

www.cypress.com Document No. 001-49943 Rev. *J 1

AN49943

PSoC® 1 USB-to-UART Bridge

 Author: Barry Gackle

 Associated Project: Yes

 Associated Part Family: CY8C24x94

 Software Version: PSoC
®
 Designer™ 5.4

 Related Application Notes: None

This application note explains how to implement a full-featured USB-to-UART bridge using PSoC
®
 1. It also discusses

user module configuration, critical firmware, and reasons why a USB-to-UART bridge is needed. A step-by-step USB-to-

UART bridge implementation is given for better understanding.

Introduction

Although USB is now the generally accepted standard for
interfacing with PCs, RS-232 and other UART protocols
are still widely used in embedded systems and some PC
software. This application note describes a USB-to-UART
bridge solution implemented in PSoC 1. This solution is
designed as a reference for designers who need such a
bridge in their systems. It can be implemented and tested
on a CY3214 USB Evaluation Board.

This application note assumes that you know at least the
basics of how to use the PSoC Designer IDE. If you are
new to PSoC Designer, see PSoC

®
 Designer > Help >

Documentation > Designer Specific Documents > IDE
User Guide. You can also refer application note
AN75320– Getting Started with PSoC 1, which introduces
the PSoC 1 device and the IDE tool along with the
projects.

Description

The USB-to-UART bridge sits between an embedded
system and a host PC. The embedded system connects to
the bridge through a standard UART interface. The PC
connects to the bridge through the USB. From the
perspective of the embedded system, the bridge presents
a PC UART port. From the perspective of the application
software on the host PC, the bridge also enumerates as a
UART. This arrangement lets you reuse the existing
firmware and application software designed to
communicate through the UART. It also allows embedded
software engineers who are familiar with programming for
a UART to develop USB solutions without having to learn
additional programming techniques. Figure 1 shows a
high-level block diagram of a system that incorporates the
USB-to-UART bridge.

Figure 1. USB-to-UART System

The bridge supports the following baud rates: 2400, 4800,
9600, 19200, 38400, 57600, and 115200 bps. You can
implement custom baud rates by modifying the code in the
included example project. The bridge also supports
dynamic baud rate changes from the PC terminal software
while the device is operating.

The data format is 1 start bit, 8 data bits, an optional parity
bit, and 1 stop bit. If the parity bit is used, it can be even or
odd. The flow control is currently not supported by the
bridge. The burst data rate limit for UART transmission
from the PSoC 1 device is 6 Mbps, although sustained
speeds may be slower because of data processing time.
The host determines the data rate on the USB side of the
bridge.

The bridge itself is designed to be powered by the USB
port. With minimal hardware and software changes, you
can redesign the bridge to be self-powered, as discussed
in this application note.

Purpose

A USB-to-UART bridge solution is necessary in several
situations. You can install a bridge in any existing system
that uses a UART to communicate with a PC to permit
communication over USB, with no further firmware
modification. Because the bridge enumerates on the PC
side as a UART, you can use any existing support
software with no or minimal modifications.

http://www.cypress.com/?id=2522
http://www.cypress.com/?rID=58639

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 2

Communication through USB is important for connected
embedded systems. Most consumer PCs sold today do
not contain RS-232 ports. Microsoft does not support RS-
232 hardware in the Windows operating system. However,
to retain compatibility with modern PC hardware, systems
must replace RS-232 communication with USB. The USB-
to-UART bridge solution allows RS-232 communication to
be replaced with USB, with maximum reuse of existing
systems.

Using PSoC 1 in this role provides flexibility and reduces
the BOM cost, both of which are not possible with
single-purpose bridge chips. The design described in this
application note keeps a significant portion of the PSoC 1
resources free for other system uses. The solution,
together with this application note, is specifically designed
to be easy to extend, which minimizes the non-recurring
engineering (NRE) cost, which is a one-time cost to
research, develop, design, and test a new product,
involved with integrating additional features.

BOM reduction is also possible because of differences in
voltage shifting requirements. RS-232 generally requires
voltage level shifting to interface with the standard 3-V and
5-V logic systems. With PSoC 1, the UART interfaces
directly with 3-V or 5-V TTL systems and the USB. Adding
PSoC 1 to an embedded system that currently uses RS-
232 eliminates voltage-shifting hardware in most cases.
Figure 2 shows a block diagram of a system that uses
voltage level shifting for RS-232 communications. Figure 3
shows a similar system that uses a bridge to eliminate the
voltage-shifting requirement.

Figure 2. RS-232 System with Level Shifting

Figure 3. Level Shifting Replaced by USB Bridge

Although this solution enables the use of PSoC 1 as a
bridge with no additional firmware development, a
PSoC 1-based solution offers considerable flexibility over
a single-purpose bridge chip. Because the bridge
functionality is written entirely in firmware, it is possible to
make arbitrary changes in functionality.

Architecture

Device Setup: Global Resources Settings

Figure 4 shows the PSoC Global Resources settings.

The key settings to note are power, system clock, VC1,
and the watchdog setting.

In this particular example, power is shown as 5 V, which is
appropriate for a bus-powered system. Changing the
power to 3.3 V is also possible but requires slight changes
in the code used to initialize the USBUART user module.

VC1 ultimately drives the UART baud clock. If changes
are made to the VC1 divider, then the counter values in
the source code must change accordingly to maintain the
desired baud rate.

The Analog Power setting is set to SC On/Ref Low. This

is because the analog blocks are used to detect USB bus
power.

All other settings work as shown, but you can easily
change them to accommodate additional system
requirements, with minimal impact on the functionality
described in this application note.

Figure 4. Global Resources Settings

Device Setup: User Modules

Figure 5 shows the user module layout for this project.
The design uses four PSoC 1 user modules: an 8-bit
counter, a UART, a USBUART, and a programmable
comparator. The 8-bit counter serves as the clock for the
UART. The UART baud clock can be set to a specific
value by changing the counter value. The UART is used
as the embedded (RS-232) side of the bridge. The
USBUART is used as the PC (USB) side of the bridge.

http://en.wikipedia.org/wiki/Non-recurring_engineering
http://en.wikipedia.org/wiki/Non-recurring_engineering
http://en.wikipedia.org/wiki/Research
http://en.wikipedia.org/wiki/Research_and_development
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Physical_test

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 3

The programmable comparator is used to detect the
presence of bus power from the USB.

Figure 5. User Module Layout

Figure 6 shows the user module properties for the 8-bit
counter. The counter is clocked by VC1. The counter
period is set to produce the desired UART baud clock rate.
Note that the UART baud clock must be eight times the
desired data rate. The compare value must be set to a
value that is roughly half the period to produce a square
wave with a 50 percent duty cycle. The counter enable bit
is connected to VCC, so that the counter is always on.

Figure 6. Counter8 User Module Properties

Although it is not apparent from the module properties
window, the compare output of the counter is connected to
Row Broadcast Bus 0. This connection is achieved by
clicking BC0 and setting it to DBB00. Because this
application does not use the counter Terminal Count
output and interrupt, the remaining properties are not

important. You can change them to meet a specific system
requirement.

Figure 7 shows the user module properties for the UART.
The key settings are the RX Input, TX Output, Clock,
RXCmdBuffer, and the TX Interrupt Mode. You can
change the RX Input and TX Output if you need different
pins for the UART side of the bridge. The RXCmdBuffer

must be disabled. This application works in part by making
changes to the user module code driving the UART RX,
and it is not compatible with the RXCmdBuffer, an
optional higher level UART API. The TX Interrupt Mode
must be set to TXRegEmpty for proper operation. The
InvertRX Input option is set to normal in this example.

This can be enabled if appropriate for the system with
which it communicates. The remaining settings must have
no impact on bridge operation.

Figure 7. UART User Module Properties

Figure 8 shows the user module properties for the
programmable comparator. The comparator receives a
voltage from the VBUS line of the USB connector. This
voltage is used to determine whether the bus is active.
The USB specification requires that a device not send
power back to an inactive USB bus. This mechanism
detects whether the bus is powered and prevents the
PSoC 1 device from placing voltage on the bus if it is. This
is done as part of the USB Compliance Checklist to
ensure that the device’s pull-up is active only when VBUS
is high.

http://www.usb.org/developers/compliance/check_list/compchkperi080205.pdf

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 4

Figure 8. CMPPRG User Module Properties

Figure 9 shows the user module properties for the
USBUART. This module does not appear in the user
module layout portion of the Chip Editor view because the
USB hardware is dedicated. As a result, no specific
placement and routing are required. This user module
handles all communications with a PC through USB. It
enumerates as a serial communication device and
appears to the host computer as a virtual UART port.
VendorID and ProductID must be set to the appropriate

values for the required end use. If you do not have a
VendorID assigned to your company, see the following

site for information on obtaining one from the USB
Implementers Forum:
http://www.usb.org/developers/vendor

Note that the USB Implementers Forum is a separate
entity not affiliated with Cypress Semiconductor. Vendor
string values are purely descriptive strings and must be
set to the appropriate values describing the system.

Serial numbering is an optional feature. If you change the
system from bus powered to self-powered, you must also
change the DevicePower setting. Finally, if you use the

system as bus powered and add functionalities, you may
need to increase the maximum power setting.

Figure 9. USBUART User Module Properties

Software

The bridge software consists primarily of two concurrent
loops. The background loop is implemented in the UART

RX and TX interrupts and handles the reception and
transmission of data over the UART. The foreground loop
is an infinite while() loop located in main.c. This loop
handles USB transmission and reception, and it initiates
UART transmission when USB data is present. The
foreground loop also handles dynamic data rate switching
and USB bus power detection.

Any user customization of the software must be added to
the foreground loop. You must ensure that the execution
length of this loop is not longer than the time to transmit
one character over the UART. Failing to do so can result
in a UART buffer overflow. Awareness of timing becomes
critical if any interrupt routines are added, because failure
to service UART interrupts in a timely manner also results
in buffer overflow.

The UART firmware is altered to include dual receive
buffers for incoming UART data. This allows one buffer to
be copied out to the USB port, while a second one
receives data.

Testing

You can test the example USB-to-UART project with the
CY3214 kit and any MCU with a UART interface. Figure
10 shows the block diagram for a typical USB-to-UART
bridge application. To quickly test the project with only the
CY3214 kit and a PC, the UART side of the bridge can be
looped back to the PC using an RS232 interface. The USB
end of the bridge is connected to the PC through a USB
cable, and the UART end is connected to an RS232 port
on the kit.

Figure 10. Testing the USB-to-UART Bridge Using
CY3214

Figure 11 shows a snapshot of the system setup using the
CY3214 kit. Pins P12 and P16 correspond to the TX and
RX pins of the bridge. These are connected to the PC
serial port using the RS232 connector (J1). The board is
connected to the PC USB port using connector P1. The kit
is powered over USB. Ensure that the PSoC PWR jumper
(JP5) on the CY3214 kit is configured to power PSoC from
VCC. Note that R15 is shorted on the CY3214 kit.

http://www.usb.org/developers/vendor/

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 5

Figure 11. USB-to-UART Setup on CY3214 Kit

You need to make the following connections:

1. Connect one end of an RS232 serial cable to J1 of
the CY3214 kit and the other end to the serial port of
the PC.

2. Connect P16 of J9 to the RX header of J3.

3. Connect P12 of J9 to the TX header of J3.

4. Connect P35 of J10 to LED1 of J2.

5. Connect P37 of J10 to LED4 of J2.

6. Connect the VBUS header of JP5 to P07 of J4.

7. Place a jumper on P3 to select VBUS as the power
source.

8. Connect one end of a USB mini-B cable to the PC
and the other end to the USB connector on the kit
(P1) to power the kit from the USB port.

When the project is loaded to the board and powered
using the USB cable, the PC will recognize it as “Cypress
USB to UART demo.” To enumerate the project as a USB
to UART, the OS should be directed to the Setup
Information (.inf) file generated by PSoC Designer™. To

do so, manually direct the OS to the “lib” folder of the
AN49943 project. The project will now correctly enumerate
as a virtual COM port.

To test the bridge functionality, open two instances of a
terminal application like HyperTerminal or Tera Term.
Configure both the instances with identical serial settings.
When any character is typed on one terminal, it will be
detected by the bridge and will be displayed on the other
terminal instance.

For example, here are the step-by-step instructions for
configuring the HyperTerminal application.

1. Open the HyperTerminal New Connection window

and enter a name, as shown in Figure 12.

Figure 12. HyperTerminal New Connection Window

2. Select the COM port for “USB” as shown in Figure 13.

Figure 13. COM Port Selection Window

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 6

3. Configure the COM port as shown in Figure 14.

Figure 14. COM Port Settings Window

4. Repeat steps 1 through 3 for the COM port “USB to
UART.” Verify that both of the terminals are
connected.

Note If the COM port for “USB to UART” is not
recognized, then go to Device Manager and update

the driver with the installation location as the project
location.

5. Type some text in a window and validate that the
same text appears in the other terminal window.

You can use two status LEDs for debugging:

 LED1 (VBUSLED) connected to P35 glows whenever
power on the USB line is detected. VBUS power is
monitored by P07, which is routed to the internal
comparator.

 LED4 (UARTLED) glows initially during startup until
the USBUART user module initializes successfully.
During normal operation, LED4 should flash once
whenever the UART configuration is changed for the
enumerated COM port.

Summary

The USB-to-UART bridge serves as an effective bridge
between an embedded system and a host PC when used
with PSoC 1. This bridge helps systems to retain
compatibility with modern PC hardware. Using PSoC 1 to
implement this solution provides flexibility and is also
cost-effective.

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 7

Document History

Document Title: AN49943 – PSoC
®

1 USB-to-UART Bridge

Document Number: 001-49943

Revision ECN Submission
Date

Orig. of Change Description of Change

** 2653927 01/04/2009 GYV/AESA New application note

*A 2873532 02/04/2010 RLRM Updated project files

*B 3153453 01/25/2011 KLMZ Updated Software Version on page 1 as PSoC Designer™ 5.1 SP1

Changed title to “PSoC® 1 USB to RS-232 Bridge”

Updated the abstract

*C 3164413 02/07/2011 KLMZ Added associated files

*D 3202226 03/21/2011 KLMZ Updated to describe a general USB-to-UART bridge instead of a bridge
specific to RS-232

*E 3478728 12/29/2011 KLMZ Updated template

Updated attached project

*F 3565595 04/12/2012 ARVI Updated project to support dynamic baud rate changes, VBUS detection

*G 4289948 02/24/2014 KRIS Updated project to PSoC Designer 5.4 and changed necessary images
in the document

*H 4296461 03/10/2014 ASRI Updated the introduction content, added the step-by-step setting
instructions for HyperTerminal and updated the project,

*I 4663762 02/17/2015 ASRI Added a link to PSoC Designer and its learning resources
Added a link to AN75320 - Getting started with PSoC 1
Updated template
Sunset review

*J 5713238 04/26/2017 AESATMP9 Updated logo and copyright.

PSoC
®
 1 USB-to-UART Bridge

www.cypress.com Document No. 001-49943 Rev. *J 8

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

©Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/go/locations
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Description
	Purpose
	Architecture
	Device Setup: Global Resources Settings
	Device Setup: User Modules
	Software

	Testing
	Summary
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

