

About this document

Scope and purpose

XMC7000 MCU family supports a highly accurate clock system using the external crystal oscillator (ECO). ECOs are available with a crystal unit and ceramic resonator. See the datasheet for the frequency ranges supported by the ECO.

This guide describes how to connect a crystal unit and ceramic resonator to the XMC7000 device, and how to calculate and set the XMC7000 parameters using the ECO Trim Calculator.

Intended audience

This document is intended for anyone using the XMC7000 MCU family to determine ECO trim parameters.

Table of contents

Abo	out this document	1
Tab	le of contents	1
1	Overview	2
2	Parameters related to ECO	5
2.1	Setting AGC_EN, ATRIM, WDTRIM, and FTRIM	
2.2	Setting RTRIM	
2.3	Setting the GTRIM value	
3	Determining the ECO parameters with the ECO trim calculator	9
3.1	ECO trim calculator example for the crystal unit	
3.2	ECO trim calculator example for the ceramic resonator	
4	Exception handling	12
5	Additional information	13
5.1	Matching test	
5.2	Stray capacitance	
Rev	ision history	

(infineon

Overview

1 Overview

Figure 1 shows the configuration circuit of the XMC7000 device. This circuit supports both crystal unit and ceramic resonator.

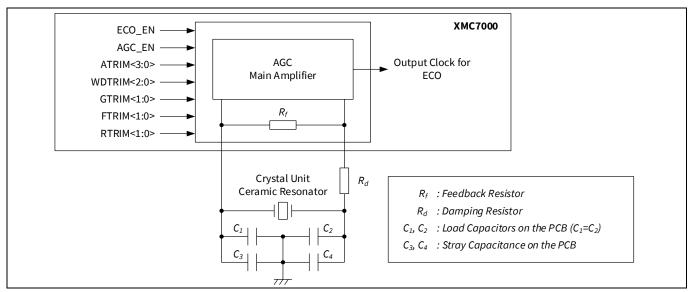


Figure 1 Block diagram of the ECO circuit

The feedback resistor (R_f) is already implemented in the XMC7000 device. A damping resistance (R_d) is normally used to limit the XTAL drive level when a CMOS inverter is used as the main amplifier. However, in XMC7000, a CMOS inverter is not used as the main amplifier. So, you do not need to use a damping resistor.

Determine the load capacitances (C_1, C_2) using a crystal unit/ceramic resonator and XMC7000 matching test. See **Matching test**. C_3 and C_4 are the stray capacitances. Stray capacitance (C_s) is the capacitance caused by the physical structure of electronic circuits. See **Stray capacitance** for the stray capacitance. Here, it is assumed that the MCU internal wiring capacitance and the MCU pin capacitance are also included in the stray capacitance.

The load capacitance on the PCB can be calculated from C_1 , C_2 , C_3 and C_4 as shown in **Equation 1**.

$$Load\ Capacitance = \frac{C_1 \times C_2}{C_1 + C_2} + \frac{C_3 \times C_4}{C_3 + C_4} = \frac{C_1 \times C_2}{C_1 + C_2} + C_s$$
 Equation 1

In general, the frequency deviation is the smallest when the load capacitance on the PCB and the parallel load capacitance described in the crystal unit or ceramic resonator datasheets are the same.

XMC7000 device supports a wide frequency range for ECO. So, the XMC7000 device can set the trimming parameters that control the oscillator according to the crystal unit and ceramic resonator.

The method to determine the parameters differs between the crystal unit and ceramic resonator. For more details on how to determine and set the parameters, see **Setting the GTRIM**.

Table 1 lists the related ECO parameters of the XMC7000 device.

Overview

Table 1 **ECO parameters of XMC7000**

Parameters	Name	Description	Related register
ATRIM	Amplitude TRIM	Controls the crystal drive level when automatic gain control (AGC) is enabled	CLK_ECO_CONFIG2
WDTRIM	WatchDog TRIM	Controls the threshold of Crystal Unit Magnitude where the ECO block releases the clock to the system	CLK_ECO_CONFIG2
GTRIM	Amplifier Gain TRIM	Controls for amplifier gain	CLK_ECO_CONFIG2
FTRIM	LPF Frequency TRIM	Tunes the low-pass filter between the ECO_IN pin and the amplifier to prevent the amplification of harmonics of the intended crystal frequency	CLK_ECO_CONFIG2
RTRIM	Feedback Resistor TRIM	Selects the feedback resistor according to the frequency of the crystal unit	CLK_ECO_CONFIG2
AGC_EN	AGC ENable	Enables/disables the AGC circuit	CLK_ECO_CONFIG
ECO_EN	ECO ENable	Enables/disables the ECO clock source	CLK_ECO_CONFIG

Note: These parameters are set by software.

By setting these parameters, as shown in Figure 2, XMC7000 device gets the internal ECO clock output.

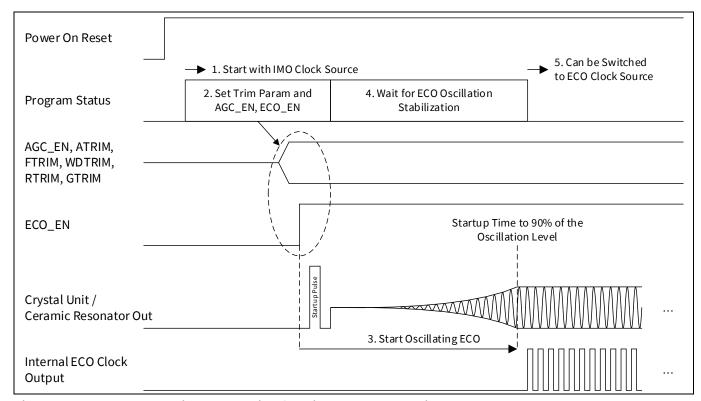


Figure 2 ECO operation and setting flow in a XMC7000 device

Overview

The following is the operation outline:

- 1. After powering on, the program starts with the IMO clock source.
- 2. The program sets the trim parameters (ATRIM, WDTRIM, FTRIM, RTRIM, and GTRIM) and AGC_EN, and then activates ECO_EN.
- 3. After the start-up pulse is output, the XMC7000 device starts oscillating the ECO according to the set parameters.
- 4. When the oscillation is stable (defined as the time to reach 90% of the oscillation level under steady state conditions), the XMC7000 device outputs the clock based on the ECO clock source. You can check the ECO_READY bit in the CLK_ECO_STATUS register to see whether the oscillation has stabilized.
- 5. After the oscillation stabilizes, the clock source can be switched to the ECO.

Parameters related to ECO

Parameters related to ECO 2

The parameters related to ECO are calculated from the specifications of the crystal unit and ceramic resonator.

The following are the required specifications:

f : Fundamental frequency

 D_L : Maximum drive level

 $ESR(R_{1_xtal})$: Equivalent series resistance (ESR)

: Shunt capacitance $C_{0 \ xtal}$

 C_L : Parallel load capacitance

• |-R|: The crystal unit vendor's recommended value of negative resistance.

These values are decided in consultation with the crystal unit vendor. Note:

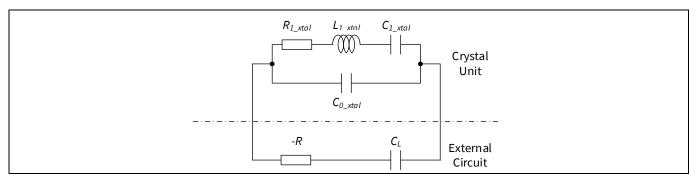


Figure 3 Equivalent circuit of crystal unit/ceramic resonator and external circuit

For details on the specifications, see the datasheets of the crystal unit and ceramic resonator. Check with the vendor for the specifications that are not in the datasheet.

In the ceramic resonator, D_L and |-R| are not specified. This is because increasing or decreasing D_L and |-R|has little effect on the characteristics of the ceramic resonator.

Figure 4 shows the parameters related to the ECO calculation flow for the crystal unit and ceramic resonator.

Parameters related to ECO

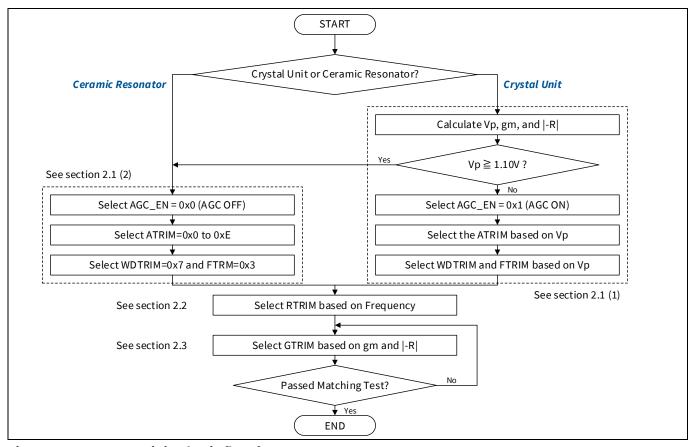


Figure 4 **Determining basic flow for ECO parameters**

2.1 Setting AGC_EN, ATRIM, WDTRIM, and FTRIM

1. AGC_EN, ATRIM, WDTRIM, and FTRIM settings for the crystal unit

The value of AGC_EN, ATRIM, WDTRIM, FTRIM is determined from the Max Peak Value (V_p) . V_p can be calculated using **Equation 2**.

$$Max \ Peak \ Value(V_p) = \frac{\sqrt{\frac{D_L}{2ESR}}}{\pi f(C_0 + C_L)}$$
 Equation 2

Table 2 AGC_EN, ATRIM, WDTRIM, and FTRIM settings for the crystal unit

V_p (V)	AGC_EN	ATRIM	WDTRIM	FTRIM
$0.50 \le V_p < 0.55$	0x1	0x4	0.42	
$0.55 \le V_p < 0.60$	0x1	0x5	0x2	
$0.60 \le V_p < 0.65$	0x1	0x6	0.42	0x3
$0.65 \le V_p < 0.70$	0x1	0x7	0x3	
$0.70 \le V_p < 0.75$	0x1	0x8	0.4	
$0.75 \le V_p < 0.80$	0x1	0x9	0x4	
$0.80 \le V_p < 0.85$	0x1	0xA	0x5	

Parameters related to ECO

$\overline{V_p}$ (V)	AGC_EN	ATRIM	WDTRIM	FTRIM
$0.85 \le V_p < 0.90$	0x1	0xB		
$0.90 \le V_p < 0.95$	0x1	0xC	00	
$0.95 \le V_p < 1.00$	0x1	0xD	0x6	
$1.00 \le V_p < 1.05$	0x1	0xE	07	
$1.05 \le V_p < 1.10$	0x1	0xF	0x7	
$1.10 \le V_p$	0x0	0x0-0xE 1	0x7	

The calculated V_p is a reference value for not exceeding the drive level.

When AGC_EN='0 (OFF)', XMC7000 does not restrict the oscillation magnitude; therefore, the calculated V_p does not have any effect.

Finally, the values of AGC_EN, ATRIM, WDTRIM, and FTRIM are confirmed by the matching test.

2. AGC_EN, ATRIM, WDTRIM, and FTRIM settings for the ceramic resonator

The values of AGC_EN, ATRIM, WDTRIM, and FTRIM are fixed. Use the value for $1.10 \le V_p$.

Table 3 AGC_EN, ATRIM, WDTRIM, and FTRIM settings for the crystal unit and ceramic resonator

V_p (V)	AGC_EN	ATRIM	WDTRIM	FTRIM
$1.10 \le V_p$	0x0	0x0-0xE ¹	0x7	0x3

2.2 Setting RTRIM

The RTRIM value is determined by f as shown in **Table 4**. Determine the crystal unit and ceramic resonator in the same way.

Table 4 RTRIM settings for the crystal unit and ceramic resonator

Fundamental frequency (MHz)	RTRIM
28.6 < <i>f</i>	0x0
23.33 < <i>f</i> ≤ 28.6	0x1
16.5 < <i>f</i> ≤ 23.33	0x2
$f \le 16.5$	0x3

Parameters related to ECO

2.3 Setting the GTRIM value

The value of GTRIM is determined by g_m . g_m can be calculated using **Equation 3**.

 $Transconductance(g_m) > 20 \times ESR \times (2\pi \times f)^2 \times (C_0 + C_L)^2$

Equation 3

Table 5 GTRIM settings for the crystal unit and ceramic resonator

g _m (mA/V)	GTRIM
$0.0 \le g_{\rm m} < 2.2$	0x0
2.2 ≤ g _m < 4.4	0x1
$4.4 \le g_m < 6.6$	0x2
$6.6 \le g_m < 8.8$	0x3
$8.8 \le g_m < 11$	0x4
11.0 ≤ g _m < 13.2	0x5
13.2 ≤ g _m < 15.4	0x6
$15.4 \le g_m \le 17.6$	0x7

Note:

- 1. The g_m calculated by **Equation 3** is based on ESR*5. If -R requires more than ESR*10, double gm.
- 2. If the calculated g_m is 17.6 or higher, you will not get the TRIM value. This means that the ceramic resonator oscillation cannot be guaranteed. Consider using a different crystal unit and ceramic resonator.

Determining the ECO parameters with the ECO trim calculator

3 Determining the ECO parameters with the ECO trim calculator

3.1 ECO trim calculator example for the crystal unit

This section describes the parameter calculation method for the crystal unit with the following specifications:

f: 16 [MHz]
D_L: 300 [μW]

• ESR: 50 [ohm]

• C_{0_xtal} : 1 [pF]

• C_L : 8 [pF]

• |-R|: Over 500 [ohm] (10 times the ESR, $ESR \times 10 = 50 \times 10 = 500$)

Enter the above specifications in the cells, highlighted in yellow, of the ECO trim calculator.

Parameter	Va	lue	Max Peak Value (V _p) [V]	Transconductance (g _m) [mA/V]		
f (Fundamental Frequency)	<mark>16.000</mark>	[MHz]				
D _L (Maximum Drive Level)	300.0	[uW]		3.837		
ESR (Equivalent Series Resistance, R1_max)	50.0	[ohm]	3.829			
C _{0 xtal} (Shunt Capacitance)	1.000	[pF]				
C _L (Parallel Load Capacitance)	8.000	[pF]				
Vendor recommended value of - R	500	[ohm]				

The ECO trim calculator calculates the XMC7000 parameters based on the entered specifications and automatically displays the values in cells highlighted in orange.

	V _P [V]	ATRIM	WDTRIM	FTRIM	V _P [V]	AGC_EN	g _m [mA/V]		GTRIM	Calculated Ne -R for	gative Re TRM [koh		Fundamental Frequency f (MHz)	RTRIM					
0.50	≤ V _P < 0.55	0x4	0X2		V _P < 1.10	0x1 (ON)	0.0	≤ g _m <	2.2	0x0	0.000	to	0.672	28.6 < f	0x0				
0.55	≤ V _P < 0.60	0x5	0.72	0x3	1.10 ≤ V _p	0x0 (OFF)	2.2	≤ g _m <	4.4	0x1	0.672	to	1.344	23.33 < f ≤ 28.6	0x1				
0.60	≤ V _P < 0.65	0x6	0x3	0,5			4.4	≤ g _m <	6.6	0x2	1.344	to	2.016	16.5 < f ≤ 23.33	0x2				
0.65	≤ V _P < 0.70	0x7	0.5				6.6	≤ g _m <	8.8	0x3	2.016	to	2.687	f ≤ 16.5	0x3				
0.70	≤ V _P < 0.75	0x8	0x4				8.8	\leq g_m $<$	11.0	0x4	2.687	to	3.359						
0.75	≤ V _P < 0.80	0x9	0x3	0.4	0×3			11.0	≤ g _m <	13.2	0x5	3.359	to	4.031					
0.80	≤ V _P < 0.85	0xA	0x5	0,5	UXS	0,0	0,0	0,3			13.2	\leq g_m $<$	15.4	0x6	4.031	to	4.703		
0.85	≤ V _P < 0.90	0xB	0,0				15.4	\leq g_m $<$	17.6	0x7	4.703	to	5.375						
0.90	≤ V _P < 0.95	0xC	0x6							(Note) Recor	nsider to use ano	ther Crys	tal Unit if any	GTRIM cells are not highlighted.					
0.95	≤ V _P < 1.00	0xD	0.00	0x3															
1.00	≤ V _P < 1.05	0xE	0x7	UXS															
1.05	≤ V _P < 1.10	0xF	UX7																
1.	.10 ≤ V _P	0x0 - 0xE	0x7	0x3															

Note:

- 1. The negative resistance value changes with temperature.
- 2. These trim values must be evaluated and determined in a matching test. If the measured negative resistance value is small, increase GTRIM and measure the negative resistance value again.
- 3. When the calculated V_p is less than 0.5, ATRIM, WDTRIM, and FTRIM cells will not be highlighted. Reconsider using a different Crystal Unit.
- 4. When the calculated g_m is 17.6 or higher, none of the GTRIM cells is highlighted. Reconsider using a different crystal unit.
- 5. The specified crystal Maximum Drive Level (D_L): 300 μ W does not mean that the crystal actually consumes 300 μ W. The XMC7000 ECO amplifier is not rail-to-rail driven. Limit the maximum peak value to approximately 1.6–1.8 V even when AGC_EN = 0. This corresponds to D_L from 55 μ W to 65 μ W. (You can see that the Max Peak Value is 1.782 V by entering D_L = 65 μ W in the ECO trim calculator.) Note that if you add R_d , the amplitude and power consumption will change and the XMC7000 MCU may not work.

Determining the ECO parameters with the ECO trim calculator

The following are the calculated parameters:

• AGC_EN = 0x0

• ATRIM = 0x0 (It is okay to select any value from 0x0 to 0xE)

WDTRIM = 0x7
 FTRIM = 0x3
 GTRIM = 0x1
 RTRIM = 0x3

3.2 ECO trim calculator example for the ceramic resonator

This section describes the parameter calculation method for the ceramic resonator with the following specifications:

• *f*: 20 [*MHz*]

• ESR: 40 [ohm]

• $C_{0 \ xtal}$: 7.55 [pF]

• C_L : 7.5 [pF]

Note:

 D_L and -R are not required by the ceramic resonator, so there is no need to enter them into the ECO trim calculator.

Enter the above specifications in the cells, highlighted in green, of the ECO trim calculator.

Parameter	Va	lue	Max Peak Value (V _p) [V]	Transconductance (g _m) [mA/V]
f (Fundamental Frequency)	20.000	[MHz]		
D _L (Maximum Drive Level)	-	[uW]		
ESR (Equivalent Series Resistance)	40.0	[ohm]	-	2.861
C _{0_xtal} (Shunt Capacitance)	7.550	[pF]		
C _L (Parallel Load Capacitance)	7.500	[pF]		

The ECO trim calculator calculates the XMC7000 parameters based on the entered specifications and automatically displays the values in cells highlighted in blue.

ATRIM, WDTRIM	[AGC Ena	C Enable] [GTRIM Settings]					[RTRIM Settings]								
V _P [V]	ATRIM	WDTRIM	FTRIM	V _P [V]	AGC_EN	g _m [mA/V]		g _m [mA/V]		Calculated Ne -R for	gative Re		Fundamental Frequency f (MHz)	RTRIM	
$0.50 \le V_P < 0.55$	0x4	0x2		V _P < 1.10	0x1 (ON)	0.0	≤ g _m <	2.2	0x0	0.000	το	0.154	28.6 < f	0x0	
$0.55 \le V_P < 0.60$	0x5	UXZ	0x3	1.10 ≤ V _P	0x0 (OFF)	2.2	≤ g _m <	4.4	0x1	0.154	το	0.308	23.33 < f ≤ 28.6	0x1	
0.60 ≤ V _P < 0.65	0x6	0x3	UXS			4.4	≤ g _m <	6.6	0x2	0.308	το	0.461	16.5 < f ≤ 23.33	0x2	
$0.65 \le V_P < 0.70$	0x7	UXS				6.6	≤ g _m <	8.8	0x3	0.461	το	0.615	f ≤ 16.5	0x3	
$0.70 \hspace{0.1in} \leq V_P < \hspace{0.1in} 0.75$	0x8	0x4				8.8	≤ g _m <	11.0	0x4	0.615	το	0.769			
$0.75 \le V_P < 0.80$	0x9	0x4 0x5		043			11.0	≤ g _m <	13.2	0x5	0.769	το	0.923		
$0.80 \hspace{0.1in} \leq V_P < \hspace{0.1in} 0.85$	0xA			0.3			13.2	≤ g _m <	15.4	0x6	0.923	το	1.076		
$0.85 \le V_P < 0.90$	0xB						15.4	≤ g _m <	17.6	0x7	1.076	το	1.230		
$0.90 \le V_P < 0.95$	0xC	0x6							(Note) Reco	nsider to use ano	ther Cryst	al Unit if any	GTRIM cells are not highlighted.		
$0.95 \le V_P < 1.00$	0xD	UXU	0x3												
$1.00 \le V_P \le 1.05$	0xE	0x7	0,5												
$1.05 \le V_P < 1.10$	0xF	OA7													
1.10 ≤ V _P	0x0 - 0xE	0x7	0x3												

Note:

- 1. The negative resistance value changes with temperature.
- 2. These trim values must be evaluated and determined in a matching test.
- 3. When the calculated g_m is 17.6 or higher, none of the GTRIM cells is highlighted. Reconsider using a different crystal unit.

Determining the ECO parameters with the ECO trim calculator

The following are the calculated parameters:

• AGC_EN = 0x0

• ATRIM = 0x0 (It is okay to select any value from 0x0 to 0xE)

WDTRIM = 0x7
 FTRIM = 0x3
 GTRIM = 0x1

= 0x2

RTRIM

Application Note

11 of 15

Exception handling

Exception handling 4

If the matching test fails, try the following:

- When the measured negative resistance value (|-R|) is insufficient. XMC7000 has a built-in amplifier to control the ECO. The gain of the amplifier can be increased with GTRIM, and the negative resistance value (|-R|) will increase.
 - However, these have limitations. If the negative resistance value (|-R|) is insufficient even with the maximum GTRIM value, use another crystal unit.

Additional information

Additional information 5

Matching test 5.1

In the matching test, the drive level, frequency accuracy, negative resistance, and startup time are generally tested (see Table 6). The results of the matching test are valid for the reported test board only.

Table 6 Test items for the matching test

Test items	Description							
Drive level	Measures the power consumed by the crystal unit. Generally, if the power consumption is greater than the maximum driving capability of the crystal unit, a R_d is required. However, in XMC7000, the power consumption is adjusted by the AGC enable and trim value without R_d .							
Frequency accuracy	Changes the values of C_1 , C_2 and measures the frequency accuracy. C_1 , C_2 are determined to achieve the desired frequency accuracy. In general, the crystal vendor mounts C_1 and C_2 on the PCB that contain C_3 (stray capacitance) in matching tests. Then, select C_1 and C_2 that have the smallest frequency deviation.							
Negative resistance	Measures the negative resistance of the oscillation circuit and calculates the oscillation margin							
Startup time	To confirm that the crystal unit and ceramic resonator oscillate normally, measures the time until the oscillation amplitude shifts to the steady state region (the time until it reaches 90% of the steady state oscillation level)							

Check with the crystal unit vendor for more information on the matching test.

5.2 Stray capacitance

Stray capacitance is the capacitance caused by the physical structure of electronic circuits. It is generated by the close wiring or via of the board.

- Stray capacitance affects the operation of electronic circuits at higher frequencies. To minimize stray capacitance, make the circuit wiring as short as possible.
- Do not mount vias on the test board as much as possible.

Consult your crystal unit vendor when designing your board.

Contact the board vendor for the stray capacitance value.

Revision history

Revision history

Document version	Date of release	Description of changes
**	2022-03-28	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-28
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Go to www.infineon.com/support

Document reference 002-35008 Rev. **

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.