

Getting started with XMC7000 MCU on ModusToolbox[™] software

About this document

Scope and purpose

This application note helps you explore the XMC7000 MCU architecture and development tools and shows you how to create your first project using the Eclipse IDE for ModusToolbox™ software. This application note also guides you to more resources available online to accelerate your learning about XMC7000 MCU.

Intended audience

This document is intended for the users who are new to XMC7000 MCU and ModusToolbox™ software.

Associated part family

All XMC7000 MCU devices.

Software version

ModusToolbox[™] software 3.1 or above.

More code examples? We heard you

To access an ever-growing list of XMC7000 code examples using ModusToolbox[™], please visit the GitHub site.

Table of contents

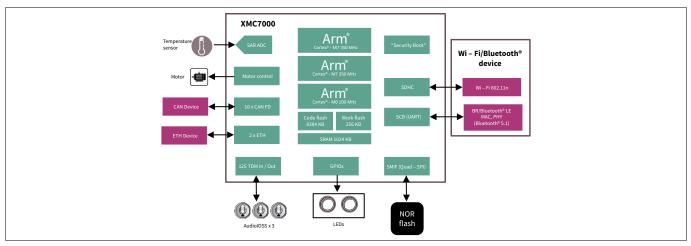
Table of contents

	About this document
	Table of contents
1	Introduction
2	Development ecosystem
2.1	XMC7000 resources
2.2	Firmware/application development6
2.2.1	Installing the ModusToolbox™ tools package6
2.2.2	Choosing an IDE
2.2.3	ModusToolbox™ software
2.2.4	ModusToolbox™ applications
2.2.5	XMC7000 software resources 11
2.2.5.1	Configurators
2.2.5.2	Library management for XMC7000 MCU 12
2.2.5.3	Software development for XMC7000 MCU12
2.3	Support for other IDEs
2.4	FreeRTOS support with ModusToolbox™15
2.5	Programming/debugging using Eclipse IDE
2.6	XMC7000 MCU development kits15
3	Device features
4	XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE
4.1	Prerequisites
4.1.1	Hardware
4.1.2	Software
4.2	Using these instructions
4.3	About the design
4.4	Create a new application
4.5	View and modify the design
4.5.1	Opening the Device Configurator25
4.5.2	Add retarget-io middleware 26
4.5.3	Configuration of UART, timer peripherals, pins, and system clocks
4.6	Write firmware
4.7	Build the application
4.8	Program the device
4.9	Test your design
5	Summary
6	References
7	Glossary

Table of contents

Revision history	 43
Disclaimer	

1 Introduction


1 Introduction

The XMC7000 device is a microcontroller targeted at industrial applications. The XMC7000 integrates the following features on a single chip:

- Up to two 350-MHz 32-bit Arm[®] Cortex[®]-M7 CPUs each with:
 - Single-cycle multiply
 - Single-double-precision floating point unit (FPU)
 - 16-KB data cache, 16-KB instruction cache
 - Memory protection unit (MPU)
 - 16-KB instruction and 16-KB data tightly-coupled memory (TCM)
- 100-MHz 32-bit Arm[®] Cortex[®] M0+ CPU with single-cycle multiply and MPU
- Programmable analog and digital peripherals
- Up to 8384 KB of code flash with an additional 256 KB of work flash, and an internal SRAM of up to 1024 KB
- XMC7000 MCU is suitable for a variety of power-sensitive applications such as:
 - Wireless charging
 - Lighting
 - Power supply servers
 - Robots and drones
 - MHA
 - Industrial drives
 - PLC
 - I/O modules
 - Electric two-wheelers

The ModusToolbox[™] software environment supports XMC7000 MCU application development with a set of tools for configuring the device, setting up peripherals, and complementing your projects with world-class middleware. See the Infineon GitHub repos for BSPs (Board Support Packages) for all kits, libraries for popular functionality like CAPSENSE[™] and emWin, and a comprehensive array of example applications to get you started.

Figure 1 illustrates an application-level block diagram for a real-world use case using XMC7000 MCU.

Application-level block diagram using XMC7000 MCU

1 Introduction

XMC7000 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes advantage of these features:

- A buck converter for ultra-low-power operation
- An analog front end (AFE) within the device to condition and measure sensor outputs such as the ambient light sensor
- Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors
- Programmable digital logic (smart I/O) and peripherals (Timer Counter PWM or TCPWM) to drive the motor and LEDs respectively
- Up to 10 CAN FD channels with increased data rate (up to 8 Mbps) supports all the requirement of CAN FD specification V1.0 for non-ISO CAN FD
- Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az supports MII/RMII/ RGMII/AVB/PTP PHY interfaces
- SDIO interface to a Wi-Fi/Bluetooth[®] device to provide IoT cloud connectivity
- Product security features managed by CM0+ CPU and application features executed by CM7 CPUs

There are two product lines in XMC7000. Table 1 provides overview of different product lines:

Device series	Details
XMC7100	Triple-core architecture: 250-MHz Arm [®] Cortex [®] -M7 and 100-MHz Cortex [®] -M0+
	4-MB flash, 768-KB RAM
	Packages: 100/144/176 TEQFP, 272 BGA
XMC7200	Triple-core architecture: 350-MHz Arm [®] Cortex [®] -M7 and 100-MHz Cortex [®] -M0+
	8-MB flash, 1-MB RAM
	Packages: 176 TEQFP, 272 BGA

Table 1XMC7000 MCU product lines

Note: Not all the features are available in all the devices in a product line. See the device datasheets for more details.

This application note introduces you to the capabilities of the XMC7000 MCU, gives an overview of the development ecosystem, and gets you started with a simple 'Hello World' application wherein you learn to use the XMC7000 MCU. We will show you how to create an application from an empty starter application, but the completed design is available as a code example for ModusToolbox[™] on GitHub.

For hardware design considerations, see Hardware design guide for the XMC7000 Family.

2 Development ecosystem

2.1 XMC7000 resources

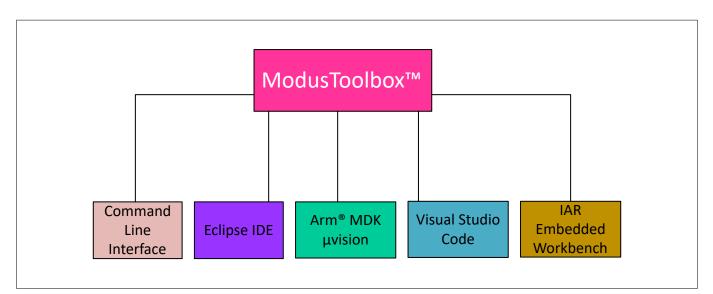
A wealth of data available here helps you to select the right XMC[™] device and quickly and effectively integrate it into your design. For a comprehensive list of XMC7000 MCU resources, see How to design with XMC7000 MCU. The following is an abbreviated list of resources for XMC7000 MCU.

- Overview: XMC7000 MCU webpage
- Product selectors: XMC7000 MCU
- Datasheets describe and provide electrical specifications for each device family.
- Application notes and code examples cover a broad range of topics, from basic to advanced level. You can also browse our collection of code examples.
- Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each device family.
- Debug XMC7000 MCU in ModusToolbox[™] environment provides the information necessary to debug with single-core and multi-core applications.
- **Development tools:** Many low-cost kits are available for evaluation, design, and development of different applications using XMC7000 MCUs.
- **Technical Support:** XMC7000 community forum, knowledge base articles

2.2 Firmware/application development

There is one development platforms that you can use for application development with XMC7000 MCU:

- ModusToolbox[™]: This software includes configuration tools, low-level drivers, middleware libraries, and other packages that enable you to create MCU and wireless applications. All tools run on Windows, macOS, and Linux. ModusToolbox[™] includes an Eclipse IDE, which provides an integrated flow with all the ModusToolbox[™] tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm[®] MDK (µVision) are also supported.
 - ModusToolbox[™] software supports stand-alone device and middleware configurators. Use the configurators to set the configuration of different blocks in the device and generate code that can be used in firmware development. The software supports all XMC7000 MCUs. It is recommended that you use ModusToolbox[™] software for all application development for XMC7000 MCUs. See the ModusToolbox[™] tools package user guide for more information.
 - Libraries and enablement software are available at the GitHub site.
 - ModusToolbox[™] tools and resources can also be used in the command line. See the "Using commandline" section in the ModusToolbox[™] user guide for detailed documentation.


2.2.1 Installing the ModusToolbox[™] tools package

Refer to the ModusToolbox[™] tools package installation guide for details.

2.2.2 Choosing an IDE

ModusToolbox[™] software, the latest-generation toolset, is supported across Windows, Linux, and macOS platforms. ModusToolbox[™] software supports 3rd-party IDEs, including the Eclipse IDE, Visual Studio Code, Arm[®] MDK (µVision), and IAR Embedded Workbench. The tools package includes an implementation for the Eclipse IDE for your convenience. The tools support all XMC7000 MCUs. The associated BSP and library configurators also work on all three host operating systems.

Figure 2 ModusToolbox[™] environment

Use ModusToolbox[™] to take advantage of the power and extensibility of an Eclipse-based IDE. ModusToolbox[™] is supported on Windows, Linux, and macOS. It is recommended to use ModusToolbox[™].

2.2.3 ModusToolbox[™] software

ModusToolbox[™] software is a set of tools and software that enables an immersive development experience for creating converged MCU and wireless systems, and enables you to integrate our devices into your existing development methodology. These include configuration tools, low-level drivers, libraries, and operating system support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.

Eclipse IDE for ModusToolbox[™] is a multi-platform development environment that supports application configuration and development.

Figure 3 shows a high-level view of the tools/resources included in the ModusToolbox[™] software. For a more indepth overview of the ModusToolbox[™] software, see ModusToolbox[™] user guide.

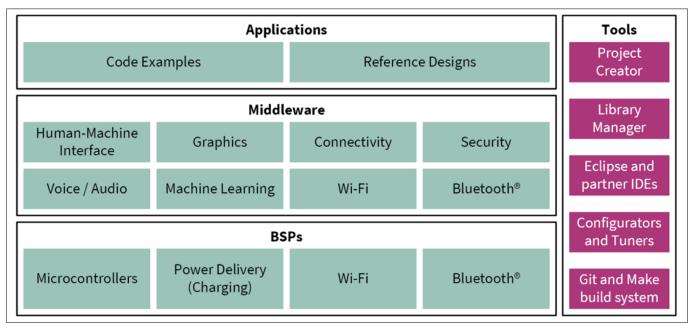
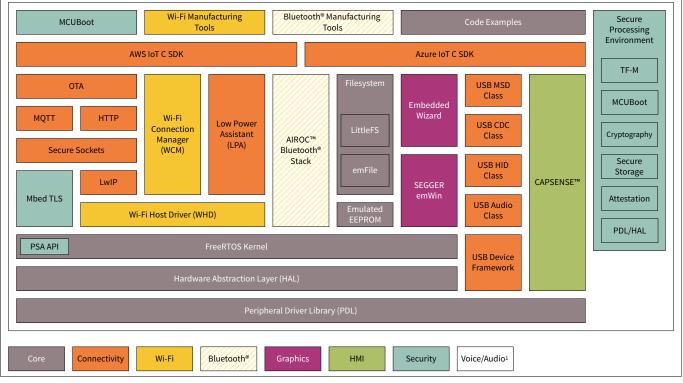


Figure 3

ModusToolbox[™] software

The ModusToolbox[™] tools package installer includes the design configurators and tools, and the build system infrastructure.


The build system infrastructure includes the new project creation wizard that can be run independent of the Eclipse IDE, the make infrastructure, and other tools.

This means you choose your compiler, IDE, RTOS, and ecosystem without compromising usability or access to our industry-leading CAPSENSE[™] (Human-Machine Interface), AIROC[™] Wi-Fi and Bluetooth[®], security, and various other features.

One part of the ModusToolbox[™] ecosystem is run-time software that helps you rapidly develop Wi-Fi and Bluetooth[®] applications using connectivity combo devices with the XMC[™] MCU. See the ModusToolbox[™] runtime software reference guide for details.

Design configurators are the tools that help you create the configurable code for your BSP/Middleware. Jump to Configurators to know more about it.

Figure 4 shows a runtime software diagram to showcase some of the application capabilities of Infineon devices using ModusToolbox[™] software.

ModusToolbox[™] run-time software diagram

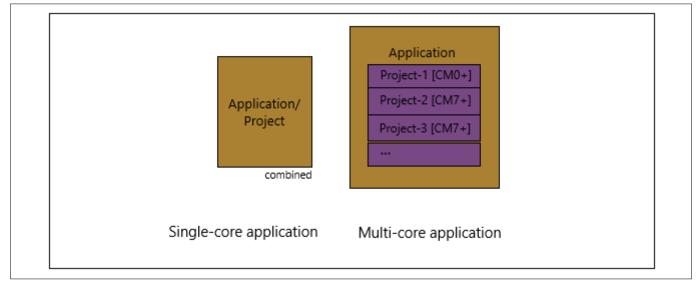
All the application-level development flows depend on the provided low-level resources. These include:

- Board support packages (BSP) A BSP is the layer of firmware containing board-specific drivers and other functions. The BSP is a set of libraries that provides APIs to initialize the board and access to board level peripherals. It includes low-level resources such as peripheral driver library (PDL) for XMC7000 MCU and has macros for board peripherals. It uses the HAL to configure the board. Custom BSPs can be created to enable support for end-application boards. See BSP Assistant to create your BSP.
- Hardware abstraction layer (HAL) The hardware abstraction layer (HAL) provides a high-level interface to configure and use hardware blocks on MCUs. It is a generic interface that can be used across multiple product families. The focus on ease-of-use and portability means the HAL does not expose all the low-level peripheral functionality. The HAL wraps the lower level drivers (like XMC7000 MCU PDL) and provides a high-level interface to the MCU. The interface is abstracted to work on any MCU. This helps you write application firmware independent of the target MCU.

The HAL can be combined with platform-specific libraries (such as XMC7000 MCU PDL) within a single application. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires lower-level control.

• XMC7000 MCU peripheral driver library (PDL) – The PDL integrates device header files, start-up code, and peripheral drivers into a single package. The PDL supports the XMC7000 MCU family. The drivers abstract the hardware functions into a set of easy-to-use APIs. These are fully documented in the PDL API Reference.

The PDL reduces the need to understand register usage and bit structures, thus easing software development for the extensive set of peripherals in the XMC7000 MCU series. You configure the driver for your application, and then use API calls to initialize and use the peripheral.


• Middleware (MW) – Extensive middleware libraries that provide specific capabilities to an application. All the middleware is delivered as libraries and via GitHub repositories.

2.2.4 ModusToolbox[™] applications

With the release of ModusToolbox[™] v3.x, multi-core support is introduced, which has altered the folder structure slightly from the previous version of ModusToolbox[™].

ModusToolbox[™] has two types of applications:

- Single-core application
- Multi-core application

Figure 5 Application types

The following shows the new folder structure for an example single-core application:


```
<root>
  ApplicationName
  ->Makefile (MTB TYPE=COMBINED)
  ->deps
      lib1.mtb (local)
      lib2.mtb (shared)
  ->libs
      lib1 (Infineon Git repo)
  ->bsps
      TARGET_BSP1 (not an Infineon Git repo; completely app-owned)
  ->templates
      TARGET BSP1
        design.modus
        design.capsense
  ->main.c
  ->helper.h
  ->helper.c
  mtb shared
    lib2/... (Infineon Git repo)
```

Figure 6

Folder structure for single-core applications

The following shows the new folder structure for an example multi-core application:

<root></root>	lib7.mtb (local)
ApplicationName	lib8.mtb (shared)
->Makefile (MTB TYPE=APPLICATION)	libs
->common.mk	lib7 (Infineon Git repo)
->common app.mk	main.c
->bsps	project3_helper.h
TARGET_BSP1 (not an Infineon Git repo; completely app-owned)	project3_helper.c
->templates	mtb_shared
TARGET_BSP1	<pre>lib4/ (Infineon Git repo)</pre>
design.modus	lib6/ (Infineon Git repo)
design.capsense	lib8/ (Infineon Git repo)
->project1	
Makefile (MTB_TYPE=PROJECT)	
deps	
lib3.mtb (local)	
lib4.mtb (shared)	
libs	
lib3 (Infineon Git repo)	
main.c	
projectl_helper.h	
projectl_helper.c	
->project2	
Makefile (MTB_TYPE=PROJECT)	
deps	
lib5.mtb (local)	
lib6.mtb (shared)	
libs	
lib5 (Infineon Git repo)	
main.c	
project2_helper.h	
project2_helper.c	
->project3	
Makefile (MTB_TYPE=PROJECT)	
deps	

Figure 7Folder Structure for multi-core applications

The new flow using ModusToolbox[™] versions 3.x can support multiple projects in an application. For multi-core applications, there are multiple projects, but only one project per core. The applications have app-owned BSPs, meaning the BSP will be common to all projects inside a multi-core application.

Going further, section 4 of this document describes creating a new single-core application using ModusToolbox[™] software.

2.2.5 XMC7000 software resources

The software for XMC7000 MCUs includes configurators, drivers, libraries, middleware, as well as various utilities, makefiles, and scripts. It also includes relevant drivers, middleware, and examples for use with IoT devices and connectivity solutions. You may use any or all tools in any environment you prefer.

2.2.5.1 Configurators

ModusToolbox[™] software provides graphical applications called configurators that make it easier to configure a hardware block. For example, instead of having to search through all the documentation to configure a serial communication block as a UART with a desired configuration, open the appropriate configurator and set the baud rate, parity, and stop bits. Upon saving the hardware configuration, the tool generates the "C" code to initialize the hardware with the desired configuration.

There are two types of configurators: BSP configurators that configure items that are specific to the MCU hardware and library configurators that configure options for middleware libraries.

Configurators are independent of each other, but they can be used together to provide flexible configuration options. They can be used stand alone, in conjunction with other tools, or within a complete IDE. Configurators are used for:

- Setting options and generating code to configure drivers
- Setting up connections such as pins and clocks for a peripheral
- Setting options and generating code to configure middleware

For XMC7000 MCU applications, the available configurators include:

- **Device Configurator:** Set up the system (platform) functions, pins, and the basic peripherals (e.g., UART, Timer, PWM)
- **QSPI Configurator:** Configure external memory and generate the required code
- Smart I/O Configurator: Configure Smart I/O pins

Each of the above configurators create their own files (e.g.: design.cyqspi for QSPI). The configurator files (design.modus or design.cyqspi) are usually provided with the BSP. When an application is created based on a BSP, the files are copied into the application. You can also create custom device configurator files for an application and override the ones provided by the BSP.

2.2.5.2 Library management for XMC7000 MCU

The application can have shared/local libraries for the projects. If needed, different projects can use different versions of the same library. The shared libraries are downloaded under the mtb_shared directory. The application should use the deps folder to add library dependencies. The deps folder contains files with the .mtb file extension, which is used by ModusToolbox[™] to download its git repository. These libraries are direct dependencies of the ModusToolbox[™] project.

The Library Manager helps to add/remove/update the libraries of your projects. It also identifies whether particular library has a direct dependency on any other library using the manifest repository available on GitHub, and fetches all its dependencies. These dependency libraries are indirect dependencies of the ModusToolbox[™] project. These dependencies can be seen under the libs folder. For more information, see the Library Manager user guide located at <install_dir> /ModusToolbox/tools_<version>/library-manager/docs/ library-manager.pdf.

2.2.5.3 Software development for XMC7000 MCU

The ModusToolbox[™] ecosystem provides significant source code and tools to enable software development for XMC7000 MCUs. You use tools to:

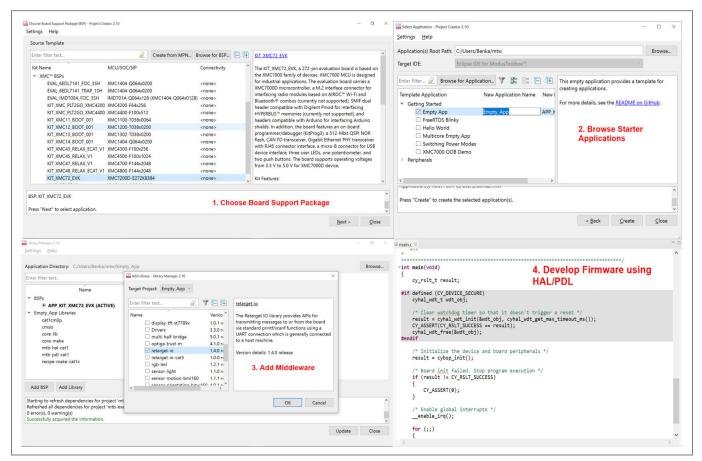
- Specify how you want to configure the hardware.
- Generate code for that purpose, which you use in your firmware.
- Include various middleware libraries for additional functionality, like Bluetooth[®] LE connectivity or FreeRTOS.

This source code makes it easier to develop the firmware for supported devices. It helps you quickly customize and build firmware without the need to understand the register set.

In the ModusToolbox[™] environment, you use configurators to configure either the device, or a middleware library, like QSPI functionality.

The XMC7000 Peripheral Driver Library code is delivered as the mtb-pdl-cat1 library. Middleware is delivered as separate libraries for each feature/function.

Firmware developers who wish to work at the register level should refer to the driver source code from the PDL. The PDL includes all the device-specific header files and startup code you need for your project. It also serves as a reference for each driver. Because the PDL is provided as source code, you can see how it accesses the hardware at the register level.


Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported device. This superset design means:

- All API elements needed to initialize, configure, and use a peripheral are available.
- The PDL is useful across various XMC7000 MCUs, regardless of available peripherals.
- The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.

This enables the code to maintain compatibility across members of the XMC7000 MCU family, as long as the peripherals are available. A device header file specifies the peripherals that are available for a device. If you write code that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing code to use a peripheral, consult the datasheet for the particular device to confirm support for that peripheral.

As the following figure shows, with the ModusToolbox[™] software, you can:

- **1.** Choose a BSP (Project Creator).
- **2.** Create a new application based on a list of starter applications, filtered by the BSPs that each application supports (Project Creator).
- **3.** Add BSP or middleware libraries (Library Manager).
- **4.** Develop your application firmware using the HAL or PDL for XMC7000 MCU (IDE of choice or command line).

Eclipse IDE for ModusToolbox[™] resources and middleware

2.3 Support for other IDEs

You can develop firmware for XMC7000 MCUs using your preferred IDE such as Eclipse IDE, IAR Embedded Workbench, Keil µVision 5 or Visual Studio Code.

ModusToolbox[™] Configurators are stand-alone tools that can be used to set up and configure XMC7000 MCU resources and other middleware components without using the Eclipse IDE. The Device Configurator and

middleware configurators use the design.x files within the application workspace. You can then point to the generated source code and continue developing firmware in your IDE.

If there is a change in the device configuration, edit the design.x files using the configurators and regenerate the code. It is recommended that you generate resource configurations using the configuration tools provided with ModusToolbox[™] software.

2.4 FreeRTOS support with ModusToolbox™

Adding native FreeRTOS support to a ModusToolbox[™] application project is like adding any middleware library. You can include the FreeRTOS middleware in your application by using the Library Manager. If using the Eclipse IDE for ModusToolbox[™], select the application project and click the **Library Manager** link in the **Quick Panel**. Click **Add Library** and select **freertos** from the **Core** dialog, as Figure 9 shows.

The .mtb file pointing to the FreeRTOS middleware is added to the application project's deps directory. The middleware content is also downloaded and placed inside the corresponding folder called **freertos**. The default location is in the shared asset repo named mtb_shared. To continue working with FreeRTOS, follow the steps in the Quick Start section of FreeRTOS documentation.

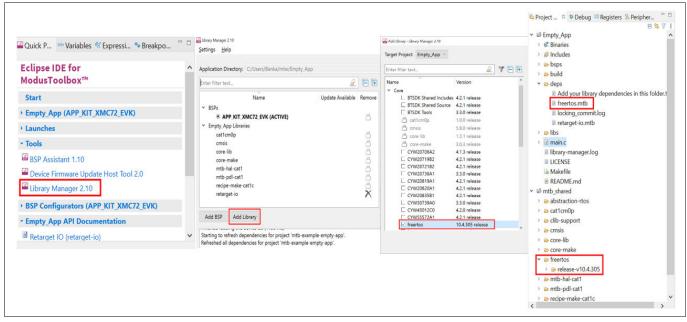


Figure 9

Import FreeRTOS middleware in ModusToolbox[™] application

2.5 Programming/debugging using Eclipse IDE

All XMC7000 Kits have a KitProg3 onboard programmer/debugger. It supports Cortex[®] Microcontroller Software Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details.

The Eclipse IDE requires KitProg3 and uses the OpenOCD protocol for debugging XMC7000 MCU applications. It also supports GDB debugging using industry standard probes like the Segger J-Link.

ModusToolbox[™] includes the **fw-loader** command-line tool to update and switch the KitProg firmware from KitProg2 to KitProg3. Refer to the "XMC7000 Programming/Debugging - KitProg Firmware Loader" section in the Eclipse IDE for ModusToolbox[™] user guide for more details.

For more information on debugging firmware on XMC7000 devices with ModusToolbox™, refer to the Program and Debug section in the Eclipse IDE for ModusToolbox™ user guide.

2.6 XMC7000 MCU development kits

Table 2Development kits

Product line	Development kits
Performance	XMC7200 Evaluation Kit (KIT_XMC72_EVK)

For the complete list of kits for the XMC7000 MCU along with the shield modules, see the Microcontroller (MCUs) kits page.

3 Device features

3 Device features

XMC7000 MCUs have extensive features as shown in Figure 10. The following is a list of major features. For more information, see the device datasheet, the technical reference manual (TRM), and the section on References.

CPU Subsystem

- One or two 250-MHz/350-MHz Arm[™] Cortex[™]-M7 and 100-MHz Arm[™] Cortex[™]-M0+
- Inter-processor communication supported in hardware
- Three DMA controllers

Integrated memories

- Up to 8384 KB of code flash with an additional 256 KB work flash
- Up to 1024 KB of SRAM selectable retention granularity
- Cryptography engine
 - Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)
 - Secure boot and authentication
 - AES: 128-bit blocks, 128-/192-/256-bit keys
 - 3DES: 64-bit blocks, 64-bit key
 - Vector unit supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve (ECC)
 - SHA-1/2/3: SHA-512, SHA-256, SHA-160 with variable length input data
 - CRC: supports CCITT CRC16 and IEEE-802.3 CRC32
 - True random number generator (TRNG) and pseudo random number generator (PRNG)
 - Galois/Counter Mode (GCM)

Safety for application

- Memory Protection Unit (MPU)
- Shared Memory Protection Unit (SMPU)
- Peripheral Protection Unit (PPU)
- Watchdog Timer (WDT)
- Multi-counter Watchdog Timer (MCWDT)
- Low-voltage Detector (LVD)
- Brown-out Detection (BOD)
- Overvoltage Detection (OVD)
- Clock Supervisor (CSV)
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash, TCM)

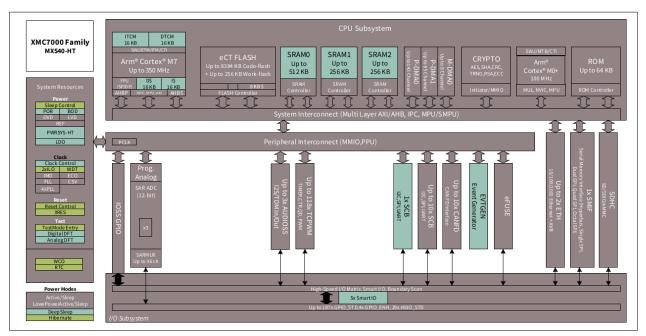
Low-power 2.7-V to 5.5-V operation

- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power management
- Configurable options for robust BOD
- Wakeup
 - Up to two pins to wake from Hibernate mode
 - Up to 220 GPIO pins to wake from Sleep modes
 - Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes
- Clocks
 - Internal Main Oscillator (IMO)
 - Internal Low-Speed Oscillator (ILO)

3 Device features

- External Crystal Oscillator (ECO)
- Watch Crystal Oscillator (WCO)
- Phase-Locked Loop (PLL)
- Frequency-Locked Loop (FLL)
- **Communication interfaces**
 - Up to 10 CAN FD channels
 - Up to 11 runtime-reconfigurable SCB (serial communication block) channels, each configurable as I2C, SPI, or UART
 - Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az
- External memory interface
 - One SPI (Single, Dual, Quad, or Octal) or HYPERBUS[™] interface
 - On-the-fly encryption and decryption
 - Execute-In-Place (XIP) from external memory

SDHC interface


- One Secure Digital High Capacity (SDHC) interface supporting embedded MultiMediaCard (eMMC), Secure
- Digital (SD), or SDIO (Secure Digital Input Output)
- Data rates up to SD High-Speed 50 MHz, or eMMC 52 MHz DDR

Audio interface

- Three Inter-IC Sound (I2S) Interfaces (based on the NXP I2S bus specification) for connecting digital audio devices
- I2S, left justified, or Time Division Multiplexed (TDM) audio formats
- Independent transmit or receive operation, each in master or slave mode
- Timers
 - Up to 102 blocks of 16-bit and 16 blocks of 32-bit Timer/Counter Pulse-Width Modulator (TCPWM)
 - Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep
- Real time clock (RTC)
 - Year/Month/Date, Day-of-week, Hour:Minute:Second fields
 - 12- and 24-hour formats
 - Automatic leap-year correction
- I/O
 - Clock supervisor (CSV)
 - Three I/O types: GPIO_STD/GPIO_ENH/HSIO_STD
- Smart I/O
 - Up to five smart I/O blocks, which can perform Boolean operations on signals going to and from I/Os
 - Up to 36 I/Os (GPIO_STD) supported
- I/O subsystem
 - Up to 220 GPIOs with programmable drive modes, drive strength, slew rates
 - Two ports with smart I/O that can implement Boolean operations

3 Device features

Figure 10 XMC7000 MCU block diagram

Programmable analog

- Three SAR A/D converters with up to 99 external channels (96 I/Os + 3 I/Os for motor control)
- Each ADC supports 12-bit resolution and sampling rates of up to 1 Msps
- Each ADC also supports six internal analog inputs
- Each ADC supports addressing of external multiplexers
- Each ADC has a sequencer supporting autonomous scanning of configured channels
- Synchronized sampling of all ADCs for motor-sense applications

4

XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

This section does the following:

- Demonstrate how to build a simple XMC7000 MCU-based design and program it on to the development kit
- Makes it easy to learn XMC7000 MCU design techniques and how to use the ModusToolbox[™] software and Eclipse IDE.

Note: You can use any supported IDE, but this section uses the Eclipse IDE as an example.

4.1 Prerequisites

Before you get started, make sure that you have the appropriate development kit for your XMC7000 MCU product line and have installed the required software. You also need internet access to the GitHub repositories during project creation.

4.1.1 Hardware

The example design shown below is developed for the XMC7200 Evaluation Kit. However, you can build the application for other development kits. See the Using these instructions section.

4.1.2 Software

ModusToolbox[™] software 3.1 or above.

After installing the software, refer to the ModusToolbox[™] tools package user guide to get an overview of the software.

4.2 Using these instructions

These instructions are grouped into several sections. Each section is devoted to a phase of the application development workflow. The major sections are:

- **1.** Create a new application
- 2. View and modify the design
- **3.** Write firmware
- **4.** Build the application
- 5. Program the device
- 6. Test your design

This design is developed for the XMC7200 Evaluation Kit. You can use other supported kits to test this example by selecting the appropriate kit while creating the application.

4.3 About the design

This design uses the CM7 CPU of the XMC7000 MCU to execute two tasks: UART communication and LED control.

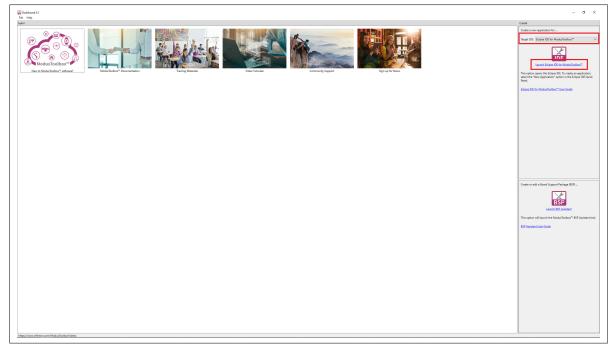
After device reset, the CM7 CPU uses the UART to print a "Hello World" message to the serial port stream, and starts blinking the user LED on the kit. When you press the Enter key on the serial console, the blinking is paused or resumed.

4.4 Create a new application

This section takes you on a step-by-step guided tour of the new application process. It uses the **Empty AppEmpty PSoC4 App** starter application and manually adds the functionality from the **Hello World** starter application. The Eclipse IDE for ModusToolbox[™] is used in the instructions, but you can use any IDE or the command line if you prefer.

If you are familiar with developing projects with ModusToolbox[™] software, you can use the **Hello World** starter application directly. It is a complete design, with all the firmware written for the supported kits. You can walk through the instructions and observe how the steps are implemented in the code example.

If you start from scratch and follow all the instructions in this application note, you can use the **Hello World** code example as a reference while following the instructions.


Launch the **Dashboard 3.1** application to get started. Please note that the **Dashboard 3.1** application needs access to the internet to successfully clone the starter application onto your machine.

The **Dashboard 3.1** application helps you get started using the various tools with easy access to documentation and training material, a simple path for creating applications and creating and editing BSPs.

1. Open the **Dashboard 3.1** application.

To open the **Dashboard 3.1** application, click [ModusToolbox installation path]/ModusToolbox folder/ dashboard 3.1.0

2. On the Dashboard 3.1 window, in the right pane, in the Target IDE drop-down list, select Eclipse IDE for ModusToolbox[™], and click Launch Eclipse IDE for ModusToolbox[™].

Figure 11 Dashboard 3.1 application

3. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox[™] presents a dialog to choose a directory for use as the workspace directory. The workspace directory is used to store workspace preferences and development artifacts. You can choose an existing empty directory by clicking the **Browse** button, as shown in the following figure. Alternatively, you can type in a directory name to be used as the workspace directory along with the complete path, and the IDE will create the directory for you.

Getting started with XMC7000 MCU on ModusToolbox[™] software

4 XMC7000 MCU design using ModusToolbox[™] software and Eclipse IDE

Eclipse IDE	for ModusToolbox™ 3.1 Launcher	×
Select a dire	ectory as workspace	
Eclipse IDE f	or ModusToolbox™ 3.1 uses the workspace directory to store its preferences and development artifacts.	
Workspace:	C:\mtw ~ Browse	
Use this a	s the default and do not ask again	
Recent Wor	kspaces	
	Launch Cancel	

Figure 12 Select a directory as the workspace

4. Create a new ModusToolbox[™] application.

- **a.** Click **New Application** in the Start group of the Quick Panel.
- **b.** Alternatively, you can choose **File** > **New** > **ModusToolbox Application**, as Figure 13 shows. The Eclipse IDE for ModusToolbox[™] Application window appears.

			Quick P	🗱 Variables 😚 E	xpr	essi 🌯 B		
		A	Eclipse IE ModusTo • Start Mew App	olbox™ lication				
			Import Ex	isting Applicatic	on Ir	n-Place		
в								
IDE	mtw - Eclipse I	DE for Modu	usToolbox™	3.1				
C1	Edit Naviga	te Search I	Project Run	Window Help)			
FIR				100000000000000000000000000000000000000	100	Project		
FIR	New			Alt+Shift+N >	ш.	rioject		
FIR	New Open File			Alt+Shift+N >		Other	Ctrl+N	

Figure 13

Create a New ModusToolbox[™] Application

5. Select a target XMC7200 evaluation kit.

ModusToolbox[™] speeds up the development process by providing BSPs that set various workspace/ project options for the specified development kit in the new application dialog.

- a. In the **Choose Board Support Package (BSP)** dialog, choose the **Kit Name** that you have. The steps that follow use **KIT_XMC72_EVK**. See Figure 14 for help with this step.
- **b.** Click **Next**.

pin evaluation board is based on ces. XMC7000 MCU is designed
ces. XMC7000 MCU is designed
he evaluation board carries a a M.2 interface connector for
ased on AIROC [™] Wi-Fi and
tly not supported), SMIF dual
ilent Pmod for interfacing
ently not supported), and
duino for interfacing Arduino
d features an on-board
Prog3), a 512-Mbit QSPI NOR igabit Ethernet PHY transceiver
e, a micro-B connector for USB
EDs, one potentiometer, and
d supports operating voltages
7000D device.
till of the second

Figure 14

Choose target hardware

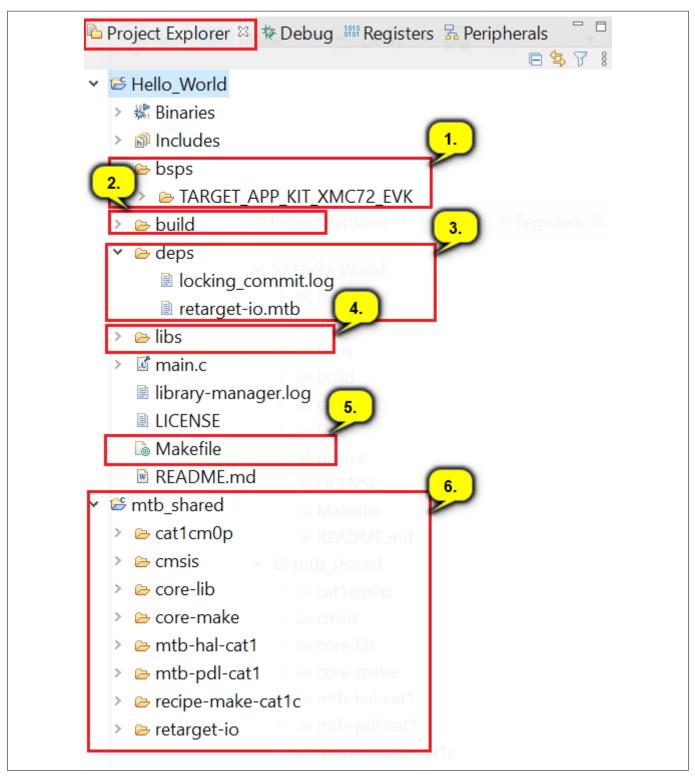
- c. In the **StarterApplication** dialog, select **Empty App** starter application, as Figure 15 shows.
- **d.** In the **Name** field, type in a name for the application, such as **Hello_World**. You can choose to leave the default name if you prefer.
- **e.** Click **Create** to create the application, as Figure 15 shows, wait for the Project Creator to automatically close once the project is successfully created.

Application(s) Root Path:	C:/Users/Banka/mtw	Browse
arget IDE:	Eclipse IDE for ModusToolbox™	÷.
Enter filter Template Applicatic C Getting Started Empty App FreeRTOS Blind Hello World Multicore Emp Switching Pow XMC7000 OOI Peripherals	ky oty App rer Modes	 This empty application provides a template for creating applications. For more details, see the <u>README on GitHub</u>.
Press "Create" to create d		
Press Create to create	the selected application(s).	(E)

Figure 15 Choose starter application

You have successfully created a new ModusToolbox™ application for a XMC7000 MCU.

The BSP uses XMC7200D-E272K8384 as the default device that is mounted on the XMC7200 Evaluation Kit.


If you are using custom hardware based on XMC7000 MCU, or a different XMC7000 MCU part number, see the "Creating your Own BSP" section in the ModusToolbox[™] user guide.

4.5 View and modify the design

Figure 16 shows the ModusToolbox[™] project explorer interface displaying the structure of the application project.

XMC7000 MCU consists of three cores: one CM0+ core and two CM7 cores. This application note shows the firmware development using the CM7 core with ModusToolbox[™] software.

Figure 16 Project Explorer view

A project folder consists of various subfolders – each denoting a specific aspect of the project.

1. The files provided by the BSP are in the bsps folder and are listed under TARGET_<bsp name> sub-folders. All the input files for the device and peripheral configurators are in the config folder inside the BSP. The GeneratedSource folder in the BSP contains the files that are generated by the configurators and are prefixed with cycfg_. These files contain the design configuration as defined by the BSP. From ModusToolbox[™] 3.x or later, you can directly customize configurator files of BSP for your application

rather than overriding the default design configurator files with custom design configurator files since BSPs are completely owned by the application.

The BSP folder also contains the linker scripts and the start-up code for the XMC7000 MCU used on the board.

- **2.** The build folder contains all the artifacts resulting from a build of the project. The output files are organized by target BSPs.
- 3. The deps folder contains .mtb files, which provide the locations from which ModusToolbox[™] pulls the libraries that are directly referenced by the application. These files typically each contain the GitHub location of a library. The .mtb files also contain a git Commit Hash or Tag that tells which version of the library is to be fetched and a path as to where the library should be stored locally.

For example, Here, retarget-io.mtb points to mtb://retarget-io#latest-v1.X#\$\$ASSET_REPO\$\$/retargetio/latest-v1.X. The variable \$\$ASSET_REPO\$\$ points to the root of the shared location which defaults to mtb_shared. If the library must be local to the application instead of shared, use \$\$LOCAL\$\$ instead of \$\$ASSET_REPO\$\$.

4. The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places a .mtb file in this folder. These files have been populated based on the targets available in deps folder.

For example, using BSP KIT_XMC72_EVK populates libs folder with the following .mtb files: *cmsis.mtb*, *core-lib.mtb*, *core-make.mtb*, *mtb-hal-cat1.mtb*, *mtb-pdl-cat1.mtb*, *cat1cm0p.mtb*, *recipe-make-cat1a.mtb*.

The libs folder contains the file mtb.mk, which stores the relative paths of all the libraries required by the application. The build system uses this file to find all the libraries required by the application.

Everything in the libs folder is generated by the Library Manager so you should not manually edit anything in that folder.

- 5. An application contains a Makefile which is at the application's root folder. This file contains the set of directives that the make tool uses to compile and link the application project. There can be more than one project in an application. In that case there is a Makefile at the application level and one inside each project.
- 6. By default, when creating a new application or adding a library to an existing application and specifying it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directories. The mtb_shared folder is shared between different applications within a workspace. Different applications may use different versions of shared libraries if necessary.

4.5.1 Opening the Device Configurator

BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. For example, click **<Application-name>** from **Project Explorer** then click **Device Configurator** link in the **Quick Panel** to open the file design.modus in the **Device Configurator** as shown in the following figure. You can also open other configuration files in their respective configurators or click the corresponding links in the **Quick Panel**.

XMC7200D-E272K8384			Serial Communication Block (SCB) 3 - Parameter	s 🗗 🗙
Peripherals Pins Analog-Routing Syste	em Peripheral-Clocks	DMA Paramters Pane	nter filter text	20 🗉 🕀
Enter filter text List			Name	Value
Resource	Name(s)	Personality ^	✓ Overview	
Serial Communication Block (SCB) 0	scb_0		⑦ Configuration Help	Open UART (SCB) Documentatic
Serial Communication Block (SCB) 1	scb_1		✓ General	
Serial Communication Block (SCB) 2	scb_2		(?) Com Mode	Standard
🗹 📋 Serial Communication Block (SCB) 3	scb_3	UART-3.0 🗸	<	>
Serial Communication Block (SCB) 4	scb_4		Code Preview	8 ×
□ Serial Communication Block (SCB) 5	scb_5	Code Preview	Spter search text	0
Serial Communication Block (SCB) 6	scb_6	Code Preview	* NOTE: This is a preview only. It	
Serial Communication Block (SCB) 7	scb 7		<pre>* cycfg_peripherals.c and cycfg_per * C:/mtw/mtb-example-xmc7000-multic</pre>	
Notice List			X	
😢 0 Errors 🥂 0 Warnings 🗐 1 Task 🌘	2 Infos			
Fix Description		^		Location
The WCO is enabled. Chip startup will be s datasheet for WCO startup timing. If WCO			ontinue until the WCO is ready. See the device ting it in main() for faster chip startup.	XMC7200D-E272K8384: WCO

Figure 17 Device Configurator

The **DeviceConfigurator** provides a set of **Resources Categories** tabs. Here you can choose between different resources available in the device such as peripherals, pins, and clocks from the **List of Resources**.

You can choose how a resource behaves by choosing a **Personality** for the resource. For example, a **Serial Communication Block (SCB)** resource can have **EZI2C**, **I2C**, **SPI**, or **UART** personalities. The **Alias** is your name for the resource, which is used in firmware development. One or more aliases can be specified by using a comma to separate them (with no spaces).

The **Parameters** pane is where you enter the configuration parameters for each enabled resource and the selected personality. The **Code Preview** pane shows the configuration code generated per the configuration parameters selected. This code is populated in the cycfg_files in the GeneratedSource folder. The Parameters pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be the same.

Any errors, warnings, and information messages arising out of the configuration are displayed in the **Notices** pane.

At this point in the development process, we are ready to add the required middleware to the design. The only middleware required for the Hello World application is the retarget-io library.


4.5.2 Add retarget-io middleware

In this step, you will add the retarget-io middleware to redirect standard input and output streams to the UART configured by the BSP. The initialization of the middleware will be done in main.c.

- **1.** In the **Quick Panel**, click the **Library Manager** link.
- 2. In the subsequent dialog, click **Add Libraries**.
- 3. Under Peripherals, select and enable retarget-io.
- 4. Click **OK** and then **Update**.

The files necessary to use the retarget-io middleware are added in the mtb_shared > retarget_io folder, and the .mtb file is added to the deps folder, as shown in the following figure.

4.5.3 Configuration of UART, timer peripherals, pins, and system clocks

The configuration of the debug UART peripheral, timer peripheral, pins, and system clocks can be done directly in the code using the function APIs provided by the BSP and HAL. Therefore, it is not necessary to configure them with the Device Configurator. See Write firmware.

4.6 Write firmware

At this point in the development process, you have created an application with the assistance of an application template and modified it to add the retarget-io middleware. In this part, you write the firmware that implements the design functionality.

If you are working from scratch using the EmptyXMC7000 starter application, you can copy the respective source code to the *main.c* of the application project from the code snippet provided in this section. If you are using the Hello World code example, all the required files are already in the application.

Firmware flow

We now examine the code in the main.c file of the application. Figure 19 shows the firmware flowchart. The CM0+ core comes out of reset and enables the CM4 core. The CM0+ core is then configured to go to sleep by the provided CM0+ application. Resource initialization for this example is performed by the CM4 core. It configures the system clocks, pins, clock to peripheral connections, and other platform resources.

When the CM4 core is enabled, the clocks and system resources are initialized by the BSP initialization function. The retarget-io middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a "Hello World!" message on the terminal emulator – the on-board KitProg3 acts the USB-UART bridge to create the virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each Timer interrupt, the CM4 core toggles the LED state on the kit.

After reset, resource initialization for this example is performed by the CM7 CPU. It configures the system clocks, pins, clock to peripheral connections, and other platform resources.

After reset, the clocks and system resources are initialized by the BSP initialization function. The retarget-io middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a "Hello World!" message on the terminal emulator – the onboard KitProg3 acts the USB-UART bridge to create the virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each timer interrupt, the CM7 CPU toggles the LED state on the kit.

The firmware is designed to accept the 'Enter' key as an input and on every press of the 'Enter' key the firmware starts or stops the blinking of the LED.

Note that the application code uses BSP/HAL/middleware functions to execute the intended functionality.

cybsp_init()- This BSP function sets up the HAL hardware manager and initializes all the system resources of the device including but not limited to the system clocks and power regulators.

cy_retarget_io_init()- This function from the retarget-io middleware uses the aliases set up in the BSP for the debug UART pins to configure the debug UART with a standard baud rate of 115200 and also redirects the input/ output stream to the debug UART.

Note: You can open the Device Configurator to view the aliases that are set up in the BSP.

cyhal_gpio_init()- This function from the GPIO HAL initializes the physical pin to drive the LED. The LED used is derived from the alias for the pin set up in the BSP.

timer_init()- This function wraps a set of timer HAL function calls to instantiate and configure a hardware timer. It also sets up a callback for the timer interrupt.

Copy the following code snippet to main.c of your application project.

Code listing 1: main.c file

```
#include "cyhal.h"
#include "cybsp.h"
#include "cy_retarget_io.h"
* Macros
/* LED blink timer clock value in Hz */
#define LED_BLINK_TIMER_CLOCK_HZ
                         (10000)
/* LED blink timer period value */
#define LED_BLINK_TIMER_PERIOD
                         (9999)
* Function Prototypes
****
            void timer_init(void);
static void isr_timer(void *callback_arg, cyhal_timer_event_t event);
* Global Variables
bool timer_interrupt_flag = false;
bool led blink active flag = true;
/* Variable for storing character read from terminal */
uint8 t uart read value;
/* Timer object used for blinking the LED */
cyhal timer t led blink timer;
* Function Name: main
* Summary:
* This is the main function . It sets up a timer to trigger a
* periodic interrupt. The main while loop checks for the status of a flag set
* by the interrupt and toggles an LED at 1Hz to create an LED blinky. The
* while loop also checks whether the 'Enter' key was pressed and
* stops/restarts LED blinking.
* Parameters:
* none
* Return:
* int
```

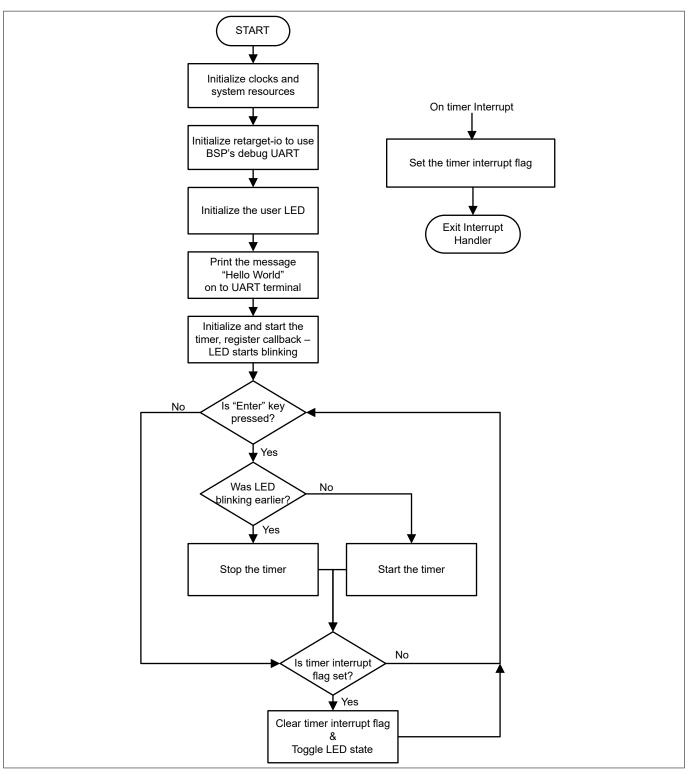
Getting started with XMC7000 MCU on ModusToolbox[™] software


```
int main(void)
{
   cy_rslt_t result;
   /* Initialize the device and board peripherals */
   result = cybsp_init();
   /* Board init failed. Stop program execution */
   if (result != CY_RSLT_SUCCESS)
   {
       CY ASSERT(0);
   }
   /* Enable global interrupts */
   __enable_irq();
   /* Initialize retarget-io to use the debug UART port */
   result = cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX,
                              CY_RETARGET_IO_BAUDRATE);
   /* retarget-io init failed. Stop program execution */
   if (result != CY_RSLT_SUCCESS)
   {
       CY_ASSERT(0);
   }
   /* Initialize the User LED */
   result = cyhal_gpio_init(CYBSP_USER_LED, CYHAL_GPIO_DIR_OUTPUT,
                          CYHAL_GPIO_DRIVE_STRONG, CYBSP_LED_STATE_OFF);
   /* GPIO init failed. Stop program execution */
   if (result != CY_RSLT_SUCCESS)
   {
       CY_ASSERT(0);
   }
   /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
   printf("\x1b[2J\x1b[;H");
   "Hello World! Example "
          "************** \r\n\n");
   printf("Hello World!!!\r\n\n");
   printf("For more projects, "
          "visit our code examples repositories:\r\n\n");
   printf("https://github.com/Infineon/"
          "Code-Examples-for-ModusToolbox-Software\r\n\n");
```



```
/* Initialize timer to toggle the LED */
   timer_init();
   printf("Press 'Enter' key to pause or "
         "resume blinking the user LED \r\n\r\n");
   for (;;)
   {
       /* Check if 'Enter' key was pressed */
       if (cyhal_uart_getc(&cy_retarget_io_uart_obj, &uart_read_value, 1)
           == CY_RSLT_SUCCESS)
       {
          if (uart_read_value == '\r')
          {
              /* Pause LED blinking by stopping the timer */
              if (led_blink_active_flag)
              {
                 cyhal_timer_stop(&led_blink_timer);
                 printf("LED blinking paused \r\n");
              }
              else /* Resume LED blinking by starting the timer */
              {
                 cyhal_timer_start(&led_blink_timer);
                 printf("LED blinking resumed\r\n");
              }
              /* Move cursor to previous line */
              printf("\x1b[1F");
              led_blink_active_flag ^= 1;
          }
       }
       /* Check if timer elapsed (interrupt fired) and toggle the LED */
       if (timer_interrupt_flag)
       {
          /* Clear the flag */
          timer_interrupt_flag = false;
          /* Invert the USER LED state */
          cyhal_gpio_toggle(CYBSP_USER_LED);
       }
   }
}
* Function Name: timer_init
*************
* Summary:
* This function creates and configures a Timer object. The timer ticks
```

Getting started with XMC7000 MCU on ModusToolbox[™] software


```
* continuously and produces a periodic interrupt on every terminal count
* event. The period is defined by the 'period' and 'compare_value' of the
* timer configuration structure 'led_blink_timer_cfg'. Without any changes,
* this application is designed to produce an interrupt every 1 second.
* Parameters:
  none
void timer_init(void)
{
   cy_rslt_t result;
   const cyhal_timer_cfg_t led_blink_timer_cfg =
   {
       .compare_value = 0,
                                       /* Timer compare value, not used */
       .period = LED BLINK TIMER PERIOD, /* Defines the timer period */
       .direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */
       .is_compare = false,
                                       /* Don't use compare mode */
                                       /* Run timer indefinitely */
       .is_continuous = true,
       .value = 0
                                       /* Initial value of counter */
   };
   /* Initialize the timer object. Does not use input pin ('pin' is NC) and
    * does not use a pre-configured clock source ('clk' is NULL). */
   result = cyhal_timer_init(&led_blink_timer, NC, NULL);
   /* timer init failed. Stop program execution */
   if (result != CY_RSLT_SUCCESS)
   {
       CY_ASSERT(0);
   }
   /* Configure timer period and operation mode such as count direction,
      duration */
   cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);
   /* Set the frequency of timer's clock source */
   cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);
   /* Assign the ISR to execute on timer interrupt */
   cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);
   /* Set the event on which timer interrupt occurs and enable it */
   cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,
                           7, true);
   /* Start the timer with the configured settings */
   cyhal_timer_start(&led_blink_timer);
}
```

Getting started with XMC7000 MCU on ModusToolbox[™] software


```
* Function Name: isr_timer
*******
* Summary:
* This is the interrupt handler function for the timer interrupt.
*
* Parameters:
   callback_arg Arguments passed to the interrupt callback
*
*
   event
               Timer/counter interrupt triggers
static void isr_timer(void *callback_arg, cyhal_timer_event_t event)
{
   (void) callback_arg;
  (void) event;
  /* Set the interrupt flag and process it from the main while(1) loop */
  timer_interrupt_flag = true;
}
```


Figure 19 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source files for a deeper understanding.

4.7 Build the application

This section shows how to build the application.

1. Select the application project in the **Project Explorer** view.

2. Click **Build Application** shortcut under the **<name>** group in the **Quick Panel**.

It selects the build configuration from Makefile and compiles/links all projects that constitute the application. By default, Debug configurations are selected.

3. The **Console view** lists the results of the build operation, as Figure 20 shows.

📓 mtw - Hello_World/Makefile - Eclipse IDE for ModusToolbox™ 3.1				- 0	l	×
Eile Edit Navigate Search Project Bun Window Help						
	0 ▼ 9 ▼ 1 9 月 1 1 日 1 日 ▼ 初 ▼ ひひひ ◆ ▼ ◇ ▼ 1 1				9	8 🔛
Project Explore 1. ebug Project Explore 2	🖞 🐻 Makefile 🛱	• •	E Outline 13	2	↓ ª z §	
V CHello World V CHello World V CHello World V CHello World V CHELO World V CHELO WOrld V CHELO VIENT CHELO VIENT V CHELO V	<pre># If APPNAME is edited, ensure to update or regenerate launch # configurations for your IDE. APPNAME=mtb-example-empty-app # Name of toolchain to use. Options include: # GCC_ARM GCC provided with ModusToolbox software # ARM ARM Compiler (must be installed separately) # TAR IAR Compiler (must be installed separately) # See also: CY_COMPILER_PATH below TOOLCHAIN=GCC_ARM # Default build configuration. Options include: # Bebug build with minimal optimizations, focus on debugging. # Release build with custom configuration, set the optimization flag in</pre>	^ 	MTB_TYPE TARGET APPNAME TOOLCHAIN CONFIG VERBOSE COMPONENTS DISABLE_COMPONENTS OISABLE_COMPONENTS INCLUDES DEFINES VFP_SELECT CFLAGS COXFLAGS ASFLAGS ASFLAGS LDELAGS			
Quick Panel Variables Compressions Vertexpressions Vertexpressions Vertexpressions Vertexpressions Vertexpressions Vertexpression Vertexpres	<pre># # If CONFIG is manually edited, ensure to update or regenerate launch conf # for your IDE. CONFIG=Debug # If set to "true" or "1", display full command-lines when building.</pre>	iį	LDLIBS LINKER_SCRIPT PREBUILD POSTBUILD			
New Application	VERBOSE=		CY_APP_PATH CY_GETLIBS_SHARED_PATH			
Yow Appreasion Import Existing Application In-Place Search Online for Code Examples Search Online for Libraries and BSPs	# Advanced 3. Juration	# >	CY_GETLIBS_SHARED_NAME CY_GETLIBS_SHARED_NAME CY_COMPILER_PATH CY_WIN_HOME CY_TOOLS_PATHS			~
Training Material	🖻 Console 🛙 🖹 Problems 🖷 Progress 🛛 Memory 🖋 Terminal	-	• CV TOOLS PATHS	📓 🛃 🖬 👻	*	
Reinersh Quick Panel Hello_World (APP_KIT_XMC72_EVK) Suild Application Clean Application	COT Build Console (Hello, World) Oracle (Hello, World) 0.101 Studied Console (Hello, World) 0.2002/0000 0.4 1.noinit 0.2002/0000 2.664 1.bss 0.2002/0002 2.664 .heap 0.2002/0002 386052					^
Cean -ppinailion Launches Tools BSP Configurators (APP KIT XMC72 EVK)	Total Internal Flash (Available) 8585216 Total Internal Flash (Utilized) 19384					
Hello_World API Documentation	17:31:32 Build Finished. 0 errors, 0 warnings. (took 57s.183ms)					~
			1			

Figure 20 Build the application

If you encounter errors, revisit prior steps to ensure that you completed all the required tasks.

Note: You can also use the command line interface (CLI) to build the application. Please refer to the **Build** system chapter in the ModusToolbox[™] tools package user guide. This document is located in the / docs_<version>/ folder in the ModusToolbox[™] installation.

4.8 Program the device

This section shows how to program the XMC7000 MCU.

ModusToolbox[™] software uses the OpenOCD protocol to program and debug applications on XMC7000 MCUs. For ModusToolbox[™] software to identify the device on the kit, the kit must be running KitProg3. See Programming/debugging using Eclipse IDE for details.

If you are using a development kit with a built-in programmer, connect the board to your computer using the USB cable.

If you are developing on your own hardware you may need a hardware programmer/debugger; for example, a JLink or ULinkpro.

1. Program the application.

- **a.** Connect to the board and perform the following.
- Select the application project and click on the <application name> Program
 (KitProg3_MiniProg4) shortcut under the Launches group in the Quick Panel, as Figure 21 shows. The IDE will select and run the appropriate run configuration. Note that this step will also perform a build if any files have been modified since the last build.

	🛛 🎋 Debug	り Regist	🛃 Periph		_
			E 🕏	7	000
✓ ≝ Hello					
> 🐝 Bin					
> 🗁 bsp					
> 🗁 bui					
> 🗁 de					
> 🗁 im: > 🗁 lib:	-				
	s ease-v4.0.0				
> 🖻 ma					
🗋 Ma	kefile				
RE/	ADME.md				
🗦 😂 mtb_s	hared				
≚ Quick	^{(x)=} Variab	🚭 Expre	💁 Break		
Nefrest	h Ouick Panel	** Exprem	UICak		~
	n Quick Panel				^
	n Quick Panel orld (APP_KI				^
	-	T_XMC72_E			^
✓ Hello_W Suild F	orld (APP_KI	T_XMC72_E			^
✓ Hello_W Suild H	f orid (APP_Ki Hello_World A Hello_World A	T_XMC72_E			^
 → Hello_W Suild H ✓ Clean H → Launche 	f orid (APP_Ki Hello_World A Hello_World A	T_XMC72_E			^
 → Hello_W Suild H ✓ Clean H → Launche ♦ Hello_V 	Forid (APP_Ki Hello_World A Hello_World A	T_XMC72_E Application Application (JLink)	VK)		^
 → Hello_W Suild F ✓ Clean F → Launche ☆ Hello_V ☆ Hello_V 	Forld (APP_KI Hello_World A Hello_World A S World Debug	T_XMC72_E Application Application (JLink) (KitProg3_M	VK)		^
 Hello_W Suild F Clean F Clean F Launche Hello_V Hello_V Hello_V 	Forld (APP_KI Hello_World A Hello_World A ss World Debug World Debug	T_XMC72_E Application Application (JLink) (KitProg3_M m (JLink)	VK) liniProg4)		^

Figure 21

Programming an application to a device

The **Console** view lists the results of the programming operation, as Figure 22 shows.

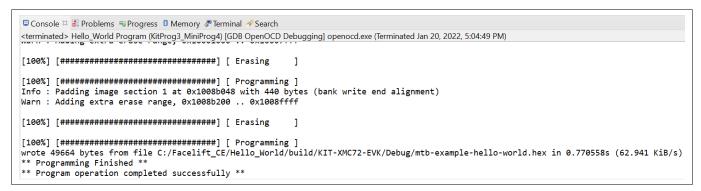


Figure 22 Console – programming results

4.9 Test your design

This section describes how to test your design.

Follow the steps below to observe the output of your design. This note uses Tera Term as the UART terminal emulator to view the results, but you can use any terminal of your choice to view the output.

1. Select the serial port

Launch Tera Term and select the USB-UART COM port as Figure 23 shows. Note that your COM port number may be different.

🔟 Tera Term - [disconnected] VT		_	×
File Edit Set Tera Term: New connection		×	
O TCP/IP Host:	myhost.example.com	~	
Service:	 ✓ History ○ Telnet TCP port#: 22 		
	SSH version: SSH2	\sim	
	O Other IP version: AUTO	\sim	
Serial Port:	COM25: KitProg3 USB-UART (COM25	i) ~	
ОК	Cancel Help		
			~

Figure 23

Selecting the KitProg3 COM port in Tera Term

2. Set the baud rate

Set the baud rate to 115200 under **Setup > Serial port** as Figure 24 shows.

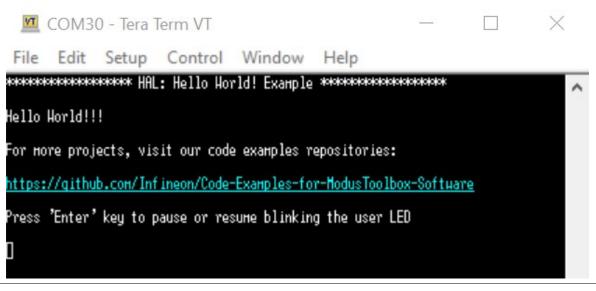

🔟 COM25 - Tera Term VT		- 0	×
File Edit Setup Tera Term: Serial port setup	o and connection	×	
Port: Speed:	COM25 ~ 115200 ~	New setting	^
Data: Parity:	8 bit ~	Cancel	
Stop bits: Flow control:	1 bit ~	Help	
Device Friendly N	msec/char 0 ame: KitProg3 US D: USB\VID_04B48 rer: Cypress ypress 2018		
<		✓	~

Figure 24

Configuring the baud rate in Tera Term

3. Reset the device

Press the reset switch (**SW1**) on the kit. A message appears on the terminal as Figure 25 shows. The user LED on the kit will start blinking.

Printed UART message

4. Pause/resume LED blinking functionality

Press the **Enter** key to pause/resume blinking the LED. When the LED blinking is paused, a corresponding message will be displayed on the terminal as Figure 26 shows.

<u> </u>		0 - Tera 1	ferm VT			—		\times	
<u>F</u> ile	<u>E</u> dit	<u>S</u> etup	C <u>o</u> ntrol	<u>W</u> indow	<u>H</u> elp				
*****		****** HAL	: Hello Hor	rld! Example		totololololololok		,	^
Hello 🖡	lorld!!	ļ							
For not	re proj	ects, vis	it our code	e examples r	epositorio	es:			
https:/	//githu	b.coн/Inf	ineon/Code	-Examples-fo	<u>r-ModusTo</u>	olbox-Softwa	<u>rre</u>		
Press	'Enter'	key to p	ause or rea	sume blinkin	g the use	r LED			
LED 61	inking	paused							

Figure 26 Printed UART message

5 Summary

5 Summary

This application note explored the XMC7000 MCU device architecture and the associated development tools. XMC7000 MCU is a truly programmable embedded system-on-chip with configurable analog and digital peripheral functions, memory, and a dual-core system on a single chip. The integrated features and low-power modes make XMC7000 MCU an ideal choice for smart home, IoT gateways, and other related applications.

6 References

6 References

For a complete and updated list of XMC7000 MCU code examples, please visit our GitHub. For more XMC7000 MCU-related documents, please visit our XMC7000 MCU product web page.

Table 3 lists the system-level and general application notes that are recommended for the next steps in learning about XMC7000 MCU and ModusToolbox[™].

Table 3 General and system-level application notes

Document	Document name
AN234224	Hardware design guide for the XMC7000 family
AN225588	Using ModusToolbox [™] software with a third-party IDE
AN234021	Low power mode procedure in XMC7000 family

Table 4 lists the application notes (AN) for specific peripherals and applications.

Table 4 Documents related to XMC7000 MCU features		
Document	Document name	
System resour	ces, CPU, and interrupts	
AN234226	How to use interrupt in the XMC7000 family	
AN234225	How to use DMA in the XMC7000 family	
Peripherals		
AN234127	How to use SCB in XMC7000 family	
AN234380	How to use ethernet controller in XMC7000 family	
AN234227	Using the SMIF in the XMC700 family	
AN234197	How to use trigger multiplexer in XMC700 family	
AN234022	How to use CAN FD in XMC7000 family	
AN234119	Timer, Counter and PWM (TCPWM) usage in XMC7000 family	
Device datash	eet	
002-33896	XMC7100 datasheet	
002-33522	XMC7200 datasheet	

7 Glossary

7 Glossary

This section lists the most commonly used terms that you might encounter while working with XMC[™] family of devices.

- Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other functions. The board support package is a set of libraries that provide firmware APIs to initialize the board and provide access to board level peripherals.
- Hardware Abstraction Layer (HAL): The HAL wraps the lower level drivers (like MTB-PDL-CAT1) and provides a high-level interface to the MCU. The interface is abstracted to work on any MCU.
- **KitProg**: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge functionality. The KitProg is integrated onto most XMC[™] development kits.
- MiniProg3/MiniProg4: Programming hardware for development that is used to program XMC[™] devices on your custom board or XMC[™] development kits that do not support a built-in programmer.
- **Personality**: A personality expresses the configurability of a resource for a functionality. For example, the SCB resource can be configured to be an UART, SPI, or I2C personalities.
- Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application. Some middleware may provide network protocols (e.g. MQTT), and some may provide high level software interfaces to device features (e.g. USB, audio).
- ModusToolbox[™]: An Eclipse-based embedded design platform for embedded systems designers that provides a single, coherent, and familiar design experience, combining the industry's most deployed Wi-Fi and Bluetooth[®] technologies, and the lowest power, most flexible MCUs with best-in-class sensing.
- Peripheral Driver Library: The peripheral driver library (PDL) simplifies software development for the XMC7000 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus easing software development for the extensive set of peripherals available.

Revision history

Revision history

Document version	Date of release	Description of changes
**	2022-01-25	Initial release.
*A	2022-06-17	Updated Figure 8, Figure 9, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 20, and Figure 21.
*В	2023-01-26	Updated Section 4.5 according to MTB#8265.
*C	2023-05-24	Template update. Updated XMC7000 MCU design using ModusToolbox [™] software and Eclipse IDE section.
*D	2023-06-09	Updated content with the latest release of ModusToolbox [™] 3.1
*E	2023-08-29	Added note in XMC7000 MCU design using ModusToolbox [™] software and Eclipse IDE section and updated other issues throughout the document.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-29 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-ckr1674573825368

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.