive to dominant ('R' to 'D') transitions or on both edges
(recessive to dominant and dominant to recessive).

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 9

3.3.2 CAN Interrupt Configurat ion

Figure 12 shows the interrupt settings tab for the CAN Component. Use this tab to enable or disable interrupts on a
number of events. If an interrupt is enabled, PSoC executes an Interrupt Service Routine (ISR) when that event
occurs.

The Message Received and Bus Off State interrupts are selected by default. The Message Received interrupt
automatically calls the ReceiveMsgx() function in CAN_TX_RX_func.c.

Figure 12. Interrupt Settings Tab for CAN Component

Make sure that the check boxes 'Enable Interrupts', 'Message Received', and 'Bus Off State' are checked, to enable
these interrupts. All other boxes should be unchecked.

3.3.3 CAN Receive Buffer

The CAN Component has 16 input buffers, or mailboxes, for receiving messages. Thus, the CAN Component can
receive at most 16 different CAN message types.

The mailboxes are numbered from 0 to 15 by default and can be replaced with any name of your choice. To do this,
select the "Full" mode, as Figure 13 shows. Selecting Full mode enables other configurable options in the row.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 10

Figure 13. Receive Buffer Settings for CAN Component

1. Select checkboxes, as Figure 13 shows, to enable a Full mailbox with ID 0x2FF. The ID field is used to define
the identifier for the message to be received in the corresponding mailbox, and can be set to any 11-bit value.

2. Check the IRQ box to trigger an interrupt when a message is received in that mailbox.

This completes configuration of the CAN Component on the receiver side. The transmit buffers need not be
configured in this case, since this node does not need to transmit a message.

3.3.4 CAN Transmit Buf fer

Now, let us configure the transmitter side. Since we do this for the other PSoC, we need to create another project for
that PSoC.

1. Add another project to the Workspace: Right-click on the Workspace name inside the Workspace Explorer
window and select Add > New Project. Name this project ‗Transmitter‘.

2. Drag and drop the CAN Controller Macro into the TopDesign of this project. Configure the CAN Component as
described in Sections 3.3.1 to 3.3.3 similar to the receiver side.

The Transmit Buffers tab is used to configure the transmit mailboxes, as Figure 14 shows. A transmit mailbox can be
either Full or Basic. Selecting Full mode enables other configurable options in the row.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 11

Figure 14. Transmit Buffer Settings for CAN Component

3. Select the checkboxes as Figure 14 shows, to enable a Full mailbox with ID 0x2FF, same as the receiver side.

The Data Length Count (DLC) field is 1 because we only need to transmit one byte.

3.3.5 Pin Configurat ions

The steps in this section apply to both the Receiver and Transmitter projects.

Let us now add and configure the pins in the projects. The Tx_1 and Rx_1 pins were included as part of the CAN
macro in step 2. We need to add a third pin, as Figure 10 shows.

1. Drag and drop a Digital Output Pin on to the TopDesign schematics of both the projects, as Figure 10 and Figure
15 show. Connect this pin to the tx_en output of the CAN Component. This pin is used to enable the external
transceiver.

Figure 15. Locating the Digital Output Pin

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 12

3. Open each project's Pins tab in the design wide resources (.cydwr) file in the Workspace Explorer, as Figure 16
shows.

Figure 16. Locating the .cydwr File

4. Assign the ports for each of the pins as Table 1 shows.

Table 1. Pin Assignments

Pin CY8CKIT-001 CY8CKIT-030/
CY8CKIT-050

Rx_1 P3[4] P3[4]

Tx_1 P3[3] P3[3]

Pin_1 P3[2] P3[2]

LCD_Char_1 P2[6:0] P2[6:0]

3.3.6 Clock Configurat ions

The steps in this section apply to both the Receiver and Transmitter projects.

The CAN protocol does not transmit a clock to synchronize the bits. Synchronization between nodes is done for every
bit transmitted, during the Sync Segment, as Figure 5 on page 4 shows. This requires the use of a highly accurate
oscillator for baud rates greater than 125 Kbps.

The CAN protocol specifies that the clock accuracy must be less than or equal to 0.5%. An error less than 0.1% can
be achieved in PSoC by using an external crystal. The clock tree dialog in the design wide resources file (that is, the
file with extension. cydwr) is used to configure this.

1. Open the design wide resources file, as Figure 17 shows. From the Clocks tab, click Edit Clocks. The clock tree

dialog opens.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 13

2. Enable the crystal - click the check box XTAL on the top left of the clock tree. Click the Configure button and

enter 24 MHz for the crystal frequency.

3. Select XTAL as the IMO source. Do not change other settings.

4. If your kit does not already have it, connect a 24-MHz crystal and two capacitors to pins P15[0] and P15[1]. See
a PSoC 3 or PSoC 5LP datasheet for details.

Figure 17. Clock Tree Configuration

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 14

3.3.7 CAN Timing Configurat ion

Figure 18 shows the timing configuration tab for the CAN Component.

Figure 18. Timing Settings Tab for CAN Component

1. Set the baud-rate to be 500 kbps. This automatically modifies the values as shown in Figure 18.

The baud rate determines the speed of communication between the devices. It can be as high as 1 Mbps. All
CAN nodes on a bus must operate at the same baud rate.

Note Selecting the baud rate only provides a list of possible timing parameters in the table (see Figure 18). You
must double-click on a row in the table to update the parameters in the respective fields.

2. Double-click on the row with BRP = 2, Time Quantum = 16, Sample Point = 75 and, SWJ = 4 (see Figure 18) to
add these values to the "Settings".

For best performance, select a row with a Sample Point value between 60 and 80 and a Variance of 0.

Synchronization Jump Width (SJW) is the number of time quanta that a sample point is allowed to vary from its
mean position. This value must be less than or equal to both TSEG1 and TSEG2 in Figure 5 on page 4.

The sample mode is the number of samples that are taken to determine the state of the bus. A single sample
mode or 3-sample mode may be chosen here.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 15

3.4 Firmware

The steps in this section apply to both the Receiver and Transmitter projects. A small amount of firmware must be
added to each project.

1. Build each project by selecting the menu Build > Build All Projects. The CAN Component and other API files
are automatically generated.

2. Open the main.c file of the transmitter project by double-clicking the file name inside the Workspace Explorer
(see Figure 19). Add the code from Code 1 to the main.c file.

Figure 19. Locating the main.c File

Code 1. Transmitter main.c Code

#include <device.h>

uint8 Tx_Data = 0;

int main()

{

 CAN_1_Start();

 LCD_Char_1_Start();

 CyGlobalIntEnable;

 for(;;) /* do forever */

 {

 LCD_Char_1_ClearDisplay();

 LCD_Char_1_Position(0,0);

 LCD_Char_1_PrintNumber(Tx_Data);

 CAN_1_SendMsg0();

 Tx_Data++;

 CyDelay(500);

 }

}

3. Open the CAN_1_TX_RX_func.c file in the Transmitter project by double-clicking the file name inside the
Workspace Explorer, as Figure 20 shows. This file is generated after the project is built.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 16

Figure 20. Locating CAN_1_TX_RX_func.c

4. Navigate to the lines:

/* `#START TX_RX_FUNCTION` */

/* `#END` */

5. Type the following line of code between these lines.

extern uint8 Tx_Data;

6. Locate the function CAN_1_SendMsg0() in the same file. Navigate to the code:

/* `#START MESSAGE_0_TRASMITTED` */

/* `#END` */

7. Type the following line of code between these lines.

CAN_1_TX_DATA_BYTE1(0) = Tx_Data;

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 17

8. Open the main.c file of the Receiver project by double-clicking on the filename inside the Workspace Explorer.
Add the code from Code 2 to the main.c file.

Code 2. Receiver main.c Code

#include <device.h>

uint8 Rx_Data;

int main()

{

 CAN_1_Start();

 LCD_Char_1_Start();

 CyGlobalIntEnable;

 for(;;) /* do forever */

 {

 LCD_Char_1_ClearDisplay();

 LCD_Char_1_Position(0,0);

 LCD_Char_1_PrintNumber(Rx_Data);

 }

}

9. Open the CAN_1_TX_RX_func.c file for the Receiver project by double-clicking the file name inside the
Workspace Explorer. This file is generated after the project is built.

10. Navigate to the lines:

/* `#START TX_RX_FUNCTION` */

/* `#END` */

11. Type the following line of code between these lines.

extern uint8 Rx_Data;

12. Locate the function CAN_1_ReceiveMsg0() in the same file. Navigate to the code:

/* `#START MESSAGE_0_RECEIVED` */

/* `#END` */

13. Type the following line of code between these lines.

Rx_Data = CAN_1_RX_DATA_BYTE1(0);

14. Build both projects and program each of them into the PSoC devices in the two kits. The program option is found
in the menu Debug in PSoC Creator: Debug > Program.

3.4.1 Other Fi rmware Considerat ions

Consider the following points when writing firmware for a CAN Component:

 The CAN Component needs to be initialized and started in the main.c file before using it.

 Global interrupts should be enabled to service the interrupt requests from the CAN Component.

 To transmit a Full CAN message from a particular transmit mailbox, call the CAN_TX_SendMsgx() function, where

x is replaced by the mailbox number and CAN_TX is the name given to the CAN Component in the PSoC
Creator TopDesign schematic.

 The necessary functions for transmitting and receiving Full CAN messages are available in the
CAN_TX_TX_RX_func.c file. This file is generated when the project is built.

Refer to the example projects provided with this application note to understand how the firmware is written to
configure CAN in PSoC.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 18

4 Implementing the Hardware

The PSoC outputs from the CAN Component are TX and RX. You must level-translate these outputs to obtain the
CANH and CANL signals. The CY8CKIT-017 Expansion Board Kit is used as an external transceiver for level
translation for the examples given in this application note. The CAN transceiver IC used in this kit is the TJA1050.
The transceiver may be implemented with minimal connections as Figure 25 on page 20 shows, where the CY8CKIT-
017 may be replaced by a TJA1050. A detailed figure is shown in Appendix B.

CAN requires only two wires for a CAN bus. In the CY8CKIT-017, a standard male-to-male DB9 connector may be
used to connect between two CAN nodes, as Figure 21 shows. The cable length between any two CAN nodes in a
CAN network should be restricted to the values shown in Table 2. These values are not mentioned in the CAN
specification, but are typical values used in a design.

Table 2. Typical Cable Lengths for Different Baud Rates

Baud Rate (in bits
per second)

Typical Cable Length
(in meters)

1 Mbps 40

500 kbps 100

250 kbps 200

125 kbps 500

10 kbps 6000

Figure 21. CAN Physical Connections

4.1 Working with a CAN Analyzer

A CAN analyzer is a device used to monitor the data traffic on a CAN bus, for debugging purposes. These devices
are available from manufacturers such as Microchip and Peak-system. Figure 22 shows a block diagram illustrating
the connection of a USB CAN analyzer to a CAN bus.

http://www.cypress.com/
http://www.cypress.com/?rID=40215
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en546534
http://www.peak-system.com/Hardware.69.0.html?&L=1

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 19

A CAN analyzer also requires software such as PCAN View to be installed on the computer system to which the CAN
analyzer is connected. This software interprets the data received by the CAN analyzer and shows it in the
application‘s interface.

Figure 22. USB CAN Analyzer Connected to a CAN Bus

CAN Node 1

(PSoC with

transceiver)

CAN Node 2

(PSoC with

transceiver)

CAN

Analyzer

CANH

CANL

Computer

(CAN Analyzer

Software)

USB

5 Example Projects

There are four example projects included with this application note.

5.1 Examples 1 and 2: Simplex Communication

Examples 1 and 2, shown in Figure 25 on page 20, demonstrate a simplex communication between two CAN nodes.

Example 1 acts as a transmitter. It monitors key presses on a switch and communicates the number of key presses
through CAN. Example 2 acts as the receiver. It receives the data and displays it on the character LCD display. The
flowcharts shown in Figure 23 and Figure 24 on page 20 illustrate the program flow for these examples.

Follow these steps to set up example projects 1 and 2:

1. Build the system as Figure 25 on page 20 shows. Two CY8CKIT-001 DVKs and two CY8CKIT-017 EBKs may be
used. A CY8CKIT-030 or CY8CKIT-050 DVK can also be used instead of a CY8CKIT-001 DVK. You can also
use a PSoC 5LP FreeSoC2 Development Board along with CY8CKIT-026 for testing these projects.

Note: The FreeSoC2 development kit does not have a crystal by default. You must populate a 24-MHz crystal on

the FreeSoC2 board if you wish to test this project on the FreeSoC2 development kit.

2. Open the project files and make the correct pin assignments in the .cydwr file. Pin assignments are as shown in

Table 3 and Table 4.

Table 3. Pin Usage for CAN Simplex Transmitter

Pin CY8CKIT-001 CY8CKIT-030 /
CY8CKIT-050

FreeSoC2
Kit

LCD_Tx P2[6:0] P2[6:0] N/A

Data_In P0[0] P6[1] P1[2]

RX P3[4] P3[4] P3[4]

TX P3[3] P3[3] P3[3]

Tx_En P3[2] P3[2] P3[2]

UART_Tx N/A N/A P4[0]

Table 4. Pin Usage for CAN Simplex Receiver

Pin CY8CKIT-001 CY8CKIT-030 /
CY8CKIT-050

FreeSoC2

LCD_Rx P2[6:0] P2[6:0] N/A

RX P3[4] P3[4] P3[4]

TX P3[3] P3[3] P3[3]

Tx_En P3[2] P3[2] P3[2]

UART_Tx N/A N/A P4[0]

http://www.cypress.com/
http://www.cypress.com/?rID=37464
http://www.cypress.com/?rID=40215
http://www.cypress.com/?rID=49524
http://www.cypress.com/?rID=51577
https://www.sparkfun.com/products/13229
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-026-can-and-lin-shield-kit

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 20

3. Build both projects. Program CAN_SimplexCommunication_Tx into the first PSoC device and
CAN_SimplexCommunication_Rx into the second PSoC device.

The CAN_SimplexCommunication_Tx project displays ‗TRANSMITTER‘ on the first row of the LCD display. The
second row shows the number of key presses registered on the Data_in pin.

The CAN_SimplexCommunication_Rx project displays ‗RECEIVER‘ on the first row of the LCD display. The
second row displays the data sent by the first PSoC through CAN. This is the same as the number of key
presses shown on the second row of the CAN_SimplexCommunication_Tx project.

Figure 23. Flowchart for Example 1 (Transmitter)

Start

Initialize CAN and

variables

Key press?

Increase count by 1

Transmit count and

Update LCD

Y

N

Figure 24. Flowchart for Example 2 (Receiver)

Start

Initialize CAN, LCD and

variables

Data

Received?

Update LCD Data

Y

N

Figure 25. Physical Configuration for Example 1 and 2 (CY8CKIT-030)

LCD

VDD

VSS

P3[3]

P3[2]

P3[4]

VDD

VSS

P3[3]

P3[4]

P3[2]

P2[6:0]

C_TX

C_RX

C_EN

C_TX

C_RX

C_EN

CAN_H CAN_H

CAN_L CAN_L

8

5 V
5 V

P0[0]

Switch

CY8C3866AXI

PSoC 3

(Project#1)

CY8C3866AXI

PSoC 3

(Project#2)

CY8CKIT-017 CY8CKIT-017

LCD

8

P2[6:0]

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 21

5.2 Examples 3 and 4: RTR feature in CAN

Examples 3 and 4, shown in Figure 28 on page 22, demonstrate the RTR feature of CAN.

Example 3 is named Node1 and Example 4 is named Node 2. Node 1 monitors the ADC data input and displays the
ADC value on the LCD display. In the event of an RTR request from Node 2, the current value of the ADC is
transmitted to Node 2. Node 2 continuously checks for a key press on a switch and issues an RTR request to Node 1
in event of a key press. The ADC data value sent by Node 1 is received by Node 2 and is displayed on its LCD
display. Flowcharts shown in Figure 26 and Figure 27 on page 22 illustrate the program flow for these examples.

Follow these steps to set up example projects 3 and 4:

1. Build the system as Figure 28 on 22 shows. Two CY8CKIT-001 DVKs and two CY8CKIT-017 EBKs may be used
for this. A CY8CKIT-030 or CY8CKIT-050 DVK can also be used instead of a CY8CKIT-001 DVK,

2. Open the project files and make the correct pin assignments in the .cydwr file. Pin assignments are as shown in
Table 5 and Table 6:

Table 5. Pin Usage for CAN_RTR_Node1

Pin CY8CKIT-001 CY8CKIT-030 /
CY8CKIT-050

LCD P2[6:0] P2[6:0]

ADC_In P0[0] P6[5]

RX P3[4] P3[4]

TX P3[3] P3[3]

Tx_En P3[2] P3[2]

Table 6. Pin Usage for CAN_RTR_Node2

Pin CY8CKIT-001 CY8CKIT–030 /
CY8CKIT-050

LCD P2[6:0] P2[6:0]

RTR_In P0[0] P6[1]

RX P3[4] P3[4]

TX P3[3] P3[3]

Tx_En P3[2] P3[2]

3. Build both projects. Program CAN_RTR_Node1 into the first PSoC and CAN_RTR_Node2 into the second
PSoC.

The CAN_RTR_Node1 project displays ‗Node1‘ on the first row and the present value of the ADC output on the
second row of the LCD display.

The CAN_RTR_Node2 project displays ‗Node2‘ on the first row of the LCD display. When the RTR_In key is
pressed, the first-row shows ‗RTR Sent‘ and the second row shows the value of the ADC output received from
Node1 in response to the RTR.

http://www.cypress.com/
http://www.cypress.com/?rID=37464
http://www.cypress.com/?rID=40215
http://www.cypress.com/?rID=49524
http://www.cypress.com/?rID=51577

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 22

Figure 26. Flowchart for Example 3 (Node 1)

Start

Initialize CAN, ADC,

LCD and variables

RTR

Request?

Transmit ADC Value

Y

N

Get ADC Value

Display on LCD

Figure 27. Flowchart for Example 4 (Node 2)

Start

Initialize CAN, LCD

and variables

Key Press?

Send RTR request

Y

N

Value Update on LCD

Figure 28. Physical Configurations for Examples 3 and 4

VDD

VSS

P3[3]

P3[2]

P3[4]

VDD

VSS

P3[3]

P3[4]

P3[2]

P2[6:0]

C_TX

C_RX

C_EN

C_TX

C_RX

C_EN

CAN_H CAN_H

CAN_L CAN_L

8

5 V
5 V

P0[0]

CY8C3866AXI

PSoC 3

(Project#3)

CY8C3866AXI

PSoC 3

(Project#4)

CY8CKIT-017 CY8CKIT-017

5 V

VIN

LCDLCD

8

P2[6:0]

P0[0]

RTR_Switch

For proper operation of these projects, ensure that jumper JP2 of the CY8CKIT-017 is populated. In addition, jumper
JP6 of the CY8CKIT-017 should be connected between V5_0 and VDD. A standard male-to-male DB9 connector can
be used to connect between two CAN nodes.

Two more example projects are available in PSoC Creator Example Projects.

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 23

6 Summary

CAN is a reliable serial communication protocol used mainly in automotive applications. The protocol allows bi-
directional communication between devices and offers a flexible network.

Cypress PSoC 3 and PSoC 5LP, along with PSoC Creator, support the CAN 2.0a and CAN 2.0b specifications and
offer a user-friendly interface and collection of APIs to set up the CAN network with ease. This application note
guides you in implementing CAN with PSoC smoothly.

7 Related Resources

 CE95282 - CAN as Control Node with PSoC 3/5LP

Demonstrates CAN Configuration, transmitting and receiving Full messages, and handling Tx and Rx errors.

 CE95283 - CAN as Remove Node with PSoC 3/5LP

Demonstrates CAN Configuration, transmitting and receiving Full messages, and handling Tx and Rx errors.

 CE97311 - PSoC® 4 M: CAN Simplex Communication with CapSense®

Demonstrates how to send and receive data over the CAN bus. he status of the CapSense® button is sent over
the CAN to control LEDs at the CAN receiver.

 CE211027 - CAN Communication Between FM4-S6E2Gx Series and PSoC® 4 M-Series Using CY8CKIT- 026
CAN and LIN Shield Kit

Demonstrates CAN communication between FM4-S6E2Gx Series & PSoC® 4 M-Series using the CY8CKIT-026
CAN and LIN Shield Kit.

About the Author

Name: Ranjith M

Title: Applications Engineer

Background: Ranjith graduated from Government Engineering College, Thrissur with a Bachelor's
Degree in Electronics and Communications Engineering.

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/ce95282-can-control-node-psoc-35lp
http://www.cypress.com/documentation/code-examples/ce95283-can-remove-node-psoc-35lp?source=search&keywords=CAN&cat=software_tools
http://www.cypress.com/documentation/code-examples/ce97311-psoc-4-m-can-simplex-communication-capsense?source=search&keywords=CAN&cat=software_tools
http://www.cypress.com/documentation/code-examples/ce211027-can-communication-between-fm4-s6e2gx-series-and-psoc-4-m-series
http://www.cypress.com/documentation/code-examples/ce211027-can-communication-between-fm4-s6e2gx-series-and-psoc-4-m-series

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 24

Appendix A. Data Frames

START

OF

FRAME

IDENTIFIER

(11 BITS)
RTR IDE R0

DLC

(4 BITS)

DATA

(MAXIMUM 8 BYTES)

CRC

FIELD

ACK

FIELD

END OF

FRAME

INTERFRAME

SPACE

INTERFRAME

SPACE

ARBITRATION

FIELD

CONTROL

FIELD

STANDARD DATA FRAME

START

OF

FRAME

IDENTIFIER

(11 BITS)
RTR R0

DLC

(4 BITS)

DATA

(MAXIMUM 8 BYTES)

CRC

FIELD

ACK

FIELD

END OF

FRAME

INTERFRAME

SPACE

INTERFRAME

SPACE

ARBITRATION

FIELD

CONTROL

FIELD

EXTENDED DATA FRAME

SRR IDE
IDENTIFIER

(18 BITS)
R1

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 25

Appendix B. Interfacing PSoC with TJA1050 CAN Transceiver

TXD

RXD

S
CANH

CANL

GND

VCC

TJA1050PSoC
P3[2]

P3[3]

P3[4]

GND

VDD

Interfacing with TJA1050

To

CAN BUS

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 26

Document History

Document Title: AN52701 - PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

Document Number: 001-52701

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2710279 ANUP 05/22/2009 New application note

*A 2763879 ANUP 09/15/2009 Updated Figure 2: Basic CAN Frame Schematic

*B 2947435 ANUP 06/08/2010 Changed document title.
Updated to PSoC Creator Beta 4.1 and made the projects PSoC 5 compatible

*C 3032350 ANUP 09/17/2010 Removed CAN_Init() from example code. Also moved CAN_RegisterInit() APIs
after start API in page 10.

*D 3174976 ANUP 02/16/2011 Updated Setting Acceptance Filter.

Added Code Example.

Added CAN Clock Accuracy.

*E 3292004 LRDK 06/24/2011 Rewritten in Simplified English.

*F 3445166 DASG 11/22/2011 Project updated to PSoC Creator 2.0.

Updated template.

*G 3756544 RNJT 11/12/2012 Changed title.

Complete rewrite of application note.

*H 3857178 RNJT 01/03/2013 Major changes in the section CAN in PSoC.

*I 4031275 RNJT 06/17/2013 Added note in the CAN Timing Configuration section.

*J 5371117 RNJT 08/24/2016 Updated the example projects to PSoC Creator 3.3 CP3

Updated Introduction section to add FM4 and PSoC 4 references

Updated example projects section to add FreeSoC2 board support

Updated template

*K 5698515 AESATP12 06/13/2017 Updated logo and copyright

*L 5850993 AJYA 08/18/2017 Project updated to PSoC Creator 4.1

Updated Section PSoC Creator Projects

Added references to the related code example

http://www.cypress.com/

PSoC 3 and PSoC 5LP – Getting Started with Controller Area Network (CAN)

www.cypress.com Document No.001-52701 Rev. *L 27

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‘s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (―Cypress‖). This document, including any software or firmware included or referenced in this document (―Software‖), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress‘s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (―Unintended Uses‖). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Why Use CAN?
	Why Use PSoC?

	CAN Basics
	Physical Layer
	Transfer Layer
	Bus Arbitration
	Error Management in CAN

	CAN in PSoC
	Hardware
	The CAN Component
	PSoC Creator Projects
	CAN General Configuration
	CAN Interrupt Configuration
	CAN Receive Buffer
	CAN Transmit Buffer
	Pin Configurations
	Clock Configurations
	CAN Timing Configuration

	Firmware
	Other Firmware Considerations

	Implementing the Hardware
	Working with a CAN Analyzer

	Example Projects
	Examples 1 and 2: Simplex Communication
	Examples 3 and 4: RTR feature in CAN

	Summary
	Related Resources
	Data Frames
	Interfacing PSoC with TJA1050 CAN Transceiver
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

