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This application note explains how to implement a full-featured USB-to-UART bridge using PSoC
®
 1. It also discusses 

user module configuration, critical firmware, and reasons why a USB-to-UART bridge is needed. A step-by-step USB-to-

UART bridge implementation is given for better understanding.  

 

Introduction 

Although USB is now the generally accepted standard for 
interfacing with PCs, RS-232 and other UART protocols 
are still widely used in embedded systems and some PC 
software. This application note describes a USB-to-UART 
bridge solution implemented in PSoC 1. This solution is 
designed as a reference for designers who need such a 
bridge in their systems. It can be implemented and tested 
on a CY3214 USB Evaluation Board. 

This application note assumes that you know at least the 
basics of how to use the PSoC Designer IDE. If you are 
new to PSoC Designer, see PSoC

®
 Designer > Help > 

Documentation > Designer Specific Documents > IDE 
User Guide. You can also refer application note 
AN75320– Getting Started with PSoC 1, which introduces 
the PSoC 1 device and the IDE tool along with the 
projects. 

Description 

The USB-to-UART bridge sits between an embedded 
system and a host PC. The embedded system connects to 
the bridge through a standard UART interface. The PC 
connects to the bridge through the USB. From the 
perspective of the embedded system, the bridge presents 
a PC UART port. From the perspective of the application 
software on the host PC, the bridge also enumerates as a 
UART. This arrangement lets you reuse the existing 
firmware and application software designed to 
communicate through the UART. It also allows embedded 
software engineers who are familiar with programming for 
a UART to develop USB solutions without having to learn 
additional programming techniques. Figure 1 shows a 
high-level block diagram of a system that incorporates the 
USB-to-UART bridge. 

Figure 1. USB-to-UART System 

 

The bridge supports the following baud rates: 2400, 4800, 
9600, 19200, 38400, 57600, and 115200 bps. You can 
implement custom baud rates by modifying the code in the 
included example project. The bridge also supports 
dynamic baud rate changes from the PC terminal software 
while the device is operating. 

The data format is 1 start bit, 8 data bits, an optional parity 
bit, and 1 stop bit. If the parity bit is used, it can be even or 
odd. The flow control is currently not supported by the 
bridge. The burst data rate limit for UART transmission 
from the PSoC 1 device is 6 Mbps, although sustained 
speeds may be slower because of data processing time. 
The host determines the data rate on the USB side of the 
bridge. 

The bridge itself is designed to be powered by the USB 
port. With minimal hardware and software changes, you 
can redesign the bridge to be self-powered, as discussed 
in this application note. 

Purpose 

A USB-to-UART bridge solution is necessary in several 
situations. You can install a bridge in any existing system 
that uses a UART to communicate with a PC to permit 
communication over USB, with no further firmware 
modification. Because the bridge enumerates on the PC 
side as a UART, you can use any existing support 
software with no or minimal modifications. 

http://www.cypress.com/?id=2522
http://www.cypress.com/?rID=58639
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Communication through USB is important for connected 
embedded systems. Most consumer PCs sold today do 
not contain RS-232 ports. Microsoft does not support RS-
232 hardware in the Windows operating system. However, 
to retain compatibility with modern PC hardware, systems 
must replace RS-232 communication with USB. The USB-
to-UART bridge solution allows RS-232 communication to 
be replaced with USB, with maximum reuse of existing 
systems. 

Using PSoC 1 in this role provides flexibility and reduces 
the BOM cost, both of which are not possible with  
single-purpose bridge chips. The design described in this 
application note keeps a significant portion of the PSoC 1 
resources free for other system uses. The solution, 
together with this application note, is specifically designed 
to be easy to extend, which minimizes the non-recurring 
engineering (NRE) cost, which is a one-time cost to 
research, develop, design, and test a new product, 
involved with integrating additional features. 

BOM reduction is also possible because of differences in 
voltage shifting requirements. RS-232 generally requires 
voltage level shifting to interface with the standard 3-V and 
5-V logic systems. With PSoC 1, the UART interfaces 
directly with 3-V or 5-V TTL systems and the USB. Adding 
PSoC 1 to an embedded system that currently uses RS-
232 eliminates voltage-shifting hardware in most cases. 
Figure 2 shows a block diagram of a system that uses 
voltage level shifting for RS-232 communications. Figure 3 
shows a similar system that uses a bridge to eliminate the 
voltage-shifting requirement. 

Figure 2. RS-232 System with Level Shifting 

 

 

Figure 3. Level Shifting Replaced by USB Bridge 

 

Although this solution enables the use of PSoC 1 as a 
bridge with no additional firmware development, a 
PSoC 1-based solution offers considerable flexibility over 
a single-purpose bridge chip. Because the bridge 
functionality is written entirely in firmware, it is possible to 
make arbitrary changes in functionality. 

Architecture 

Device Setup: Global Resources Settings 

Figure 4 shows the PSoC Global Resources settings. 

The key settings to note are power, system clock, VC1, 
and the watchdog setting. 

In this particular example, power is shown as 5 V, which is 
appropriate for a bus-powered system. Changing the 
power to 3.3 V is also possible but requires slight changes 
in the code used to initialize the USBUART user module.   

VC1 ultimately drives the UART baud clock. If changes 
are made to the VC1 divider, then the counter values in 
the source code must change accordingly to maintain the 
desired baud rate. 

The Analog Power setting is set to SC On/Ref Low. This 

is because the analog blocks are used to detect USB bus 
power. 

All other settings work as shown, but you can easily 
change them to accommodate additional system 
requirements, with minimal impact on the functionality 
described in this application note. 

Figure 4. Global Resources Settings 

 

Device Setup: User Modules 

Figure 5 shows the user module layout for this project. 
The design uses four PSoC 1 user modules: an 8-bit 
counter, a UART, a USBUART, and a programmable 
comparator. The 8-bit counter serves as the clock for the 
UART. The UART baud clock can be set to a specific 
value by changing the counter value. The UART is used 
as the embedded (RS-232) side of the bridge. The 
USBUART is used as the PC (USB) side of the bridge. 

http://en.wikipedia.org/wiki/Non-recurring_engineering
http://en.wikipedia.org/wiki/Non-recurring_engineering
http://en.wikipedia.org/wiki/Research
http://en.wikipedia.org/wiki/Research_and_development
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Physical_test
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The programmable comparator is used to detect the 
presence of bus power from the USB. 

Figure 5. User Module Layout 

 

Figure 6 shows the user module properties for the 8-bit 
counter. The counter is clocked by VC1. The counter 
period is set to produce the desired UART baud clock rate. 
Note that the UART baud clock must be eight times the 
desired data rate. The compare value must be set to a 
value that is roughly half the period to produce a square 
wave with a 50 percent duty cycle. The counter enable bit 
is connected to VCC, so that the counter is always on.  

Figure 6. Counter8 User Module Properties 

 

Although it is not apparent from the module properties 
window, the compare output of the counter is connected to 
Row Broadcast Bus 0. This connection is achieved by 
clicking BC0 and setting it to DBB00. Because this 
application does not use the counter Terminal Count 
output and interrupt, the remaining properties are not 

important. You can change them to meet a specific system 
requirement. 

Figure 7 shows the user module properties for the UART. 
The key settings are the RX Input, TX Output, Clock, 
RXCmdBuffer, and the TX Interrupt Mode. You can 
change the RX Input and TX Output if you need different 
pins for the UART side of the bridge. The RXCmdBuffer 

must be disabled. This application works in part by making 
changes to the user module code driving the UART RX, 
and it is not compatible with the RXCmdBuffer, an 
optional higher level UART API. The TX Interrupt Mode 
must be set to TXRegEmpty for proper operation. The 
InvertRX Input option is set to normal in this example. 

This can be enabled if appropriate for the system with 
which it communicates. The remaining settings must have 
no impact on bridge operation. 

Figure 7. UART User Module Properties 

 

Figure 8 shows the user module properties for the 
programmable comparator. The comparator receives a 
voltage from the VBUS line of the USB connector. This 
voltage is used to determine whether the bus is active. 
The USB specification requires that a device not send 
power back to an inactive USB bus. This mechanism 
detects whether the bus is powered and prevents the 
PSoC 1 device from placing voltage on the bus if it is. This 
is done as part of the USB Compliance Checklist to 
ensure that the device’s pull-up is active only when VBUS 
is high. 

http://www.usb.org/developers/compliance/check_list/compchkperi080205.pdf
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Figure 8. CMPPRG User Module Properties 

 

Figure 9 shows the user module properties for the 
USBUART. This module does not appear in the user 
module layout portion of the Chip Editor view because the 
USB hardware is dedicated. As a result, no specific 
placement and routing are required. This user module 
handles all communications with a PC through USB. It 
enumerates as a serial communication device and 
appears to the host computer as a virtual UART port. 
VendorID and ProductID must be set to the appropriate 

values for the required end use. If you do not have a 
VendorID assigned to your company, see the following 

site for information on obtaining one from the USB 
Implementers Forum: 
http://www.usb.org/developers/vendor  

Note that the USB Implementers Forum is a separate 
entity not affiliated with Cypress Semiconductor. Vendor 
string values are purely descriptive strings and must be 
set to the appropriate values describing the system. 

Serial numbering is an optional feature. If you change the 
system from bus powered to self-powered, you must also 
change the DevicePower setting. Finally, if you use the 

system as bus powered and add functionalities, you may 
need to increase the maximum power setting. 

Figure 9. USBUART User Module Properties 

 

 

Software 

The bridge software consists primarily of two concurrent 
loops. The background loop is implemented in the UART 

RX and TX interrupts and handles the reception and 
transmission of data over the UART. The foreground loop 
is an infinite while() loop located in main.c. This loop 
handles USB transmission and reception, and it initiates 
UART transmission when USB data is present. The 
foreground loop also handles dynamic data rate switching 
and USB bus power detection.  

Any user customization of the software must be added to 
the foreground loop. You must ensure that the execution 
length of this loop is not longer than the time to transmit 
one character over the UART. Failing to do so can result 
in a UART buffer overflow. Awareness of timing becomes 
critical if any interrupt routines are added, because failure 
to service UART interrupts in a timely manner also results 
in buffer overflow. 

The UART firmware is altered to include dual receive 
buffers for incoming UART data. This allows one buffer to 
be copied out to the USB port, while a second one 
receives data.  

Testing 

You can test the example USB-to-UART project with the 
CY3214 kit and any MCU with a UART interface. Figure 
10 shows the block diagram for a typical USB-to-UART 
bridge application. To quickly test the project with only the 
CY3214 kit and a PC, the UART side of the bridge can be 
looped back to the PC using an RS232 interface. The USB 
end of the bridge is connected to the PC through a USB 
cable, and the UART end is connected to an RS232 port 
on the kit. 

Figure 10. Testing the USB-to-UART Bridge Using 
CY3214  

 

Figure 11 shows a snapshot of the system setup using the 
CY3214 kit. Pins P12 and P16 correspond to the TX and 
RX pins of the bridge. These are connected to the PC 
serial port using the RS232 connector (J1). The board is 
connected to the PC USB port using connector P1. The kit 
is powered over USB. Ensure that the PSoC PWR jumper 
(JP5) on the CY3214 kit is configured to power PSoC from 
VCC. Note that R15 is shorted on the CY3214 kit.   

http://www.usb.org/developers/vendor/
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Figure 11. USB-to-UART Setup on CY3214 Kit 

 

You need to make the following connections: 

1. Connect one end of an RS232 serial cable to J1 of 
the CY3214 kit and the other end to the serial port of 
the PC. 

2. Connect P16 of J9 to the RX header of J3. 

3. Connect P12 of J9 to the TX header of J3. 

4. Connect P35 of J10 to LED1 of J2. 

5. Connect P37 of J10 to LED4 of J2. 

6. Connect the VBUS header of JP5 to P07 of J4. 

7. Place a jumper on P3 to select VBUS as the power 
source. 

8. Connect one end of a USB mini-B cable to the PC 
and the other end to the USB connector on the kit 
(P1) to power the kit from the USB port. 

When the project is loaded to the board and powered 
using the USB cable, the PC will recognize it as “Cypress 
USB to UART demo.” To enumerate the project as a USB 
to UART, the OS should be directed to the Setup 
Information (.inf) file generated by PSoC Designer™. To 

do so, manually direct the OS to the “lib” folder of the 
AN49943 project. The project will now correctly enumerate 
as a virtual COM port. 

To test the bridge functionality, open two instances of a 
terminal application like HyperTerminal or Tera Term. 
Configure both the instances with identical serial settings. 
When any character is typed on one terminal, it will be 
detected by the bridge and will be displayed on the other 
terminal instance. 

For example, here are the step-by-step instructions for 
configuring the HyperTerminal application.  

1. Open the HyperTerminal New Connection window 

and enter a name, as shown in Figure 12. 

Figure 12. HyperTerminal New Connection Window 

 

2. Select the COM port for “USB” as shown in Figure 13. 

 
Figure 13. COM Port Selection Window 
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3. Configure the COM port as shown in Figure 14.  

Figure 14. COM Port Settings Window 

 

4. Repeat steps 1 through 3 for the COM port “USB to 
UART.” Verify that both of the terminals are 
connected.  

Note If the COM port for “USB to UART” is not 
recognized, then go to Device Manager and update 

the driver with the installation location as the project 
location. 

5. Type some text in a window and validate that the 
same text appears in the other terminal window. 

You can use two status LEDs for debugging:  

 LED1 (VBUSLED) connected to P35 glows whenever 
power on the USB line is detected. VBUS power is 
monitored by P07, which is routed to the internal 
comparator. 

 LED4 (UARTLED) glows initially during startup until 
the USBUART user module initializes successfully. 
During normal operation, LED4 should flash once 
whenever the UART configuration is changed for the 
enumerated COM port. 

Summary 

The USB-to-UART bridge serves as an effective bridge 
between an embedded system and a host PC when used 
with PSoC 1. This bridge helps systems to retain 
compatibility with modern PC hardware. Using PSoC 1 to 
implement this solution provides flexibility and is also  
cost-effective. 
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