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USB applications that use data types, such as audio and video, require a flow of continuous high-speed data. This data 

is termed as streaming because it flows in an uninterrupted stream. This application note discusses USB high-bandwidth 

delivery mechanisms that support streaming data, and includes code to implement and exercise FX2LP high-bandwidth 

endpoints. A companion PC application is provided to select various transfer types and to measure transfer rates. The 

example code attached to this application note demonstrates how to use the Cypress USB Frameworks to implement 

alternate USB settings, enabling the host to select different transfer rates. For the complete list of USB Hi-Speed code 

examples, visit http://www.cypress.com/?rID=101782. 
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1 Introduction 

USB provides for streaming data with a transfer type called ―Isochronous‖ (ISO). In Latin, iso means equal, and chron 
means time: Equal time is given in every USB time frame for data packets that contain streaming data. 

USB ISO transfers have two important characteristics: 

1. Unlike CONTROL, BULK, or INTERRUPT transfers, ISO transfers have no handshakes or re-tries for damaged 
or missing packets. Such overhead interferes with the central ISO feature of guaranteed data delivery in every 
time frame.  

2. Although the USB ISO transfer mechanism provides the data buckets on a guaranteed basis, it is the 
responsibility of the data provider and consumer to fill and empty the buckets quickly to ensure an uninterrupted 
stream of data. 

Although damaged or missing ISO packets are not re-sent, the consuming end can detect their occurrence and take 
corrective action. For example, a missing data chunk can be replaced by interpolation or repeating previous data. 
However, a well-designed streaming application should ensure the both the data provider (for example, a camera) 
and consumer (for example, a PC) give the streaming data high priority so that it does not miss loading or unloading 
a packet. 

http://www.cypress.com/
http://www.cypress.com/?id=193
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=43046
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INTERRUPT Endpoints can also be Streamers. 

The USB Spec, version 2.0, defines a high-bandwidth endpoint for high-speed (480 Mbits/sec) operation only. A high-
bandwidth endpoint can provide or accept more than one packet per microframe, and a maximum of up to three 
packets. Therefore, INTERRUPT transfers can also be used for streaming data in a high-speed device. In full-speed 
devices, INTERRUPT transfers are not well-suited for high-bandwidth streaming apps because the INTERRUPT 
endpoint‘s maximum packet size is 64 bytes, compared to the ISO‘s maximum packet size of 1023 bytes. 

This application note shows how to program FX2LP for high-speed USB ISO streaming data. It also implements full-
speed transfer examples for comparison. The earlier FX2 (not LP) device can also be used with a minor difference 
(explained in this document). For bandwidth comparison purposes, a set of BULK transfers is also implemented. 

2 Associated Project Files 

The zip file accompanying this application note (AN4053.zip) includes the following folders: 

1. FX2LP Streamer source code 

The Keil project file CYStream.Uv2 is located in the Firmware\CyStreamer folder. Double-click this to launch the 

Keil project that implements the FX2LP firmware to provide and consume continuous streaming data. The output of 
the Keil IDE is the CyStream.hex file, suitable for loading into the FX2LP Development Board.  

2. VS_Control_Center 

This Microsoft Visual Studio C# application is used to download the FX2LP hex code (CyStream.hex) into an FX2LP 

Development Board. The executable is in the \bin directory, or you can load the .sln (solution) file with Microsoft 

Visual Studio to inspect or modify the source code.   

3. VS_Streamer 

This Microsoft Visual Studio C++ project is a host-side application that streams data from the PC to the FX2LP 
Development Board, running the CyStream code. This app is used to test the various bandwidth settings in the 
FX2LP streaming firmware. The executable is in the \bin directory, or you can load the .sln file to inspect or modify 

the source code.  

You get this application along with the Cypress SuiteUSB installation. This application is located at: Cypress Suite 
USB 3.4.7\CyAPI\examples\Streamer 

You also get the C# based streamer application along with the Cypress SuiteUSB installation. The C# version is 
located in the following path: Cypress Suite USB 3.4.7\CyUSB.NET\examples\Streamer 

The following sections give more detail on ISO streaming, along with information required to implement ISO data 
streams using FX2LP.  

3 Streaming Applications 

When you plug a USB device into a PC, the PC uses a process called enumeration to learn the nature of the device 
and its requirements. During enumeration, the host interrogates the device to determine details, such as which device 
driver to use and the number and nature of endpoints (data sources and sinks) included in the device. For ISO 
endpoints, the host reads descriptors to determine what the device expects during ISO transfers. A key ISO 
parameter is the required bandwidth, expressed in the wMaxPacketSize field of the ISO endpoint descriptor. The ISO 
bandwidth limits are as follows:  

 For full-speed transfers, the host can accommodate one ISO packet per 1-millisecond frame, with a packet size 
up to 1023 bytes. 1023 bytes every millisecond gives a maximum transfer rate of 1.023 megabytes per second.  

 For high-speed transfers the host can accommodate up to three ISO packets per 125 -microsecond frame, with a 
packet size up to 1024 bytes. 3072 bytes every 1/8 millisecond gives a maximum transfer rate of 24.576 
megabytes per second. 

Data is streamed without interruption only if the two sides, provider and consumer, can move the data in and out of 
endpoint FIFOs quickly to achieve the desired transfer rate. This need for speed is the reason FX2/FX2LP contains a 
hardware data mover called the General Programmable Interface (GPIF).  

USB provides a mechanism called Alternate Settings to let the host choose between multiple streaming bandwidths. 
For example, a USB camera might provide the Alternate Settings in Table 1. 

http://www.cypress.com/
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Table 1. Three Bandwidth Settings for a USB Camera 

Alternate Setting wMaxPacketSize 

1 1023 

2 512 

3 256 

 

Because this USB camera may not be the only device on the bus, the PC must allocate its finite USB bandwidth 
between all connected devices.  

Consider that during this bandwidth negotiation process, the host determines that it can give the USB camera only 
700 bytes per frame on a guaranteed basis. If the camera ISO endpoint descriptor contains only one setting of 1023 
bytes, the host will not configure (use) the camera and the application fails. However, because the camera provides 
other choices, the host can select Alternate Setting #2. It sends a message to the camera, (using SET_INTERFACE) 
containing the alternate setting it requires. This tells the camera firmware to reduce its bandwidth requirement, 
perhaps by lowering the frame rate. 

The ISO bandwidth alternate settings begin with 1 because the default setting, 0, must not consume any ISO 
bandwidth. These packet sizes are maxima; the device may transfer a smaller number of bytes in any packet. A zero-
length ISO packet also has a meaning. It is sent by the device to indicate it was unable to supply data to fill the ‗just-
in-time‘ ISO IN request.  

The peripheral designer may choose to trade larger packet sizes for scheduling efficiency for example, one 1024-byte 
packet instead of four 256-byte packets. This decision usually depends on the number and size of data buffers in the 
peripheral. To accommodate this flexibility, USB defines a bInterval field for a high-bandwidth endpoint. This number 
tells the host how many microframes to skip between transfer requests. For most high-bandwidth applications, 
including the one described in this application note, bIntervals are set to 1, indicating ‗schedule a transfer in every 

microframe‘. 

Although BULK endpoints are not considered high-bandwidth endpoints, they can also be used to stream data if 
enough buffering is provided on both sides to handle the bursty (unscheduled) nature of BULK endpoints. This is not 
recommended because your camera might work on a lightly loaded USB system, but when more devices such as 
USB disk drives are plugged in, the BULK transfers to your camera may slow down. 

A USB streaming app is designed by considering the following points: 

 Transfer throughput: Number of bytes per second required 

 Is FX2LP fast enough to move the data using programmed (MCU-involved) transfers, or should the GPIF be 
used to transfer FIFO data? 

 Buffering requirements of the system: ISO endpoints are, by specification, double-buffered, but ICs, such as 
FX2LP, provide up to four buffers if required.  

 Suitable endpoint type to meet the required bandwidth and data rates 

 Number of packets required per microframe 

 PC driver support for the selected high-bandwidth transfer 

4 High-Bandwidth Transfers 

USB divides bus time into fixed-length segments called frames. For full-speed devices, the host issues a frame 
marker (SOF, Start of Frame) every millisecond. For high-speed devices, the host also issues a microframe every 
125 microseconds.  

A high-speed endpoint that requires more than 1024 bytes per microframe is called a high-bandwidth endpoint. A 
high-bandwidth endpoint can transfer up to three packets per microframe, each packet containing a maximum of 
1024 bytes. The number of transfers per microframe is defined in the wMaxPacketSize field of the endpoint 
descriptor. Because they use microframes, high-bandwidth endpoints are possible only for high-speed operations.  

http://www.cypress.com/
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According to the USB 2.0 specification, a periodic endpoint (ISO or Interrupt) must specify its required bus access 
period. This is done by setting the bInterval field of the endpoint descriptor. The bInterval field of the endpoint 

descriptor defines the maximum rate at which the endpoint is polled by the host. This provides a mechanism for 
slowing down the rate at which the host will service the endpoints.  

To keep track of the data packet transfer during the same microframe, high-bandwidth isochronous transfers use a 
mechanism called the Packet ID (PID) sequencing. To design high-bandwidth ISO endpoints, it is important to 

understand the data PID sequencing, as described in the following section.  

4.1 Data PID Sequencing (HS Operation) 

Full-speed USB devices use two data PIDs, DATA0 and DATA1. The USB 2.0 specification adds two PIDs for high-
speed operation, MDATA and DATA2. PID sequencing detects lost or damaged packets in a microframe. Table 2 
shows the PID sequence ordering for IN and OUT ISO transfers of different size payloads. 

Table 2. High-Bandwidth ISO Transfer PID Sequences 

Available 
Packets 

Direction 
Data PID Sequence 

Pkt 1 Pkt 2 Pkt 3 

3 IN DATA2 DATA1 DATA0 

2 IN DATA1 DATA0 – 

1 IN DATA0 – – 

3 OUT MDATA MDATA DATA2 

2 OUT MDATA DATA1 – 

1 OUT DATA0 – – 

 

For IN transfers, the host expects to receive up to the number of packets per microframe reported by the device in its 
wMaxPacketSize field during enumeration. The first DATA PID sent by the device tells the host how many more IN 
tokens it should issue in the microframe: DATA2 means two more, DATA1 means one more, and DATA0 means no 
more. If the device has no data, it sends a zero-length packet (ZLP) using the DATA0 PID. 

For OUT transfers, the host uses the MDATA (More Data) PID for all packets except the final one, which is a DATA 
PID indicating how many MDATA PIDs the host sent.  

4.1.1  FX2 (not LP) ISO IN Transfer Considerat ion  

During enumeration, a high-speed ISO device informs the host about how many additional packets in a microframe it 
expects to use. The device indicates this in an endpoint descriptor field called wMaxPacketSize. Bits 12:11 specify 
none, 1 additional, or 2 additional packets per microframe. These are called transaction opportunities in the USB 2.0 
Specification because they represent a maximum number of packets, which the device is not required to use in any 
microframe. 

FX2 is responsible for sending the correct DATA PIDs, depending on how many actual IN FIFO buffers it filled and 
committed to USB transfer by the time the first host IN token arrives in a microframe. The code example reports three 
IN packets (max) possible in a microframe in its wMaxPacketSize field. However, if it has only committed two packets 
in a microframe, it must send the first packet using the DATA1 PID (Table 2). 

To automatically accomplish the correct ISO-IN PID sequencing, FX2LP provides four registers called 
EPnISOINPKTS where n = 2, 4, 6, or 8, corresponding to its large, high-bandwidth endpoints.  

b7 b
6 

b
5 

b
4 

b
3 

b
2 

b1 b0 

AAD
J 

0 0 0 0 0 INPPF
1 

INPPF
0 

0 0 0 0 0 0 0 1 

 

The IN Packets per Frame (INPPF) defaults to 1, but may be set to 1, 2 or 3. The Auto Adjust (AADJ) should be set 
to 1 to enable the automatic PID sequencing. If AADJ = 0, FX2LP unconditionally starts an ISO IN transfer using the 
PID indicated by INPFF[1:0]. 
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Because the earlier FX2 device does not have this automatic mechanism (no AADJ bit), the programmer must take 
steps to ensure that the correct Data PID sequence is sent during the ISO IN transfers. Follow any of these methods 
to do this: 

1. Ensure, by design, that all IN FIFOs are loaded and armed in time for every microframe. If the INPPF field is set 
to 2, for example, ensure that two buffers are loaded and committed to USB for every transfer.  

2. If it is known that the data is short for the next microframe, enable any of the non-used FIFOs to send a ZLP. 
This is simple and quick; just load the FIFO‘s byte count register with the value zero. 

3. If an outside source loads USB FIFOs, any unused IN FIFO can be armed to send a ZLP by selecting the FIFO 
with FIFOADR[1:0] and asserting the PKTEND pin. PKTEND is used to commit a partially filled (or empty) FIFO 
for USB transmission. 

The host driver may or may not be able to gracefully handle a USB PID sequence error. Cypress provides a host 
driver that handles the situation where the device sends an incorrect PID sequence by propagating this indication up 
to the client application. This should never trigger using FX2LP because it automatically sends the correct Data PID 
sequences when AADJ = 1.  

No registers need to be set for transfers through isochronous OUT endpoints. The device firmware must only report 
the number of packets desired per microframe in the endpoint descriptor. 

5 Cypress SuiteUSB 

The folders necessary to write and test code for this application note are included in the accompanying zip file. For 
more extensive support, Cypress provides the Cypress SuiteUSB, a set of USB development tools for Visual Studio 
plus example Keil firmware projects. Cypress SuiteUSB can be used to create .NET Windows applications for all 
Cypress USB 2.0 families. The suite includes cyusb.sys, a Cypress Windows driver compatible with the development 
tools.  

Cypress SuiteUSB can be downloaded from http://www.cypress.com/?rID=34870. The default installation path for 

Cypress SuiteUSB is C:\Cypress\Cypress Suite USB 3.4.7. 

6 Streaming Firmware Example 

The application included with this note, CyStream, demonstrates USB isochronous streaming and BULK transfers 
using an EZ-USB

 
FX2/FX2LP development board. This code example implements a test device that provides and 

consumes data streams for the Windows Streamer application. 

The CyStream project creates a single interface (Number 0) with two different configuration descriptors, one for high-
speed (HS) operation and the other for full-speed (FS) operation. Table 3 shows the seven HS alternate settings and 
Table 4 shows the four FS alternate settings. 

Table 3. FX2LP HS Configuration Descriptor Alternate Settings for Interface 0 

Alternate Setting Number of Endpoints Endpoint Number Direction (Type) Maximum Packet Size (Bytes) 

0 1 2 IN (Bulk) 512 

1 1 2 OUT (Bulk) 512 

2 2 2 IN (Bulk) 512 

6 OUT (Bulk) 512 

3 1 2 IN (Isochronous) 3x1024 

4 1 2 OUT (Isochronous) 3x1024 

5 1 2 IN (Isochronous) 1x1024 

6 2 2 IN (Isochronous) 1x1024 

6 OUT (Isochronous) 1x1024 

 

http://www.cypress.com/
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Table 4. FX2LP FS Configuration Descriptor Alternate Settings for Interface 0 

Alternate Setting Number of Endpoints Endpoint Number Direction (Type) Maximum Packet Size (Bytes) 

0 1 2 IN (Bulk) 64 

1 1 2 OUT (Bulk) 64 

2 1 2 IN (Isochronous) 1023 

3 1 2 OUT (Isochronous) 1023 

 

The host app (Streamer.exe) can select different transfer parameters (alternate settings) to measure their throughput 
rates. To measure maximum achievable throughput rates, it is important not to introduce any delay on the FX2LP 
side, such as delays incurred while transferring bytes in and out of endpoint FIFOs. For this reason, the FX2LP code 
in this application note handles IN and OUT transfers with minimal overhead: 

 IN Transfers — when an IN FIFO becomes available, the 8051 simply re-arms the IN FIFOs for 1024-byte HS 
transfers or 1023-byte FS transfers. The FIFO data loaded during initialization is re-sent every time. 

 OUT Transfers — the 8051 does not transfer any bytes out of the OUT FIFO; it only re-arms the next OUT 
transfer by loading an arbitrary byte count into the Byte Count Low (EPxBCL) register.  

Note Because real applications do manage FIFO data, FX2LP provides two hardware mechanisms for minimizing its 

transfer overhead. 

1. Data transfer is handled by an external controller with direct hardware connections to the FX2LP endpoint FIFOs. 
This keeps the 8051 out of the data path. The FIFO connections include an 8-bit or 16-bit data bus, read and 
write strobes, and FIFO status flags.    

2. FX2LP FIFOs can be configured to operate in an automatic mode, by which packets are automatically armed for 
USB transfer after the number of bytes in an endpoint FIFO matches the level set in a register.  

The example presented in this application note uses the manual mode setting of the endpoint FIFO, where the 8051 
is responsible for checking FIFO status and committing endpoint data. 

7 Using the Cypress USB Frameworks 

The code example included with this application note demonstrates how to set up FX2LP endpoints for streaming 
data. This section covers the major routines of the code in detail. The example includes the following source files: 

1. Cypress Frameworks file, fw.c 

2. Descriptor file, dscr.a51 

3. CyStream.c file 

These code modules fit together, as shown in the following figure. This organization applies to any FX2LP USB 
application based on the Cypress firmware Frameworks. 

http://www.cypress.com/


 

Streaming Data Through Isochronous or Bulk Endpoints on EZ-USB® FX2™ and FX2LP™ 

 www.cypress.com Document No. 001-15289 Rev. *I 7 

 Figure 1. CyStream Code Modules 

main() {

TD_init();

Enable Interrupts

while(1)

{

if(GotSUD)

if(sleep)

TD_Poll();

}}

fw.c

Descriptors

Handle

EP0

dscr.a51

GET_DESCRIPTOR

CyStream.c

BOOL DR_SetConfiguration(void)

BOOL DR_GetConfiguration(void)

BOOL DR_Set_Interface(void)

BOOL DR_Get_Interface(void)

TD_Init()

{….}

TD_Poll()

{....}

void ISR_Sudav(void) *

void ISR_Sutok(void) *

void ISR_Sof(void) *

void ISR_Ures(void) * 

void ISR_Susp(void) *

void ISR_Highspeed(void)

void ISR_Ep2inout(void)

* Boilerplate
 

 

7.1 fw.c 

This Cypress-written firmware, Frameworks, handles low-level USB details. You do not need to modify this file. Fw.c 
contains the project‘s main() function, which calls TD_Init() once at startup, and then repeatedly calls TD_Poll() 

during operation. This endless loop also handles the CONTROL endpoint (EP0) SETUP packets. For 
GET_DESCRIPTOR requests, it uses the descriptor data you supply in dscr.a51. For other host requests, it calls into 
your app to handle various actions, such as changing an interface‘s alternate setting. The endless loop a lso handles 
USB suspend and resume events (sleep).  

7.2 dscr.a51 

This is an 8051 assembly language module containing descriptor data for your particular USB device. This file 
contains .db (define byte) statements to list the descriptor table data, in the following order:  

1. Device Descriptor 

a. USB Spec Version (2.0) 

b. Device Standard Class (none) 

c. EP0 MaxPacketSize (64) 

d. Vendor ID = 0x04B4 = Cypress 

e. Product ID = 0x1003 = ―EZ-USB Example Streamer Device‖. 

f. Manufacturer and Product String Indices 

g. Number of configurations = 1 

2. Device Qualifier: For a device that can operate at either full- or high-speed, this gives settings for the ‗other‘ (non-
current) speed.  

3. HS Configuration 

a. Number of Interfaces = 1. 

b. Index to select this Configuration = 1 

c. Seven Interface-Endpoint Descriptor pairs that lay out the seven alternate setting parameters in Table 3. 

4. FS Configuration 

http://www.cypress.com/
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a. Number of Interfaces = 1. 

b. Index to select this Configuration = 1 

c. Four Interface-Endpoint Descriptor pairs that lay out the four alternate setting parameters in Figure 4. 

5. Two string descriptors. 

7.2.1  About FS/HS Operat ion  

When a USB peripheral attaches to a host, the host‘s internal USB hub (or external hub, if there is one) conducts a 
negotiation with the peripheral to determine its operating speed. The host never actually selects an operating speed. 
Instead, it uses the speed reported by the hub. As long as the device remains plugged in, the hub-reported operating 
speed never changes. Only device removal and re-attachment starts the speed discovery process again.  

For a device that can operate at either FS or HS, the speed reported by the hub is the ‗current‘ speed, and the speed 
at which it can operate is the other speed. Having two Configuration Descriptors, one for each operating speed, 
allows the host to determine that the device supports another speed if the device is plugged into a different port. This 
allows Windows to put up the message, shown in Figure 2, if you plug a HS device into a FS port. 

Figure 2. Windows Detects a HS Device Plugged into a FS Port 

 

 

It is the responsibility of the FX2LP firmware to detect the current operating speed and designate the proper 
Configuration Descriptor (FS or HS) as the one currently in use and the other one as corresponding to the non-
selected (other) speed. The firmware does this by inserting the correct bDescriptorType value, CONFIG, or 

OTHERSPEED, into the second byte of each Configuration Descriptor. 

Figure 3. Descriptor Types after RESET 

bDescriptorType

=OTHERSPEED

HighSpeedConfigDscr

bDescriptorType

=CONFIG

FullSpeedConfigDscr

 

 

Following a USB bus RESET, the device reverts to FS operation. Therefore, in the USB Reset Interrupt Service 
Routine, the firmware marks the descriptors (Figure 3). It also sets pointers to each descriptor (pConfigDscr and 
pOtherConfigDscr) for use during enumeration. If the device is plugged into a full-speed port, this designation 
remains.  

The FX2LP receives an interrupt (ISR_Highspeed) whenever the USB core successfully negotiates for high-speed 
operation. In this ISR, the firmware swaps designations, as shown in Figure 4, and sets the descriptor pointers 
accordingly.  

http://www.cypress.com/
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Figure 4. Descriptor Types after HS Detected 

bDescriptorType

=CONFIG

HighSpeedConfigDscr

bDescriptorType

=OTHERSPEED

FullSpeedConfigDscr

 

 

7.2.2  About wMaxPacketSize  

One item whose format may not be obvious is the wMaxPacketSize entry for a high-bandwidth endpoint. It may be 
tempting to report an endpoint that can handle three 1024-byte packets per microframe, as having a maximum packet 
size of 3*1024 or 3072 bytes. However, this is not defined in the USB 2.0 spec because a physical packet has a 
maximum size of 1024 bytes. The spec defines bits 10-0 as the maxPacketSize of maximum size 1024, and bits 12-
11 as the additional packets per microframe: 00 for none, 01 for one, and 10 for 2. Therefore, populate your high-
bandwidth endpoint descriptors using a value in Table 5, low byte first. 

Table 5. Allowable maxPacketSize Values for High-Bandwidth Endpoints 

Packets per Microframe wMaxPacketSize 

1 0x0400 

2 0x0C00 

3 0x1400 

 

7.3 CyStream.c 

This is the streaming application. The application code is written in this module with help from the USB Frameworks: 

1. You write the TD_Init() and TD_Poll functions to suit your app.  

2. Fw.c makes calls to specifically named functions in your code as it fields various Device Requests over Endpoint 
0. A Cypress code template (peripheral.c) saves the work of creating the functions by providing a code skeleton 
containing all the function stubs. You code only the functions your app uses.   

3. You supply Interrupt Service Routines to handle the interrupts your app uses. Most of these (shown with an 
asterisk) are simple acknowledgement housekeeping; you do not need to modify them if no further action is 
necessary.  

The remainder of this section walks through the CyStream.c code. 

7.3.1  TD_Ini t ( )  

The initialization program does the following: 

1. Sets the IFCONFIG register to 0x40 to select the 8051 48-MHz clock rate and to configure a group of I/O pins as 
Port (GPIO) pins (these pins can also serve as Slave FIFO or GPIF interface pins). 

2. Turns off the four development board LEDs. Note that the board LEDs are turned on and off by reading 
predefined memory locations.  

3. Enables EP2, disables all the others. Later, if the host changes an alternate setting to one that uses EP6-OUT, 
the code enables this endpoint at the time the setting changes. 

4. Enables Start Of Frame (SOF) Interrupts. The SOF ISR handles LED blink timing.  

5. Fills EP2-IN FIFO with 1024 data bytes and arms it for the first IN transfer. Having specific data in the FIFO is 
handy for viewing packets with a USB bus analyzer, but the data is not relevant for this application. Therefore, 
this step is optional.  

7.3.2  TD_Pol l ( )  

TD_Poll(), which the USB Frameworks calls in an endless loop, is quite simple. It only needs to check FIFO flags to 
determine when an endpoint FIFO needs re-arming. It does this in two similar code sections, one for high-speed and 
the other for full-speed operation. Each section does the following: 

http://www.cypress.com/
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1. Checks for not FULL condition of the EP2-IN FIFO. This indicates that the host successfully read the FIFO IN 

data and FX2LP logic turned FIFO control over to the 8051. If it is not full: 

a. Turns on the IN LED and sets a time constant (inblink) for the SOF interrupt Service Routine (ISR) to turn it 
off.  

Re-arms the next IN transfer by loading the EP2-IN byte count registers with the size matching the current 
alternate setting. These values correspond to the rightmost column in Table 3 (HS) and Table 4 (FS).  

2. Checks for not EMPTY condition of the EP2-OUT FIFO. This indicates that the host successfully sent OUT 

data to the EP2-OUT FIFO and the FX2LP logic has turned FIFO control over to the 8051. If it is not empty: 

a. Turns on the OUT LED and sets a time constant (outblink) for the SOF ISR to turn it off.  

b. Re-arms the next OUT transfer by loading a byte count into the EP2BCL register. The actual byte count 
value does not matter, but bit 7 must be set to set the SKIP bit. The SKIP bit enables the just- received 
packet to get ignored and its buffer is immediately made available for the next OUT packet. 

3. (HS only) Checks for not empty condition of the EP6-OUT FIFO. This indicates that the host successfully 

sent OUT data to the EP6-OUT FIFO and FX2LP logic has turned FIFO control over to the 8051. If not empty, it 
executes steps 2a and 2b but using the EP6BCL register instead. 

7.3.3  Fielding Device Requests and IRQs  

Most simple Device Requests are self-explanatory, such as DR_SetConfiguration that sets a local variable to the 
configuration index, and DR_GetConfiguration that returns the index. The simple ISRs do nothing more than clearing 
the IRQ flags. 

7.3.4  CyStream.c functions  

CyStream.c does its work in four functions: 

 ISR_Ures 

 ISR_Highspeed 

 DR_Set_Interface 

 DR_SOF 

7.3.4.1 ISR_Ures 

This ISR triggers at completion of a USB bus RESET. A high-speed device comes out of reset in the full-speed mode, 
so the ISR sets the FS Configuration Descriptor as the main one, and the HS Configuration Descriptor as the 
OTHERSPEED one (Figure 3). Then, the ISR turns off the HS LED (D2 on the EVKIT board) and sets a 2-second 
period using ‗blinkmask‘ for the activity LED D5. 

7.3.4.2 ISR_Highspeed 

This ISR triggers when FX2LP enters the high-speed mode. The Configuration Descriptors are swapped (Figure 4), 
the high-speed LED2 is turned on, and the default EP2-IN is initialized. The variable ‗blinkmask‘ is set for a 1-second 
D2 blink period at high-speed.  

7.3.4.3 DR_SetInterface 

The USB host uses the Set_Interface request to change an interface‘s alternate settings. Because this design uses 
only one interface, no check is required for the interface index. The code needs to retrieve only the third byte in the 
SETUP packet (SETUPDAT[2]), which represents the requested Alternate Setting. 

Two switch statements configure the endpoints according to the Alternate Setting, using the Table 3 parameters for 
high-speed operation and the Table 4 parameters for full-speed operation. The case statements do the following: 

 Enable only the endpoints used by the setting 

 For IN endpoints, reset the FIFOS to flush any stale data. For BULK IN endpoints, reset the endpoint‘s data 
toggle to 0 

 For OUT endpoints, arm the required number of FIFOs 

 Update the 7-segment display to show the new Alternate Setting 0-6 
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7.3.4.4 DR_SOF 

SOF interrupts are useful for timing events, such as LED blink rates. SOF interrupts occur every 1 mSec at full-speed 
and every 125 microseconds at high-speed. The SOF ISR counts off time and turns off the activity LED D5, the IN 
LED D4, and the OUT LED D3 when appropriate.  

8 Running CyStreamer.hex 

Like all Cypress EZ-USB chips, FX2LP uses RAM for program storage. For this reason, it powers on as a USB loader 
capable of moving the program code into RAM from various sources. It can use an attached EEPROM or it can come 
up as a USB device capable of loading code from a PC. The steps in this section show how to download and run the 
CyStream.hex file over USB.   

1. Prepare the FX2LP board jumpers according to Table 6. 

Table 6. EZ-USB FX2LP Board Jumper Settings 

JP State Purpose 

6, 7 OUT Memory config for development 

2 IN Power the board from its USB connector 

1, 5, 10 IN Local 3.3-V source 

Block 3 IN All 4 jumpers IN — activate 4 LEDs D2-D5 

8 Either Not used (for Remote Wakeup testing) 

 
2. In the lower left corner of the board, move the EEPROM ENABLE slide switch (SW2) to the NO EEPROM (down) 

position. This allows the FX2LP chip to enumerate as a code loading the USB device. The other slide switch 
(SW1, EEPROM SELECT) can be in either position.  

3. Plug the FX2LP board into a PC USB port. If this is the first time, you will see pop-up messages prompting you to 
install a USB driver. Navigate to: 

C:\Cypress\USB\ 

CY3684_EZ-USB_FX2LP_DVK\ 

1.0\Drivers\cyusbfx1_fx2lp 

Select the folder corresponding to your Windows OS. 

You can confirm a successful driver install by viewing the Device Manager (see the following figure).  

Figure 5. Driver Installed Correctly 

 

4. Launch the USB Control Center in the AN4053 folder. The executable is in the bin folder. 

5. The FX2LP board is listed on the left panel as shown in Figure 6. 
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Figure 6. Device Appears in USB Control Center 

 

6. Click on the Cypress device entry to highlight it, then select Program FX2 > RAM 

 

7. Navigate to AN4053\FX2LP streamer source code\firmwareCyStreamer and double-click on the 

CyStream.hex file. 

8. Watch the USB Control Center left panel. If the PC sound device is enabled,  you hear the ‗USB disconnect‘ 
sound immediately followed by the ‗USB connect‘ sound, and a new USB device appears: 

Figure 7. New USB Device 

 

This is the Cypress ReNumeration process. The initial device seen in Figure 6 is the USB loader, hard-wired into the 
FX2LP device. After it loads your code into the FX2LP RAM, FX2LP electrically disconnects and reconnects as the 
new USB device seen in Figure 7, the one created by the code it loaded. 

Note When you build a new version of CyStream.hex and want to download it into the FX2LP board, you must first 

press the board‘s RESET button. This disconnects the board from the USB. When you release the RESET button, 
FX2LP re-connects to the PC as the USB loader. It is a good idea to hold the RESET button down for about two 
seconds to give Windows enough time to register the disconnect-reconnect events.  

The Streamer Example Device starts running, confirmed by the following indications: 

 The 7-segment readout indicates the current alternate setting. The default (power-on) setting is 0. 

 LED D5 blinks once every second for a HS connection, and once every 2 seconds for a FS connection. 

 LED D4 turns on when an IN FIFO is armed. 

 LED D3 turns on when an OUT FIFO is armed. 

 LED D2 is on for HS and off for FS operation. 

9 Performance Analysis 

The Streamer.exe in AN4053\VS_Streamer is used to evaluate the performance of a USB streaming application. 

This code uses the CyUsb.sys (AN4053\Driver) driver to interface with the FX2LP Development Board (CY3684) 

running the CYStream firmware.  

Following is a screen capture of the Streamer host application window, followed by a description of the fields shown 

in the window displayed in Figure 8. 
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Figure 8. Streamer.exe Application Window Display 

 

Endpoint: This drop-down list indicates the alternate settings, 0-6 for high speed and 0-3 for full speed. This allows 

you to choose different transfer types and number of endpoint buffers.  

Figure 9. Description of Endpoint Dropdown List 

 

The description of the text that you see in the Endpoint drop-down list is shown in this section. Let us take the first 
one in the drop-down list (refer to Figure 9): BULK IN, 512Bytes, (0-0x82). 

BULK IN – This field tells you the endpoint type and direction. Here in this example, BULK endpoint and you can 
perform IN transfers on it. 

512Bytes – Maximum packet size of endpoint. In this case, 512 bytes. 

0 – This field contains the Alternate Setting number. In this case, Alternate Setting – 0. 

0x82 – Endpoint address. In this case, the endpoint number 0x02 and direction IN. 

Packets per Xfer: A transfer is a collection of packets for one data set. More number of packets per each transfer 

reduces the USB overhead and helps in achieving higher data rate. 

Xfers to Queue: This setting helps in initiating multiple transfers and adding them to the task queue. This reduces 

the latency between successive transfers on the host application side. Therefore, queuing more transfers gives 
higher data rate. 

Successes: Increments to show the total number of packets successfully transferred during the streaming test. 

Failures: Increments whenever there is an error reported in the transfer of a buffer. One possible failure mechanism 

is an FX2 (not LP) app that did not properly handle ISO IN PID sequencing.  
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Transfer Rate: Provides live updating of the current throughput performance of the USB bus and  

EZ-USB FX2LP over the selected endpoint. 

CPU Utilization: Provides a visual indication of the utilization of the computer's CPU while streaming over USB. 

This application was run on a system with an Intel IHC9 USB 2.0 host controller running Windows
® 

7. The results 
show that the average throughput that can be achieved with the BULK transfers is 43.8 MBps and the maximum 
throughput that can be achieved with ISO transfers is 24 MBps. Note that the performance numbers mentioned 
above are tested without connecting any external peripheral to FX2LP. Data is generated internal to FX2LP. If you 
are generating data from the external peripheral, then these performance numbers also depend on how fast that 
external peripheral can source data. 

You might find on certain systems that the BULK transfer rate can exceed the ISO transfer rate. This is because on a 
lightly loaded bus, the streamer device uses most or all of the available USB BULK bandwidth allocation. However, 
when other USB devices start up, for example a USB disk drive playing a video, the available BULK bandwidth 
decreases while the ISO endpoints are guaranteed their negotiated bandwidth.  

10 Interfacing FX2LP with Image Sensor 

FX2LP can be interfaced to an image sensor to stream images using a vendor class driver. See KBA95736 - 
Interfacing FX2LP™ with Image Sensor.  

11 References 

USB 2.0 Specification – (http://www.usb.org/developers/docs/usb_20_070113.zip) 

FX2LP Technical Reference Manual(TRM) 

12 Summary 

This application note describes USB high-bandwidth delivery mechanisms that support streaming data for 
applications like audio and video streaming. The associated firmware project ―CYStream.Uv2‖ shows how to program 
FX2LP for high-speed USB ISO transfers. A set of BULK transfers are also implemented for bandwidth comparison 
purposes. It also demonstrates how to use the Cypress USB Frameworks to implement alternate USB settings, 
enabling the host to select different transfer rates. A companion PC application ―Streamer.exe‖ is provided to select 
various transfer types and to measure transfer rates. 
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