Latch-up prediction for SCR TVS device

Latch-up considerations in highspeed interfaces

About this document

Scope and purpose

1. This document describes the different characteristic of ESD protection devices (TVS diodes) from the standard one up to the most efficient SCR (Silicon Controlled Rectifier) structures.
2. ESD protection devices based on SCR structures can cause a “latch-up”. Based on a “load-line analysis” stable operating conditions of SCR based ESD protection devices in various applications become visible.
3. A detailed latch-up analysis is performed for HighSpeed interfaces e.g. USB3.x, HDMI,…

Intended audience

This document is intended for design / application engineers using Infineon’s high performance SCR based ESD protection devices without latch-up issues.

Table of Contents

About this document .. 1
Table of Contents ... 1
List of Tables .. 2

1 Introduction of AN525 ... 3
1.1 ESD protection – inline with miniaturization of the semiconductors ... 3

2 Principal I/V response of different TVS diode types ... 4
2.1 How to deal with a potential latch-up in SCR devices ... 5
2.2 Load Line analysis to predict the latch-up in the I/V plane ... 6

3 Latch-up situation for highspeed data interfaces ... 10
3.1 Latch-up analysis for the USB2.0 data bus ... 10
3.2 USB3.0 / 3.1 Latch-up analysis .. 12
3.3 Thunderbolt Version 1,2,3 ... 14
3.4 HDMI Version 1.3, 1.4 and 2.0 and DVI .. 15
3.5 DisplayPort (DP) interface ... 16
3.6 Conclusion .. 17

4 Authors .. 18

5 Reference ... 19

Revision History ... 19
Latch-up prediction for SCR TVS device
Latch-up considerations in highspeed interfaces

List of Figures and Tables

List of Figures

Figure 1 ESD protection device characteristic: 1a: Pure Zener 1b: snap-back device4
Figure 2 SCR ESD protection device. a: uni-directional SCR b: bi-directional SCR5
Figure 3 Latch-up path for the bi-directional SCR ESD device ...6
Figure 4 Load line example ………………………………………………………………………………………6
Figure 5 Schematic of the TVS environment for Load-Line Analysis ..7
Figure 6 Load line analysis for a pn-diode like TVS diode – latch-up save ..7
Figure 7 Load line analysis for a SCR based TVS diode – latch-up critical ...7
Figure 8 Inherent latch-up save by high Rs ..8
Figure 9 Inherent latch-up save by high Rs ..8
Figure 10 DC supply lines are latch-up free in case of Vcc > Vhold for a SCR based ESD protection device8
Figure 11 Latch-up “self turn off” of DC bias free AC line ...9
Figure 12 Latch-up situation for a DC biased large signal RF/AC line ..9
Figure 13 USB2.0 LS/FS/HS Transceiver [3]. ...10
Figure 14 Equivalent and simplified circuit of LS and FS driver for USB2.0 Latch-up analysis10
Figure 15 Equivalent circuit of USB2.0 HS driver environment to check latch-up11
Figure 16 SuperSpeed connection between two USB3.x devices acc. case 2,312
Figure 17 Single-ended and Differential Voltage Levels on USB [4] ...12
Figure 18 Typical ESD protection structure regarding latch-up in USB3.x SS-lines (case2)13
Figure 19 Thunderbolt signaling lanes for TX and RX (2 times per main link)14
Figure 20 Principle structure of one TMDS line (w.o. Rsresource) ...15
Figure 21 HDMI signaling on one line ..15
Figure 22 DisplayPort differential pair w. ESD protection (4 times per main link)16
Figure 23 DisplayPort signaling on one line ..17

List of Tables
1 Introduction of AN525

1.1 ESD protection – inline with miniaturization of the semiconductors

Increasing data rate in digital interface circuits and continuous miniaturization of semiconductor structures, ESD susceptibility becomes a severe problem. Dedicated ESD protection, especially for the external high speed interfaces is mandatory on the PCB in front of the IC I/Os. Moving forward in the technology nodes, the maximum tolerated ESD clamping voltage (V_{t2}) at the IC I/Os vs. GND and the maximum ESD current (I_{t2}) capability continuously decreases.

To ensure the ESD robustness of an entire system, on-board system ESD protection is implemented on the PCB close to the ESD entry point, normally close to the external interface connector. This on-board ESD protection structure is called “System Level ESD Protection”.

System level ESD robustness is tested according to IEC61000-4-2.

Transmission Line Pulse measurement technique is used to compare the high current IV characteristic of ESD protection devices as well as IC I/Os. The TLP measurement is well defined, highly reproducible and fits to the ESD System Level performance of the ESD device or the IC I/O quite well. Referring to the Infineon Application Note AN210 describing the TLP measurements principle [1].

High speed interfaces e.g. USB3.x, DisplayPort (DP), Thunderbolt, HDMI2.0 withstand only a low maximum ESD clamping voltage (V_{t2}) at the I/Os, sometimes lower than the IC´s supply voltage at the Vcc node. This low V_{t2} in combination with a low maximum ESD current (I_{t2}) increases the effort for system level ESD protection according IEC61000-4-2.
2 Principal I/V response of different TVS diode types

State-of-the-art system level ESD protection devices are based on pn-diodes or npn-structures operating in reverse condition (Figure 1). Exceeding the trigger voltage (e.g. via an ESD event), the ESD clamping voltage of the “Avalanche TVS diode” stays above the trigger voltage (Vt1). For the “Snapback TVS diode type” clamping voltage reduces below trigger voltage (Vt1) to a holding voltage (Vh).

The snapback TVS diode type achieves a lower ESD clamping voltage compared to Avalanche TVS diodes.

Abbreviation

- VR: Reverse voltage
- Vr1: Trigger voltage
- Vr2: VCL max: < Vr2 (destruction limit)
- VRWM: Reverse working voltage max.
- VR: Reverse current
- Itr1: Trigger current
- Itr2: VTLR max: < Itr2 (destruction limit)
- VR: Reverse current
- Itr: Trigger current
- Itr: Breakdown current
- Itr: Forward current
- VR: Reverse current
- Itr: Peak pulse current
- Itr: TLP current
- IHold: Holding voltage
- IHold: Holding current
- IF: Forward voltage

The ESD performance of TVS devices is improved by continuous reduction of the ESD clamping voltage.

- Increased snapback has to consider the working voltage of the application. For direct current (DC) supply it is mandatory to ensure Vhold > Vcc
- Lowest dynamic resistance.

SCR based TVS structures have a much lower holding voltage (Vhold) after triggering compared to snapback TVS diodes (Figure 2).
Exceeding the trigger voltage of a SCR device, the clamping voltage across the ESD device (V_{clamp}) reduces to a significant lower value of less than 2V and reduces the residual ESD stress for the IC I/Os significantly.

$$R_{\text{DYN-low}} = \frac{\Delta V_t}{\Delta I}$$

$$R_{\text{DYN-rev}} = \frac{\Delta V_t}{\Delta I}$$

Figure 2 SCR ESD protection device. a: uni-directional SCR b: bi-directional SCR

2.1 How to deal with a potential latch-up in SCR devices

The strong snap-back to a low holding voltage (V_{hold}) cause a potential risk for “latch-up”. The SCR structure moves into latch-up mode by an ESD event / voltage glitch ($V > V_{\text{trig}}$) and is “locked” in conducting mode (ON mode). The supply bias (-voltage and -current) keeps the latched SCR device ON state even after the ESD strike decays. The SCR device drains a huge (DC) current through, resulting in a device damage caused by Electrical Over-Stress (EOS).

Requirements to drive the SCR device into latch-up mode (both topics must be fulfilled):

- applied bias voltage must be higher than V_{hold} ($V > V_{\text{hold}}$) AND
- applied bias source current higher than I_{hold} ($I > I_{\text{hold}}$)

Latch-up state is terminated by: $V < V_{\text{hold}}$ OR $I < I_{\text{hold}}$ OR power down

An SCR based ESD protection approach must be inherent latch-up safe!

SCR structure is inherent latch-up safe if: $V_{\text{hold}} > V_{\text{bias-max}}$ OR $I_{\text{hold}} > I_{\text{bias-max}}$

SCR based ESD protection devices utilize the strong snapback to achieve improved ESD performance (lower clamping voltage). Therefore, $V_{\text{hold}} > V_{\text{bias-max}}$ is NOT always fulfilled and $I_{\text{hold}} > I_{\text{bias-max}}$ is mandatory.
Latch-up prediction for SCR TVS device
Latch-up considerations in highspeed interfaces

Principal I/V response of different TVS diode types

In Figure 3 the red trace shows the dynamic I/V behavior for different TLP/ESD events applied to the SCR based protection device. For the TLP/ESD event the \(I_{TLP} \) always passes the \(I_{\text{hold}} \) area and stays above \(I_{\text{hold}} \) as long the TLP/ESD pulse lasts. After the TLP/ESD pulse decays, \(I_{TLP} \) decreases (blue trace). In case there is a \(V_{\text{bias}} > V_{\text{hold}} \) applied which can serve an \(I_{\text{bias}} > I_{\text{hold}} \), the SCR device remains in the \(I_{\text{hold}} \) respectively \(V_{\text{hold}} \) region and is locked in latch-up mode.

SCR characteristic rising ESD strike
- triggered by an ESD strike \((V_{t1}, I_{t1}) \),
- snapback to low hold voltage \((V_{h1}, I_{h1}) \)
- follow the resistive branch of large signal I/V curve

\[\Rightarrow \text{low clamping voltage @ high ESD current} \]

SCR characteristic falling ESD strike
- follow down the resistive branch of I/V curve to \(V_{h2} \)
- - IF NO bias / bias + signal < \(V_{h1} \) \(\Rightarrow \) SCR is “OPEN”
- - IF bias/ bias + signal >= \(V_{h2} \) & \(I_{\text{bias}} + \text{signal} > I_{h1} \)

\[\Rightarrow \text{SCR locks in the “conducting latch-up” state} \]

![Figure 3](image)

Figure 3 Latch-up path for the bi-directional SCR ESD device

2.2 Load Line analysis to predict the latch-up in the I/V plane

For a better understanding of the latch-up scenario we perform a load-line analysis [2] for actual high speed interfaces. The high speed PHY driver is described by a voltage source, a serial driver resistance and the protection device (TVS diode) (Fehler! Verweisquelle konnte nicht gefunden werden.).

On one hand (protection device = OPEN), the maximum possible voltage across the protection device is visible: \(V_{dd} @ I_{ss} = 0 \) (ref. point #1) ref. to (Figure 4).

On the other hand (protection device = SHORT), the maximum current through the protection device is given by: \(I_{ss,\text{max}} = V_{dd}/R_s \) (ref. point #2), (Figure 4).

In the current–voltage plane (I/V-plane), a line (the load–line) links these two points (Figure 6.). Any point located above this load–line is a stable operating point of the application circuit.

In a load line analysis the linear I/V characteristic of the load line and the nonlinear characteristic of a TVS diode are superimposed (Figure 6).

![Figure 4](image)

Figure 4 Load line example
Latch-up prediction for SCR TVS device

Latch-up considerations in highspeed interfaces

Principal I/V response of different TVS diode types

For a pn-diode like TVS device characteristic, there is only one unique intersection point (operating point – OP). This stable OP is located before \(V_{\text{trigger}} \) and the correlating \(I_{\text{op}} \) is very low (leakage current). A pn-diode based ESD protection device is latch-up free, because of one unique OP (Figure 6).

A SCR based ESD protection device offers more than one intersection point, meaning several stable operation points. The lower one \((V_{\text{op1}}, I_{\text{op1}}) \) is the normal one in the leakage current domain. The other one \((V_{\text{op2}}, I_{\text{op2}}) \) is much more critical, because latch-up conditions are fulfilled (Figure 7).

The system becomes latch-up free after OP2 disappears (Figure 8, Figure 9).
To become inherent latch-up free following requirements have to be fulfilled:

- Increase of Rs value (Figure 8)
 Rs is defined by the application and can not be changed easily.
- Increase of the holding current (I_{hold}) of the SCR based ESD protection device (Figure 9).

![Figure 8](image1.png) **Inherent latch-up save by high Rs**

![Figure 9](image2.png) **Inherent latch-up save by high Rs**

A higher R_s in an application reduces the required minimum I_{hold} of the SCR based ESD protection device to reduce the latch-up risk. Applications with a low R_s, require a high I_{hold} for SCR based ESD protection devices.

Latch-up situation for DC supply line:

DC supply lines show a low R_s. Furthermore they are often buffered with a huge capacitor. In case $V_{\text{cc}} > V_{\text{hold}}$ of the SCR based ESD protection device, as high latch-up risk is present.

- Inherent latch-up free for DC applications: $V_{\text{hold}} > V_{\text{cc}}$

![Figure 10](image3.png) **DC supply lines are latch-up free in case of $V_{\text{cc}} > V_{\text{hold}}$ for a SCR based ESD protection device**
Latch-up situation for AC lines with and without bias:
The latch-up situation on AC lines is more relaxed.

Signals on DC bias free AC/RF lines are continuously alternating and stay below the trigger voltage of the ESD protection device. In case of an ESD event (trigger voltage is exceeded), the SCR based ESD protection device latches until the next AC signal period and terminate the latch-up state. This latch-up self turn-off capability makes the DC bias free AC/RF line latch-up save.

The trigger voltage and -current of the SCR based ESD protection device must be high enough to avoid clipping/distortion of the RF signal swing (Figure 11). RF signals induce displacement currents in the SCR structure which trigger the ESD protection device and lead to clipping/distortion of the RF signal.

The system is NOT inherent latch-up save, but terminates the latch-up after every RF period.

DC biased large signal RF/AC lines can benefit from the “ latch-up self turn off” behavior in case of a large RF/AV signal which falls below \(V_{\text{hold}} \) every swing/period (Figure 12).

For a biased small signal RF/AC lines, NO “ latch-up self turn off” effect is supported and the latch-up risk is identical to a normal signal line (Figure 7):

SCR structure is inherent latch-up safe if:

\[
V_{\text{hold}} > V_{\text{bias, max}} \quad \text{OR} \quad I_{\text{hold}} > I_{\text{bias, max}}
\]
Latch-up situation for highspeed data interfaces

3.1 Latch-up analysis for the USB2.0 data bus

USB2.0 transceivers (Tx/RX) can be limited to USB1.1 functionality, providing LowSpeed (LS) and FullSpeed (FS) modes only. Other USB2.0 transceivers (TX/RX) support LS, FS and HS mode (Figure 13). This has an impact on the final R_s value important for the required SCR holding current ($I_{\text{hold-SCR}}$). For USB2.0 specification we refer to [3].

Figure 13 USB2.0 LS/FS/HS Transceiver [3].

Basic requirement for latch-up in the 2.0 LS / FS system:

- V_{dd} @ driver output in “high” state (in front of R_s)
 NON latch-up: 3.6V max
- V_{dd} @ driver output in “high” state (after R_s)
 NON latch-up: ~3.6V max (RL>1k)
- $V_d >$ SCR´s holding voltage ($V_{\text{hold-SCR}}$)
- $I_{ss} =$ latch-up current
 $I_{ss} \geq$ SCR holding current ($I_{\text{hold-SCR}}$)

Figure 14 Equivalent and simplified circuit of LS and FS driver for USB2.0 Latch-up analysis
Latch-up prediction for SCR TVS device

Latch-up considerations in highspeed interfaces

Boundary conditions for USB2.0 TX/RX WITHOUT HS capability (refer to USB1.1 mode) [3], Figure 14:
- \(R_s \) (LS/FS mode only TX/RX sys.) [Ohm]: 28 min 44 max 28 wc

Boundary conditions for USB2.0 TX/RX WITH HS capability (typical USB2.0 transceiver) [3], Figure 14:
- \(R_s \) (LS/FS mode in HS TX/RX sys.) [Ohm]: 40 min 50 max 40 wc
- Driver \(V_{dd} \) [V]: 2.8 min 3.6 max 3.6 wc

\(V_{dd,wc} \) is lower in loading case e.g. in latch-up case. The pull-up (\(R_{pu} \)) and pull-down (\(R_{pd} \)) resistors are \(\sim 1k5 \) Ohm respectively \(\sim 15 \) kOhm. Because of their high value respectively to \(R_s \) they are not taken into account here.

To stay inherent latchup save @ \(V_{dd} = 3.6V \):

\[V_{hold,SCR} > 3.6V \quad \text{OR} \quad I_{hold,SCR} = \left(V_{dd,wc} - V_{hold,SCR} \right) / R_s \quad \text{is required} \]

Example for USB2.0 TX/RX with HS capability (typical USB2.0 transceiver):
- \(V_{hold,SCR} = 2V \)\(\quad I_{hold,SCR} \geq (3.6V-2V)/40 \text{ Ohm} = 40 \text{mA} \)
- \(V_{hold,SCR} = 1V \)\(\quad I_{hold,SCR} \geq (3.6V-1V)/40 \text{ Ohm} = 65 \text{mA} \)

Important remark:
The latch-up possibility in the USB2.0 LS/FS system is very low, because the fundamental requirement is a permanent “high” triggered LS/FS signal source, fixed to \(V_{dd} \). This happens only in present of a close (shielded) link with connection to the responding RX side (Figure 14). High glitches on D+/D- exceeding the trigger voltage of the SCR, or residual ESD impact through cable-jacks or via airgaps or directly into the equipment are remaining issues for latch-up in USB2.0.

For USB2.0 (HS) we face following situation.

![Figure 15](image)

Figure 15 Equivalent circuit of USB2.0 HS driver environment to check latch-up

- \(R_s \) (HS mode) [Ohm]: 40.5 min 49.5 max
- Driver \(I_{ss} \) [mA]: 16.2 min 19.6 max 19.6 wc

Scenario1 – complete USB link w. TX and RX section. \(I_{ss} \) is high state (\(I_{ss} \) via \(R_s \)/\(R_l \)):
Driver \(V_{dd} \) [V] = \(I_{ss} \times R_s \) \(\Rightarrow 19.6 \text{mA} \times 25 \text{ Ohm} = \sim 0.5V \)

Scenario2 (should NOT be possible) – broken USB link. TX and RX are separated. \(I_{ss} \) is high state via \(R_s \):
Driver \(V_{dd} \) [V] = \(I_{ss} \times R_s \) \(\Rightarrow 19.6 \text{mA} \times 50 \text{ Ohm} = \sim 1V \)

Summary: USB2.0 LS/FS and for HS PHY types
Latch-up prediction for SCR TVS device
Latch-up considerations in highspeed interfaces
Latch-up situation for highspeed data interfaces

For USB2.0 LS/FS there is a certain minor Latch-up risk for $V_{hold,SCR} < 3.6V$, BUT a latch-up situation can only occur under very special circumstances.

The USB2.0 HS link is inherent latch-up save for $V_{hold,SCR} > -0.5V$ (1.0V).

3.2 USB3.0 / 3.1 Latch-up analysis

Universal Serial Bus Revision 3.1 Specification [4]

The USB 3.0/3.1 interface uses two differential pairs for SuperSpeed (SS) Gen1 (5Gb/s) or for Gen2 (10Gb/s). The SSTX pair is dedicated for TX (transmit), the SSRX for RX (receive). The third differential lines are used for the USB2.0 HighSpeed capable link. The latch-up situation for the USB2.0 HS link was discussed in the previous section. Power supply e.g. for the “device”, is supported by a 5V Vcc line and the correlating GND line.

The data lines are AC coupled at the TX side, resulting in a different common mode at the IC side and the connector side of the AC coupling capacitor. The value of the coupling capacitor is huge, because the “low frequency communication signal” must pass. Furthermore the low side cut off frequency of the SuperSpeed Gen2 (10Gb/s) data signal (coding 128b/132bit) is low.

According USB3.0/3.1 specification [4] http://www.usb.org/developers/docs/usb20_docs/ we are facing following waveform for V_{DIFF} and V_{CM} (Figure 17).

![Figure 16 SuperSpeed connection between two USB3.x devices acc. case 2,3](image)

![Figure 17 Single-ended and Differential Voltage Levels on USB [4]](image)
Latch-up prediction for SCR TVS device
Latch-up considerations in highspeed interfaces

Latch-up situation for highspeed data interfaces

There are 3 cases for potential latch-up scenarios on the USB3.0/3.1 SuperSpeed lines.

- **CASE 1 – closed / open link**: The ESD prot. device is placed between the TX PHY output and the AC coupl. cap. This case is NOT save for AC caps. ESD transients can destroy AC caps + latch-up risk @ TX.!!!.

Nevertheless, latch-up scenario for case 1 is rated as following:
The transmitter output at each line (TXp and TXn) is affected by V\text{DIFF} + V\text{CM}.

In the USB3.0 spec. [4] only V\text{DIFF}pp is specified for the “Transmitter Normative Electrical Parameters”. In “Transmitter Informative Electrical Parameters at Silicon Pads” V\text{CM} is stated.

\[V_{\text{DIFF}pp} = 1.2V \text{ max } \rightarrow V_{\text{DIFF}} = 0.5 \times V_{\text{DIFF}pp} \quad V_{\text{DIFF}} = 0.6V \text{ max} \] (Figure 17, Figure 18)

- V\text{CM} = 2.2V max, because NO I\text{CM} via Rs in NON latch-up mode.

“The Instantaneous allowed DC CM voltage at the con. side of the AC coupl. cap”

\[\Rightarrow \text{so we assume } V_{\text{CM}} = 2.2V \text{ max } \@ \text{transmitter side of AC coupling capacitors as well} \]

Combining V\text{CM} with V\text{DIFF} we get V\text{displ max @ TXp} and TXn vs. GND: 2.2V +0.6V = 2.8V

Boundary conditions for USB3.0/3.1 Gen1/2 TX/RX [4]

- Rs [Ohm]: 36 min 60 max 36 wc

To stay inherent latchup save @ V\text{displ max} = 2.8V:

\[V_{\text{hold SCR}} > 2.8V \quad \text{OR} \quad I_{\text{hold SCR}} >= (V_{\text{displ max}} - V_{\text{hold SCR}})/R_{\text{wct}} \quad \text{is required} \]

Example for I_{\text{hold SCR}} as a function of V_{\text{hold SCR}}:

- \(V_{\text{hold SCR}} = 2V \quad I_{\text{hold SCR}} >= \frac{(2.8V-2V)}{36 \text{ Ohm}} = \sim 22mA \quad \text{(ONLY TX-SCR latch)} \)
- \(V_{\text{hold SCR}} = 1V \quad I_{\text{hold SCR}} >= \frac{(2.8V-1V)}{36 \text{ Ohm}} = 50mA \quad \text{(ONLY TX-SCR latch)} \)

CASE 1 is NOT inherent latchup save under all conditions!!!!

CASE 1 is NOT the regular use case because of risk for AC coupling caps and the latch-up situation!

- **CASE 2-closed link**: The ESD prot. device is placed between the AC coupl. cap. and the USB3 con. (Figure 16).

CASE 2 Correct placed ESD protection. TX section and RX section connected via USB3 cable => closed link.

Major difference to case 1 is the SCR is NOT facing a permanent DC source any more. The AC blocking capacitor separates the DC-TX domain (V\text{CM-TX}) from the DC-RX TX domain (V\text{CM-RX}). On RX side there side NO DC source which can force a latch-up. According [4] for V\text{CM-RX} it is mentioned:

“Instantaneous allowed DC CM (V\text{CM-RX}) voltage at the connector side of the AC coupling capacitor is: 2.0V”

which is V\text{displacement}, generated by the TX section. The AC coupling capacitor is discharged quite fast via the DC path of the RX section.

![Diagram](image)

Figure 18 Typical ESD protection structure regarding latch-up in USB3.x SS-lines (case2)
CASE 2 is inherent latchup save under all conditions

- **CASE 3-open link**: The ESD device is placed acc. case 2, BUT the link is open. NO TX / RX connection.

Here we focus on the TX section (incl. ESD protection) BUT without connected RX section. The only difference respective case 2 is there is NO RX DC path. \(V_{\text{displacement}} \) is NOT discharged quite fast because of lacking RX DC path. We are facing up to 2V for \(V_{\text{CM-RX}} (V_o) \) in this case. If the SCR provides a \(V_{\text{hold-SCR}} = < 2V \), a latch-up is possible, until \(V_{\text{displacement}} \leq V_{\text{hold-SCR}} \) by discharging \((I_{\text{displacement}}) \). In the described scenario, no latch-up situation is possible.

CASE 3 is inherent latchup save.

Summary:

The USB3.0/3.1 SuperSpeed link is inherent latch-up save placing the SCR according case 2 and case3. In general, it is not recommended to use the ESD protection device according to case 1 anyway to avoid an ESD EOS for the AC coupling capacitors.

3.3 Thunderbolt Version 1,2,3

Thunderbolt interface was defined by INTEL to run highest data rate. Thunderbolt Version 1 and 2 provides 10Gb/s per lane, Version 3 is speeded up to 20Gb/s per lane. Each Thunderbolt connection shows 2 TX lanes and 2 RX lanes driving two TB channels. For Version 2 and Version 3 data on two lanes (two channels) can be logicaely aggregated ending up totally at 20Gb/s respectively 40Gb/s.

Figure 19 Thunderbolt signaling lanes for TX and RX (2 times per main link)

Following the recommendation for USB 3.x to place the ESD protection devices according to “case 2”, NO latch-up is possible because DC blocking capacitors are at both sides (source and sink) of the link. NO DC path between source and TVS or RX_bias to TVS is available. The only latch-up current is provided by the displacement / discharge current of the AC coupling capacitors.

Summary:

SCR based ESD protection devices are latch-up free for the Thunderbolt interface. TB is inherent latch-up save because the DC current is de-coupled from the TX PHY and the RX PHY (via AC coupling capacitors).
3.4 HDMI Version 1.3, 1.4 and 2.0 and DVI

HDMI and the DVI signal principle bases on TMDS (Transition-Minimized Differential Signaling) which is an application tailored version of LVDS (Low Voltage Differential Signaling). Latch-up scenario is checked for HDMI 1.3b [6]. In higher HDMI versions the principle is expected to be the same because of similar environment. For DVI, the signaling environment is the same. DVI and HDMI are treated in the same way regarding latch-up considerations.

HDMI (High-Definition Multimedia Interface) provides 3.4Gb/s per lane for Version 1.3b and 1.4. For Version 2.0 speed was upgraded to 6Gb/s per lane. DVI (Digital Visual Interface) is similar to HDMI 1.3b showing a data rate of 1.65Gb/s per lane respectively 3.4Gb/s per lane. Three lanes are used for data allways, the fourth is for the clock.

Important for HDMI is the Vcc sourcing point, located at the sink (RX). In case of an unconnected HDMI link (NO HDMI cable between HDMI source (TX) and HDMI sink (RX)), latch-up can only occur at the sink side under the condition \(V_{dd} \) is in high state.

According to HDMI specification the environment is as follow:

- \(R_{source} \) [Ohm]: 45 min 55 max 45 wc (\(R_s \) is highly recom. for >1.65Gb/s)
- \(R_{load} \) [Ohm]: 45 min 55 max 45 wc
- \(V_{dd} \) [V]: 3.13 min 3.47 max \(~3.5V \) wc
- \(I_{ss} \) [mA]: 0 min 20mA 0 wc (\(V_d = V_{dd} \))
Latch-up prediction for SCR TVS device

Latch-up considerations in highspeed interfaces

Latch-up situation for highspeed data interfaces

To stay inherent latch-up save @ $V_{dd\text{-max}} = 3.5V$:

$$V_{\text{hold SCR}} > \sim 3.5V \text{ OR } I_{\text{hold SCR}} \geq (V_{dd\text{-max}} - V_{\text{hold SCR}})/R_{\text{swC}} \text{ is required}$$

Example for $I_{\text{hold SCR}}$ as a function of $V_{\text{hold SCR}}$:

- $V_{\text{hold SCR}} = 2V$ \quad $I_{\text{hold SCR}} \geq (3.5V-2V)/36 \text{ Ohm} = \sim42mA$
- $V_{\text{hold SCR}} = 1V$ \quad $I_{\text{hold SCR}} \geq (3.5V-1V)/36 \text{ Ohm} = \sim70mA$

Summary:

The HDMI and DVI link can be latch-up critical at sink side in combination with an SCR based ESD protection device. To avoid this problem a huge $I_{\text{hold SCR}}$ or $V_{\text{hold SCR}}$ is required. Therefore HDMI and DVI requires special SCR devices to overcome the potential latch-up problem, or $V_{\text{hold SCR}}$ tailored “snap-back” TVS diodes.

3.5 DisplayPort (DP) interface

The DisplayPort (DP) is a very popular digital highspeed interface to connect the computer with the TFT monitor. DP is an alternative to HDMI, which is most popular for TV sets. [7]

Latch-up scenario is checked for DP1.1b. In higher DP versions the principle is expected to be the similar.

For the latch-up scenario evaluation following restrictions are imposed. The SCR based ESD protection device is placed as described in USB3.x “case 2” The TX ESD protection is places between capacitor “C_ML” and the DP source connector.

![DisplayPort differential pair w. ESD protection (4 times per main link)](image)

Figure 22 DisplayPort differential pair w. ESD protection (4 times per main link)

For the open DP link (no connection between source and sink via DP cable), there is NO latch-up possibility on AC coupled TX side. Only on RX side latch-up can happen if $V_{\text{bias Rx}}$ is on.). For closed DP link there is a latch-up potential for the RX side only, but TX ESD protection and RX ESD protection would be affected in this case too.
Latch-up prediction for SCR TVS device
Latch-up considerations in highspeed interfaces
Latch-up situation for highspeed data interfaces

Figure 23 DisplayPort signaling on one line

According DP1.1a table 3-10 / 3-11 (DP main link RX parameters):

\[V_{\text{bias,RX}} = V_{\text{bias,TX}} : \quad 0V...2V \quad R_s = 50 \text{ Ohm} \]

To stay inherent latchup save @ \(V_{\text{dd, max}} = 3.5V \):

\[V_{\text{hold,SCR}} > 2V \quad \text{OR} \quad I_{\text{hold,SCR}} >= \left(V_{\text{bias,RX}} - V_{\text{hold,SCR}} \right) / R_s \]

is required

Example for \(I_{\text{hold,SCR}} \) as a function of \(V_{\text{hold,SCR}} \).

- \(V_{\text{hold,SCR}} = 1V \quad \Rightarrow \quad I_{\text{hold,SCR}} >= \left(2V - 1V \right) / 50 \text{ Ohm} = 20mA \)

Summary:

The DisplayPort is inherent latch-up save or \(V_{\text{hold,SCR}} = 2V \quad \text{OR} \quad \text{an} \ I_{\text{hold,SCR}} >=20mA \).

3.6 Conclusion

For ESD protection performance improvement (\(V_{\text{clamp}} \) reduction) latest ESD protection are based on the SCR (Silicon Controlled Rectifier) structure. Typical SCR devices have a holding voltage (\(V_{\text{hold,SCR}} \)) lower than supply voltage or signal voltage. Therefore principle potential risk for latch-up is present. Various latch-up scenarios are checked for different applications. A procedure (load line analysis) is used to determine the potential of latch-up and to calculate required characteristics for the SCR based ESD protection devices to stay inherent latch-up free.

In general, the risk for a potential latch-up is \textbf{ONLY} present for HDMI. All other mentioned interfaces can collaborate with SCR based ESD protection devices providing an \(V_{\text{hold,SCR}} \) of about 2V or more. For these applications the Infineon ESD131 / ESD132 is a perfect choice.
4 Authors

Alexander Glas, Principal Engineer of Business Line “RF and Sensing”
5 Reference

[1] Infineon Application Note AN210
[2] Load Line Analysis
[3] Universal Serial Bus Revision 2.0 specification
[5] Chapter 6 Physical Layer (PHY)
[8] Thunderbolt is the brand name of a hardware interface developed by Intel.

Revision History

Major changes since the last revision

<table>
<thead>
<tr>
<th>Page or Reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.