
Getting started with XMC7000 MCU on
ModusToolbox™ software

About this document
Scope and purpose

This application note helps you explore the XMC7000 MCU architecture and development tools and shows you
how to create your first project using the Eclipse IDE for ModusToolbox™ software. This application note also
guides you to more resources available online to accelerate your learning about XMC7000 MCU.
Intended audience

This document is intended for the users who are new to XMC7000 MCU and ModusToolbox™ software.
Associated part family

All XMC7000 MCU devices.
Software version

ModusToolbox™ software 3.1 or above.
More code examples? We heard you

To access an ever-growing list of XMC7000 code examples using ModusToolbox™, please visit the GitHub site.

AN234334

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-34334 Rev. *E
www.infineon.com 2023-08-29

https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
http://www.infineon.com/modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Introduction . 4

2 Development ecosystem .6
2.1 XMC7000 resources . 6
2.2 Firmware/application development .6
2.2.1 Installing the ModusToolbox™ tools package . 6
2.2.2 Choosing an IDE . 6
2.2.3 ModusToolbox™ software . 7
2.2.4 ModusToolbox™ applications . 9
2.2.5 XMC7000 software resources . 11
2.2.5.1 Configurators . 11
2.2.5.2 Library management for XMC7000 MCU . 12
2.2.5.3 Software development for XMC7000 MCU .12
2.3 Support for other IDEs . 13
2.4 FreeRTOS support with ModusToolbox™ . 15
2.5 Programming/debugging using Eclipse IDE . 15
2.6 XMC7000 MCU development kits .15

3 Device features . 16

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE . 19
4.1 Prerequisites . 19
4.1.1 Hardware .19
4.1.2 Software . 19
4.2 Using these instructions . 19
4.3 About the design . 19
4.4 Create a new application . 20
4.5 View and modify the design . 23
4.5.1 Opening the Device Configurator .25
4.5.2 Add retarget-io middleware . 26
4.5.3 Configuration of UART, timer peripherals, pins, and system clocks .27
4.6 Write firmware . 27
4.7 Build the application . 34
4.8 Program the device . 35
4.9 Test your design . 37

5 Summary . 40

6 References .41

7 Glossary . 42

Getting started with XMC7000 MCU on ModusToolbox™ software

Table of contents

Application note 2 002-34334 Rev. *E
2023-08-29

Revision history .43

Disclaimer . 44

Getting started with XMC7000 MCU on ModusToolbox™ software

Table of contents

Application note 3 002-34334 Rev. *E
2023-08-29

1 Introduction
The XMC7000 device is a microcontroller targeted at industrial applications. The XMC7000 integrates the
following features on a single chip:
• Up to two 350-MHz 32-bit Arm® Cortex®-M7 CPUs each with:

- Single-cycle multiply
- Single-double-precision floating point unit (FPU)
- 16-KB data cache, 16-KB instruction cache
- Memory protection unit (MPU)
- 16-KB instruction and 16-KB data tightly-coupled memory (TCM)

• 100-MHz 32-bit Arm® Cortex® M0+ CPU with single-cycle multiply and MPU
• Programmable analog and digital peripherals
• Up to 8384 KB of code flash with an additional 256 KB of work flash, and an internal SRAM of up to 1024 KB
• XMC7000 MCU is suitable for a variety of power-sensitive applications such as:

- Wireless charging
- Lighting
- Power supply servers
- Robots and drones
- MHA
- Industrial drives
- PLC
- I/O modules
- Electric two-wheelers

The ModusToolbox™ software environment supports XMC7000 MCU application development with a set of tools
for configuring the device, setting up peripherals, and complementing your projects with world-class
middleware. See the Infineon GitHub repos for BSPs (Board Support Packages) for all kits, libraries for popular
functionality like CAPSENSE™ and emWin, and a comprehensive array of example applications to get you
started.
Figure 1 illustrates an application-level block diagram for a real-world use case using XMC7000 MCU.

SAR ADC

10 x CAN FDCAN Device

SRAM 1024 KB
2 x ETHETH Device

GPIOs

“Security Boot”

SDHC

XMC7000

Motor

Arm
Cortex® - M7 350 MHz

®

Arm
Cortex® - M7 350 MHz

®

Arm
Cortex® - M0 100 MHz

®

Motor control

SCB (UART)

SMIF (Quad – SPI)

Temperature
sensor

AudioIOSS x 3 LEDs

12S TDM In / Out

Code flash
8384 KB

Work flash
256 KB

Wi – Fi 802.11n

Wi – Fi/Bluetooth®
device

BR/Bluetooth® LE
MAC, PHY

(Bluetooth® 5.1)

NOR
flash

Figure 1 Application-level block diagram using XMC7000 MCU

Getting started with XMC7000 MCU on ModusToolbox™ software

1 Introduction

Application note 4 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

XMC7000 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes
advantage of these features:
• A buck converter for ultra-low-power operation
• An analog front end (AFE) within the device to condition and measure sensor outputs such as the ambient

light sensor
• Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors
• Programmable digital logic (smart I/O) and peripherals (Timer Counter PWM or TCPWM) to drive the motor

and LEDs respectively
• Up to 10 CAN FD channels with increased data rate (up to 8 Mbps) supports all the requirement of CAN FD

specification V1.0 for non-ISO CAN FD
• Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az supports MII/RMII/

RGMII/AVB/PTP PHY interfaces
• SDIO interface to a Wi-Fi/Bluetooth® device to provide IoT cloud connectivity
• Product security features managed by CM0+ CPU and application features executed by CM7 CPUs
There are two product lines in XMC7000. Table 1 provides overview of different product lines:

Table 1 XMC7000 MCU product lines

Device series Details

XMC7100 Triple-core architecture: 250-MHz Arm® Cortex®-M7 and 100-MHz Cortex®-M0+
4-MB flash, 768-KB RAM
Packages: 100/144/176 TEQFP, 272 BGA

XMC7200 Triple-core architecture: 350-MHz Arm® Cortex®-M7 and 100-MHz Cortex®-M0+
8-MB flash, 1-MB RAM
Packages: 176 TEQFP, 272 BGA

Note: Not all the features are available in all the devices in a product line. See the device datasheets for
more details.

This application note introduces you to the capabilities of the XMC7000 MCU, gives an overview of the
development ecosystem, and gets you started with a simple 'Hello World' application wherein you learn to use
the XMC7000 MCU. We will show you how to create an application from an empty starter application, but the
completed design is available as a code example for ModusToolbox™ on GitHub.
For hardware design considerations, see Hardware design guide for the XMC7000 Family.

Getting started with XMC7000 MCU on ModusToolbox™ software

1 Introduction

Application note 5 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/mtb-example-hal-hello-world
https://www.infineon.com/dgdl/Infineon-AN234224_Hardware_design_guide_for_the_XMC7000_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d30184517f98ac4fea

2 Development ecosystem

2.1 XMC7000 resources
A wealth of data available here helps you to select the right XMC™ device and quickly and effectively integrate it
into your design. For a comprehensive list of XMC7000 MCU resources, see How to design with XMC7000 MCU.
The following is an abbreviated list of resources for XMC7000 MCU.
• Overview: XMC7000 MCU webpage
• Product selectors: XMC7000 MCU
• Datasheets describe and provide electrical specifications for each device family.
• Application notes and code examples cover a broad range of topics, from basic to advanced level. You can

also browse our collection of code examples.
• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each

device family.
• Debug XMC7000 MCU in ModusToolbox™ environment provides the information necessary to debug with

single-core and multi-core applications.
• Development tools: Many low-cost kits are available for evaluation, design, and development of different

applications using XMC7000 MCUs.
• Technical Support: XMC7000 community forum, knowledge base articles

2.2 Firmware/application development
There is one development platforms that you can use for application development with XMC7000 MCU:
• ModusToolbox™: This software includes configuration tools, low-level drivers, middleware libraries, and

other packages that enable you to create MCU and wireless applications. All tools run on Windows,
macOS, and Linux. ModusToolbox™ includes an Eclipse IDE, which provides an integrated flow with all the
ModusToolbox™ tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm® MDK
(μVision) are also supported.
- ModusToolbox™ software supports stand-alone device and middleware configurators. Use the

configurators to set the configuration of different blocks in the device and generate code that can
be used in firmware development. The software supports all XMC7000 MCUs. It is recommended
that you use ModusToolbox™ software for all application development for XMC7000 MCUs. See the
ModusToolbox™ tools package user guide for more information.

- Libraries and enablement software are available at the GitHub site.
- ModusToolbox™ tools and resources can also be used in the command line. See the “Using command-

line” section in the ModusToolbox™ user guide for detailed documentation.

2.2.1 Installing the ModusToolbox™ tools package
Refer to the ModusToolbox™ tools package installation guide for details.

2.2.2 Choosing an IDE
ModusToolbox™ software, the latest-generation toolset, is supported across Windows, Linux, and macOS
platforms. ModusToolbox™ software supports 3rd-party IDEs, including the Eclipse IDE, Visual Studio Code, Arm®

MDK (μVision), and IAR Embedded Workbench. The tools package includes an implementation for the Eclipse
IDE for your convenience. The tools support all XMC7000 MCUs. The associated BSP and library configurators
also work on all three host operating systems.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 6 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/#!products
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/?tab=~%27boards_designs#!products
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://github.com/infineon
https://www.infineon.com/dgdl/Infineon-XMC7000_MCU_FAMILY_ARCHITECTURE_TECHNICAL_REFERENCE_MANUAL-UserManual-v03_00-EN.pdf?fileId=8ac78c8c850f4bee01859d6b36155cad
https://www.infineon.com/dgdl/Infineon-AN235616_Debug_XMC7000_MCU_in_ModusToolbox_environment-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d3018455dc4b2006ef
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/?tab=~%27boards_designs#!designsupport
https://community.infineon.com/t5/XMC/bd-p/XMC
https://community.infineon.com/t5/custom/page/page-id/GlobalSearch#q=xmc%207000&t=All&sort=relevancy&f:@infi_interactionboard=[tkb]
https://www.infineon.com/ModusToolboxUserGuide
https://github.com/infineon
https://www.infineon.com/ModusToolboxUserGuide
https://www.Infineon.com/ModusToolboxInstallguide

ModusToolbox™

Eclipse IDE Arm® MDK
µvision

Visual Studio
Code

IAR
Embedded
Workbench

Command
Line

Interface

Figure 2 ModusToolbox™ environment

Use ModusToolbox™ to take advantage of the power and extensibility of an Eclipse-based IDE. ModusToolbox™ is
supported on Windows, Linux, and macOS. It is recommended to use ModusToolbox™.

2.2.3 ModusToolbox™ software
ModusToolbox™ software is a set of tools and software that enables an immersive development experience for
creating converged MCU and wireless systems, and enables you to integrate our devices into your existing
development methodology. These include configuration tools, low-level drivers, libraries, and operating system
support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.
Eclipse IDE for ModusToolbox™ is a multi-platform development environment that supports application
configuration and development.
Figure 3 shows a high-level view of the tools/resources included in the ModusToolbox™ software. For a more in-
depth overview of the ModusToolbox™ software, see ModusToolbox™ user guide.

Figure 3 ModusToolbox™ software

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 7 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/ModusToolboxUserGuide

The ModusToolbox™ tools package installer includes the design configurators and tools, and the build system
infrastructure.
The build system infrastructure includes the new project creation wizard that can be run independent of the
Eclipse IDE, the make infrastructure, and other tools.
This means you choose your compiler, IDE, RTOS, and ecosystem without compromising usability or access to
our industry-leading CAPSENSE™ (Human-Machine Interface), AIROC™ Wi-Fi and Bluetooth®, security, and
various other features.
One part of the ModusToolbox™ ecosystem is run-time software that helps you rapidly develop Wi-Fi and
Bluetooth® applications using connectivity combo devices with the XMC™ MCU. See the ModusToolbox™ runtime
software reference guide for details.
Design configurators are the tools that help you create the configurable code for your BSP/Middleware. Jump to
Configurators to know more about it.
Figure 4 shows a runtime software diagram to showcase some of the application capabilities of Infineon
devices using ModusToolbox™ software.

Core Connectivity Wi-Fi Bluetooth® Graphics Voice/Audio1HMI Security

Peripheral Driver Library (PDL)

MCUBoot Wi-Fi Manufacturing
Tools

Bluetooth® Manufacturing
Tools Code Examples

AWS IoT C SDK Azure IoT C SDK

OTA

MQTT HTTP

Secure Sockets

LwIP

Mbed TLS

Wi-Fi Host Driver (WHD)

FreeRTOS Kernel

Hardware Abstraction Layer (HAL)

PSA API

Wi-Fi
Connection

Manager
(WCM)

Low Power
Assistant

(LPA) AIROC™
Bluetooth®

Stack

Filesystem

LittleFS

emFile

Emulated
EEPROM

Embedded
Wizard

SEGGER
emWin

USB MSD
Class

USB CDC
Class

USB HID
Class

USB Audio
Class

USB Device
Framework

CAPSENSE™

Secure
Processing

Environment

TF-M

MCUBoot

Cryptography

PDL/HAL

Secure
Storage

Attestation

Figure 4 ModusToolbox™ run-time software diagram

All the application-level development flows depend on the provided low-level resources. These include:
• Board support packages (BSP) – A BSP is the layer of firmware containing board-specific drivers and other

functions. The BSP is a set of libraries that provides APIs to initialize the board and access to board level
peripherals. It includes low-level resources such as peripheral driver library (PDL) for XMC7000 MCU and
has macros for board peripherals. It uses the HAL to configure the board. Custom BSPs can be created to
enable support for end-application boards. See BSP Assistant to create your BSP.

• Hardware abstraction layer (HAL) – The hardware abstraction layer (HAL) provides a high-level interface
to configure and use hardware blocks on MCUs. It is a generic interface that can be used across multiple
product families. The focus on ease-of-use and portability means the HAL does not expose all the low-level
peripheral functionality. The HAL wraps the lower level drivers (like XMC7000 MCU PDL) and provides a
high-level interface to the MCU. The interface is abstracted to work on any MCU. This helps you write
application firmware independent of the target MCU.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 8 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/an235297
https://github.com/Infineon/mtb-hal-cat1

The HAL can be combined with platform-specific libraries (such as XMC7000 MCU PDL) within a single
application. You can leverage the HAL's simpler and more generic interface for most of an application, even
if one portion requires lower-level control.

• XMC7000 MCU peripheral driver library (PDL) – The PDL integrates device header files, start-up code, and
peripheral drivers into a single package. The PDL supports the XMC7000 MCU family. The drivers abstract
the hardware functions into a set of easy-to-use APIs. These are fully documented in the PDL API Reference.
The PDL reduces the need to understand register usage and bit structures, thus easing software
development for the extensive set of peripherals in the XMC7000 MCU series. You configure the driver for
your application, and then use API calls to initialize and use the peripheral.

• Middleware (MW) – Extensive middleware libraries that provide specific capabilities to an application. All
the middleware is delivered as libraries and via GitHub repositories.

2.2.4 ModusToolbox™ applications
With the release of ModusToolbox™ v3.x, multi-core support is introduced, which has altered the folder
structure slightly from the previous version of ModusToolbox™.
ModusToolbox™ has two types of applications:
• Single-core application
• Multi-core application

Figure 5 Application types

The following shows the new folder structure for an example single-core application:

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 9 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/mtb-pdl-cat1

Figure 6 Folder structure for single-core applications

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 10 002-34334 Rev. *E
2023-08-29

The following shows the new folder structure for an example multi-core application:

Figure 7 Folder Structure for multi-core applications

The new flow using ModusToolbox™ versions 3.x can support multiple projects in an application. For multi-core
applications, there are multiple projects, but only one project per core. The applications have app-owned BSPs,
meaning the BSP will be common to all projects inside a multi-core application.
Going further, section 4 of this document describes creating a new single-core application using
ModusToolbox™ software.

2.2.5 XMC7000 software resources
The software for XMC7000 MCUs includes configurators, drivers, libraries, middleware, as well as various
utilities, makefiles, and scripts. It also includes relevant drivers, middleware, and examples for use with IoT
devices and connectivity solutions. You may use any or all tools in any environment you prefer.

2.2.5.1 Configurators
ModusToolbox™ software provides graphical applications called configurators that make it easier to configure a
hardware block. For example, instead of having to search through all the documentation to configure a serial
communication block as a UART with a desired configuration, open the appropriate configurator and set the
baud rate, parity, and stop bits. Upon saving the hardware configuration, the tool generates the "C" code to
initialize the hardware with the desired configuration.
There are two types of configurators: BSP configurators that configure items that are specific to the MCU
hardware and library configurators that configure options for middleware libraries.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 11 002-34334 Rev. *E
2023-08-29

Configurators are independent of each other, but they can be used together to provide flexible configuration
options. They can be used stand alone, in conjunction with other tools, or within a complete IDE. Configurators
are used for:
• Setting options and generating code to configure drivers
• Setting up connections such as pins and clocks for a peripheral
• Setting options and generating code to configure middleware
For XMC7000 MCU applications, the available configurators include:
• Device Configurator: Set up the system (platform) functions, pins, and the basic peripherals (e.g., UART,

Timer, PWM)
• QSPI Configurator: Configure external memory and generate the required code
• Smart I/O Configurator: Configure Smart I/O pins
Each of the above configurators create their own files (e.g.: design.cyqspi for QSPI). The configurator files
(design.modus or design.cyqspi) are usually provided with the BSP. When an application is created based on a
BSP, the files are copied into the application. You can also create custom device configurator files for an
application and override the ones provided by the BSP.

2.2.5.2 Library management for XMC7000 MCU
The application can have shared/local libraries for the projects. If needed, different projects can use different
versions of the same library. The shared libraries are downloaded under the mtb_shared directory. The
application should use the deps folder to add library dependencies. The deps folder contains files with the .mtb
file extension, which is used by ModusToolbox™ to download its git repository. These libraries are direct
dependencies of the ModusToolbox™ project.
The Library Manager helps to add/remove/update the libraries of your projects. It also identifies whether
particular library has a direct dependency on any other library using the manifest repository available on
GitHub, and fetches all its dependencies. These dependency libraries are indirect dependencies of the
ModusToolbox™ project. These dependencies can be seen under the libs folder. For more information, see the
Library Manager user guide located at <install_dir> /ModusToolbox/tools_<version>/library-manager/docs/
library-manager.pdf.

2.2.5.3 Software development for XMC7000 MCU
The ModusToolbox™ ecosystem provides significant source code and tools to enable software development for
XMC7000 MCUs. You use tools to:
• Specify how you want to configure the hardware.
• Generate code for that purpose, which you use in your firmware.
• Include various middleware libraries for additional functionality, like Bluetooth® LE connectivity or

FreeRTOS.
This source code makes it easier to develop the firmware for supported devices. It helps you quickly customize
and build firmware without the need to understand the register set.
In the ModusToolbox™ environment, you use configurators to configure either the device, or a middleware
library, like QSPI functionality.
The XMC7000 Peripheral Driver Library code is delivered as the mtb-pdl-cat1 library. Middleware is delivered as
separate libraries for each feature/function.
Firmware developers who wish to work at the register level should refer to the driver source code from the PDL.
The PDL includes all the device-specific header files and startup code you need for your project. It also serves as
a reference for each driver. Because the PDL is provided as source code, you can see how it accesses the
hardware at the register level.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 12 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon/mtb-pdl-cat1

Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported
device. This superset design means:
• All API elements needed to initialize, configure, and use a peripheral are available.
• The PDL is useful across various XMC7000 MCUs, regardless of available peripherals.
• The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.
This enables the code to maintain compatibility across members of the XMC7000 MCU family, as long as the
peripherals are available. A device header file specifies the peripherals that are available for a device. If you
write code that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing
code to use a peripheral, consult the datasheet for the particular device to confirm support for that peripheral.
As the following figure shows, with the ModusToolbox™ software, you can:
1. Choose a BSP (Project Creator).
2. Create a new application based on a list of starter applications, filtered by the BSPs that each

application supports (Project Creator).
3. Add BSP or middleware libraries (Library Manager).
4. Develop your application firmware using the HAL or PDL for XMC7000 MCU (IDE of choice or command

line).

Figure 8 Eclipse IDE for ModusToolbox™ resources and middleware

2.3 Support for other IDEs
You can develop firmware for XMC7000 MCUs using your preferred IDE such as Eclipse IDE, IAR Embedded
Workbench, Keil µVision 5 or Visual Studio Code.
ModusToolbox™ Configurators are stand-alone tools that can be used to set up and configure XMC7000 MCU
resources and other middleware components without using the Eclipse IDE. The Device Configurator and

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 13 002-34334 Rev. *E
2023-08-29

https://www.iar.com/iar-embedded-workbench/
https://www.iar.com/iar-embedded-workbench/
https://www2.keil.com/mdk5
https://code.visualstudio.com/

middleware configurators use the design.x files within the application workspace. You can then point to the
generated source code and continue developing firmware in your IDE.
If there is a change in the device configuration, edit the design.x files using the configurators and regenerate
the code. It is recommended that you generate resource configurations using the configuration tools provided
with ModusToolbox™ software.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 14 002-34334 Rev. *E
2023-08-29

2.4 FreeRTOS support with ModusToolbox™

Adding native FreeRTOS support to a ModusToolbox™ application project is like adding any middleware library.
You can include the FreeRTOS middleware in your application by using the Library Manager. If using the Eclipse
IDE for ModusToolbox™, select the application project and click the Library Manager link in the Quick Panel.
Click Add Library and select freertos from the Core dialog, as Figure 9 shows.
The .mtb file pointing to the FreeRTOS middleware is added to the application project's deps directory. The
middleware content is also downloaded and placed inside the corresponding folder called freertos. The
default location is in the shared asset repo named mtb_shared. To continue working with FreeRTOS, follow the
steps in the Quick Start section of FreeRTOS documentation.

Figure 9 Import FreeRTOS middleware in ModusToolbox™ application

2.5 Programming/debugging using Eclipse IDE
All XMC7000 Kits have a KitProg3 onboard programmer/debugger. It supports Cortex® Microcontroller Software
Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details.
The Eclipse IDE requires KitProg3 and uses the OpenOCD protocol for debugging XMC7000 MCU applications. It
also supports GDB debugging using industry standard probes like the Segger J-Link.
ModusToolbox™ includes the fw-loader command-line tool to update and switch the KitProg firmware from
KitProg2 to KitProg3. Refer to the “XMC7000 Programming/Debugging - KitProg Firmware Loader” section in
the Eclipse IDE for ModusToolbox™ user guide for more details.
For more information on debugging firmware on XMC7000 devices with ModusToolbox™, refer to the Program
and Debug section in the Eclipse IDE for ModusToolbox™ user guide.

2.6 XMC7000 MCU development kits

Table 2 Development kits

Product line Development kits

Performance XMC7200 Evaluation Kit (KIT_XMC72_EVK)

For the complete list of kits for the XMC7000 MCU along with the shield modules, see the Microcontroller (MCUs)
kits page.

Getting started with XMC7000 MCU on ModusToolbox™ software

2 Development ecosystem

Application note 15 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/freertos/blob/master/README.md
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc72_evk/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/

3 Device features
XMC7000 MCUs have extensive features as shown in Figure 10. The following is a list of major features. For more
information, see the device datasheet, the technical reference manual (TRM), and the section on References.
• CPU Subsystem

- One or two 250-MHz/350-MHz Arm™ Cortex™-M7 and 100-MHz Arm™ Cortex™-M0+
- Inter-processor communication supported in hardware
- Three DMA controllers

• Integrated memories
- Up to 8384 KB of code flash with an additional 256 KB work flash
- Up to 1024 KB of SRAM selectable retention granularity

• Cryptography engine
- Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)
- Secure boot and authentication
- AES: 128-bit blocks, 128-/192-/256-bit keys
- 3DES: 64-bit blocks, 64-bit key
- Vector unit supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic

Curve (ECC)
- SHA-1/2/3: SHA-512, SHA-256, SHA-160 with variable length input data
- CRC: supports CCITT CRC16 and IEEE-802.3 CRC32
- True random number generator (TRNG) and pseudo random number generator (PRNG)
- Galois/Counter Mode (GCM)

• Safety for application
- Memory Protection Unit (MPU)
- Shared Memory Protection Unit (SMPU)
- Peripheral Protection Unit (PPU)
- Watchdog Timer (WDT)
- Multi-counter Watchdog Timer (MCWDT)
- Low-voltage Detector (LVD)
- Brown-out Detection (BOD)
- Overvoltage Detection (OVD)
- Clock Supervisor (CSV)
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash, TCM)

• Low-power 2.7-V to 5.5-V operation
- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power

management
- Configurable options for robust BOD

• Wakeup
- Up to two pins to wake from Hibernate mode
- Up to 220 GPIO pins to wake from Sleep modes
- Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes

• Clocks
- Internal Main Oscillator (IMO)
- Internal Low-Speed Oscillator (ILO)

Getting started with XMC7000 MCU on ModusToolbox™ software

3 Device features

Application note 16 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/dgdl/Infineon-XMC7000_MCU_FAMILY_ARCHITECTURE_TECHNICAL_REFERENCE_MANUAL-UserManual-v03_00-EN.pdf?fileId=8ac78c8c850f4bee01859d6b36155cad

- External Crystal Oscillator (ECO)
- Watch Crystal Oscillator (WCO)
- Phase-Locked Loop (PLL)
- Frequency-Locked Loop (FLL)

• Communication interfaces
- Up to 10 CAN FD channels
- Up to 11 runtime-reconfigurable SCB (serial communication block) channels, each configurable as I2C,

SPI, or UART
- Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az

• External memory interface
- One SPI (Single, Dual, Quad, or Octal) or HYPERBUS™ interface
- On-the-fly encryption and decryption
- Execute-In-Place (XIP) from external memory

• SDHC interface
- One Secure Digital High Capacity (SDHC) interface supporting embedded MultiMediaCard (eMMC),

Secure
- Digital (SD), or SDIO (Secure Digital Input Output)
- Data rates up to SD High-Speed 50 MHz, or eMMC 52 MHz DDR

• Audio interface
- Three Inter-IC Sound (I2S) Interfaces (based on the NXP I2S bus specification) for connecting digital

audio devices
- I2S, left justified, or Time Division Multiplexed (TDM) audio formats
- Independent transmit or receive operation, each in master or slave mode

• Timers
- Up to 102 blocks of 16-bit and 16 blocks of 32-bit Timer/Counter Pulse-Width Modulator (TCPWM)
- Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep

• Real time clock (RTC)
- Year/Month/Date, Day-of-week, Hour:Minute:Second fields
- 12- and 24-hour formats
- Automatic leap-year correction

• I/O
- Clock supervisor (CSV)
- Three I/O types: GPIO_STD/GPIO_ENH/HSIO_STD

• Smart I/O
- Up to five smart I/O blocks, which can perform Boolean operations on signals going to and from I/Os
- Up to 36 I/Os (GPIO_STD) supported

• I/O subsystem
- Up to 220 GPIOs with programmable drive modes, drive strength, slew rates
- Two ports with smart I/O that can implement Boolean operations

Getting started with XMC7000 MCU on ModusToolbox™ software

3 Device features

Application note 17 002-34334 Rev. *E
2023-08-29

Figure 10 XMC7000 MCU block diagram
• Programmable analog

- Three SAR A/D converters with up to 99 external channels (96 I/Os + 3 I/Os for motor control)
- Each ADC supports 12-bit resolution and sampling rates of up to 1 Msps
- Each ADC also supports six internal analog inputs
- Each ADC supports addressing of external multiplexers
- Each ADC has a sequencer supporting autonomous scanning of configured channels
- Synchronized sampling of all ADCs for motor-sense applications

Getting started with XMC7000 MCU on ModusToolbox™ software

3 Device features

Application note 18 002-34334 Rev. *E
2023-08-29

4 XMC7000 MCU design using ModusToolbox™ software and
Eclipse IDE

This section does the following:
• Demonstrate how to build a simple XMC7000 MCU-based design and program it on to the development kit
• Makes it easy to learn XMC7000 MCU design techniques and how to use the ModusToolbox™ software and

Eclipse IDE.

Note: You can use any supported IDE, but this section uses the Eclipse IDE as an example.

4.1 Prerequisites
Before you get started, make sure that you have the appropriate development kit for your XMC7000 MCU
product line and have installed the required software. You also need internet access to the GitHub repositories
during project creation.

4.1.1 Hardware
The example design shown below is developed for the XMC7200 Evaluation Kit. However, you can build the
application for other development kits. See the Using these instructions section.

4.1.2 Software
ModusToolbox™ software 3.1 or above.
After installing the software, refer to the ModusToolbox™ tools package user guide to get an overview of the
software.

4.2 Using these instructions
These instructions are grouped into several sections. Each section is devoted to a phase of the application
development workflow. The major sections are:
1. Create a new application
2. View and modify the design
3. Write firmware
4. Build the application
5. Program the device
6. Test your design
This design is developed for the XMC7200 Evaluation Kit. You can use other supported kits to test this example
by selecting the appropriate kit while creating the application.

4.3 About the design
This design uses the CM7 CPU of the XMC7000 MCU to execute two tasks: UART communication and LED
control.
After device reset, the CM7 CPU uses the UART to print a “Hello World” message to the serial port stream, and
starts blinking the user LED on the kit. When you press the Enter key on the serial console, the blinking is
paused or resumed.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 19 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc72_evk/
http://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc72_evk/

4.4 Create a new application
This section takes you on a step-by-step guided tour of the new application process. It uses the Empty
AppEmpty PSoC4 App starter application and manually adds the functionality from the Hello World starter
application. The Eclipse IDE for ModusToolbox™ is used in the instructions, but you can use any IDE or the
command line if you prefer.
If you are familiar with developing projects with ModusToolbox™ software, you can use the Hello World starter
application directly. It is a complete design, with all the firmware written for the supported kits. You can walk
through the instructions and observe how the steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you can use the Hello World
code example as a reference while following the instructions.
Launch the Dashboard 3.1 application to get started. Please note that the Dashboard 3.1 application needs
access to the internet to successfully clone the starter application onto your machine.
The Dashboard 3.1 application helps you get started using the various tools with easy access to
documentation and training material, a simple path for creating applications and creating and editing BSPs.
1. Open the Dashboard 3.1 application.

To open the Dashboard 3.1 application, click [ModusToolbox installation path]/ModusToolbox folder/
dashboard 3.1.0

2. On the Dashboard 3.1 window, in the right pane, in the Target IDE drop-down list, select Eclipse IDE for
ModusToolbox™, and click Launch Eclipse IDE for ModusToolbox™.

Figure 11 Dashboard 3.1 application
3. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ presents a dialog to choose a directory for use as the
workspace directory. The workspace directory is used to store workspace preferences and development
artifacts. You can choose an existing empty directory by clicking the Browse button, as shown in the
following figure. Alternatively, you can type in a directory name to be used as the workspace directory
along with the complete path, and the IDE will create the directory for you.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 20 002-34334 Rev. *E
2023-08-29

Figure 12 Select a directory as the workspace
4. Create a new ModusToolbox™ application.

a. Click New Application in the Start group of the Quick Panel.
b. Alternatively, you can choose File > New > ModusToolbox Application, as Figure 13 shows. The

Eclipse IDE for ModusToolbox™ Application window appears.

Figure 13 Create a New ModusToolbox™ Application
5. Select a target XMC7200 evaluation kit.

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/
project options for the specified development kit in the new application dialog.

a. In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The
steps that follow use KIT_XMC72_EVK. See Figure 14 for help with this step.

b. Click Next.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 21 002-34334 Rev. *E
2023-08-29

Figure 14 Choose target hardware
c. In the StarterApplication dialog, select Empty App starter application, as Figure 15 shows.
d. In the Name field, type in a name for the application, such as Hello_World. You can choose to

leave the default name if you prefer.
e. Click Create to create the application, as Figure 15 shows, wait for the Project Creator to

automatically close once the project is successfully created.

Figure 15 Choose starter application
You have successfully created a new ModusToolbox™ application for a XMC7000 MCU.
The BSP uses XMC7200D-E272K8384 as the default device that is mounted on the XMC7200 Evaluation Kit.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 22 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc72_evk/

If you are using custom hardware based on XMC7000 MCU, or a different XMC7000 MCU part number, see the
"Creating your Own BSP" section in the ModusToolbox™ user guide.

4.5 View and modify the design
Figure 16 shows the ModusToolbox™ project explorer interface displaying the structure of the application
project.
XMC7000 MCU consists of three cores: one CM0+ core and two CM7 cores. This application note shows the
firmware development using the CM7 core with ModusToolbox™ software.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 23 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/ModusToolboxUserGuide

Figure 16 Project Explorer view

A project folder consists of various subfolders – each denoting a specific aspect of the project.
1. The files provided by the BSP are in the bsps folder and are listed under TARGET_<bsp name> sub-folders.

All the input files for the device and peripheral configurators are in the config folder inside the BSP.
The GeneratedSource folder in the BSP contains the files that are generated by the configurators and
are prefixed with cycfg_. These files contain the design configuration as defined by the BSP. From
ModusToolbox™ 3.x or later, you can directly customize configurator files of BSP for your application

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 24 002-34334 Rev. *E
2023-08-29

rather than overriding the default design configurator files with custom design configurator files since
BSPs are completely owned by the application.
The BSP folder also contains the linker scripts and the start-up code for the XMC7000 MCU used on the
board.

2. The build folder contains all the artifacts resulting from a build of the project. The output files are
organized by target BSPs.

3. The deps folder contains .mtb files, which provide the locations from which ModusToolbox™ pulls the
libraries that are directly referenced by the application. These files typically each contain the GitHub
location of a library. The .mtb files also contain a git Commit Hash or Tag that tells which version of the
library is to be fetched and a path as to where the library should be stored locally.
For example, Here, retarget-io.mtb points to mtb://retarget-io#latest-v1.X#$$ASSET_REPO$$/retarget-
io/latest-v1.X. The variable $$ASSET_REPO$$ points to the root of the shared location which defaults
to mtb_shared. If the library must be local to the application instead of shared, use $$LOCAL$$ instead of
$$ASSET_REPO$$.

4. The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly
as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places
a .mtb file in this folder. These files have been populated based on the targets available in deps folder.
For example, using BSP KIT_XMC72_EVK populates libs folder with the following .mtb files: cmsis.mtb,
core-lib.mtb, core-make.mtb, mtb-hal-cat1.mtb, mtb-pdl-cat1.mtb, cat1cm0p.mtb, recipe-make-
cat1a.mtb.
The libs folder contains the file mtb.mk, which stores the relative paths of all the libraries required by the
application. The build system uses this file to find all the libraries required by the application.
Everything in the libs folder is generated by the Library Manager so you should not manually edit
anything in that folder.

5. An application contains a Makefile which is at the application's root folder. This file contains the set of
directives that the make tool uses to compile and link the application project. There can be more than
one project in an application. In that case there is a Makefile at the application level and one inside each
project.

6. By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directories.
The mtb_shared folder is shared between different applications within a workspace. Different
applications may use different versions of shared libraries if necessary.

4.5.1 Opening the Device Configurator
BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. For example, click <Application-name>
from Project Explorer then click Device Configurator link in the Quick Panel to open the file design.modus in
the Device Configurator as shown in the following figure. You can also open other configuration files in their
respective configurators or click the corresponding links in the Quick Panel.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 25 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/cmsis
https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/core-make
https://github.com/cypresssemiconductorco/mtb-hal-cat1
https://github.com/cypresssemiconductorco/mtb-pdl-cat1
https://github.com/Infineon/cat1cm0p
https://github.com/cypresssemiconductorco/recipe-make-cat1a
https://github.com/cypresssemiconductorco/recipe-make-cat1a

Figure 17 Device Configurator

The DeviceConfigurator provides a set of Resources Categories tabs. Here you can choose between different
resources available in the device such as peripherals, pins, and clocks from the List of Resources.
You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial
Communication Block (SCB) resource can have EZI2C, I2C, SPI, or UART personalities. The Alias is your name
for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces).
The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration
parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. The Parameters
pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be
the same.
Any errors, warnings, and information messages arising out of the configuration are displayed in the Notices
pane.
At this point in the development process, we are ready to add the required middleware to the design. The only
middleware required for the Hello World application is the retarget-io library.

4.5.2 Add retarget-io middleware
In this step, you will add the retarget-io middleware to redirect standard input and output streams to the UART
configured by the BSP. The initialization of the middleware will be done in main.c.
1. In the Quick Panel, click the Library Manager link.
2. In the subsequent dialog, click Add Libraries.
3. Under Peripherals, select and enable retarget-io.
4. Click OK and then Update.
The files necessary to use the retarget-io middleware are added in the mtb_shared > retarget_io folder, and
the .mtb file is added to the deps folder, as shown in the following figure.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 26 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Figure 18 Add the retarget-io middleware

4.5.3 Configuration of UART, timer peripherals, pins, and system clocks
The configuration of the debug UART peripheral, timer peripheral, pins, and system clocks can be done directly
in the code using the function APIs provided by the BSP and HAL. Therefore, it is not necessary to configure
them with the Device Configurator. See Write firmware.

4.6 Write firmware
At this point in the development process, you have created an application with the assistance of an application
template and modified it to add the retarget-io middleware. In this part, you write the firmware that
implements the design functionality.
If you are working from scratch using the EmptyXMC7000 starter application, you can copy the respective
source code to the main.c of the application project from the code snippet provided in this section. If you are
using the Hello World code example, all the required files are already in the application.

Firmware flow

We now examine the code in the main.c file of the application. Figure 19 shows the firmware flowchart.
The CM0+ core comes out of reset and enables the CM4 core. The CM0+ core is then configured to go to sleep by
the provided CM0+ application. Resource initialization for this example is performed by the CM4 core. It
configures the system clocks, pins, clock to peripheral connections, and other platform resources.
When the CM4 core is enabled, the clocks and system resources are initialized by the BSP initialization function.
The retarget-io middleware is configured to use the debug UART, and the user LED is initialized. The debug
UART prints a “Hello World!” message on the terminal emulator – the on-board KitProg3 acts the USB-UART
bridge to create the virtual COM port. A timer object is configured to generate an interrupt every 1000
milliseconds. At each Timer interrupt, the CM4 core toggles the LED state on the kit.
After reset, resource initialization for this example is performed by the CM7 CPU. It configures the system clocks,
pins, clock to peripheral connections, and other platform resources.
After reset, the clocks and system resources are initialized by the BSP initialization function. The retarget-io
middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a “Hello
World!” message on the terminal emulator – the onboard KitProg3 acts the USB-UART bridge to create the
virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each timer
interrupt, the CM7 CPU toggles the LED state on the kit.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 27 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

The firmware is designed to accept the 'Enter' key as an input and on every press of the 'Enter' key the firmware
starts or stops the blinking of the LED.
Note that the application code uses BSP/HAL/middleware functions to execute the intended functionality.
cybsp_init()- This BSP function sets up the HAL hardware manager and initializes all the system resources of
the device including but not limited to the system clocks and power regulators.
cy_retarget_io_init()- This function from the retarget-io middleware uses the aliases set up in the BSP for the
debug UART pins to configure the debug UART with a standard baud rate of 115200 and also redirects the input/
output stream to the debug UART.

Note: You can open the Device Configurator to view the aliases that are set up in the BSP.

cyhal_gpio_init()- This function from the GPIO HAL initializes the physical pin to drive the LED. The LED used is
derived from the alias for the pin set up in the BSP.
timer_init()- This function wraps a set of timer HAL function calls to instantiate and configure a hardware
timer. It also sets up a callback for the timer interrupt.
Copy the following code snippet to main.c of your application project.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 28 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/retarget-io#latest-v1.X

Code listing 1: main.c file

#include "cyhal.h"
#include "cybsp.h"
#include "cy_retarget_io.h"

/***
* Macros
***/

/* LED blink timer clock value in Hz */
#define LED_BLINK_TIMER_CLOCK_HZ (10000)

/* LED blink timer period value */
#define LED_BLINK_TIMER_PERIOD (9999)

/***
* Function Prototypes
***/
void timer_init(void);
static void isr_timer(void *callback_arg, cyhal_timer_event_t event);

/***
* Global Variables
***/
bool timer_interrupt_flag = false;
bool led_blink_active_flag = true;

/* Variable for storing character read from terminal */
uint8_t uart_read_value;

/* Timer object used for blinking the LED */
cyhal_timer_t led_blink_timer;

/***
* Function Name: main
**
* Summary:
* This is the main function . It sets up a timer to trigger a
* periodic interrupt. The main while loop checks for the status of a flag set
* by the interrupt and toggles an LED at 1Hz to create an LED blinky. The
* while loop also checks whether the 'Enter' key was pressed and
* stops/restarts LED blinking.
*
* Parameters:
* none
*
* Return:
* int

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 29 002-34334 Rev. *E
2023-08-29

*
***/
int main(void)
{
 cy_rslt_t result;

 /* Initialize the device and board peripherals */
 result = cybsp_init();

 /* Board init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Enable global interrupts */
 __enable_irq();

 /* Initialize retarget-io to use the debug UART port */
 result = cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX,
 CY_RETARGET_IO_BAUDRATE);

 /* retarget-io init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Initialize the User LED */
 result = cyhal_gpio_init(CYBSP_USER_LED, CYHAL_GPIO_DIR_OUTPUT,
 CYHAL_GPIO_DRIVE_STRONG, CYBSP_LED_STATE_OFF);

 /* GPIO init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
 printf("\x1b[2J\x1b[;H");

 printf("****************** "
 "Hello World! Example "
 "****************** \r\n\n");

 printf("Hello World!!!\r\n\n");

 printf("For more projects, "
 "visit our code examples repositories:\r\n\n");

 printf("https://github.com/Infineon/"
 "Code-Examples-for-ModusToolbox-Software\r\n\n");

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 30 002-34334 Rev. *E
2023-08-29

 /* Initialize timer to toggle the LED */
 timer_init();

 printf("Press 'Enter' key to pause or "
 "resume blinking the user LED \r\n\r\n");

 for (;;)
 {
 /* Check if 'Enter' key was pressed */
 if (cyhal_uart_getc(&cy_retarget_io_uart_obj, &uart_read_value, 1)
 == CY_RSLT_SUCCESS)
 {
 if (uart_read_value == '\r')
 {
 /* Pause LED blinking by stopping the timer */
 if (led_blink_active_flag)
 {
 cyhal_timer_stop(&led_blink_timer);

 printf("LED blinking paused \r\n");
 }
 else /* Resume LED blinking by starting the timer */
 {
 cyhal_timer_start(&led_blink_timer);

 printf("LED blinking resumed\r\n");
 }

 /* Move cursor to previous line */
 printf("\x1b[1F");

 led_blink_active_flag ^= 1;
 }
 }

 /* Check if timer elapsed (interrupt fired) and toggle the LED */
 if (timer_interrupt_flag)
 {
 /* Clear the flag */
 timer_interrupt_flag = false;

 /* Invert the USER LED state */
 cyhal_gpio_toggle(CYBSP_USER_LED);
 }
 }
}

/***
* Function Name: timer_init
**
* Summary:
* This function creates and configures a Timer object. The timer ticks

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 31 002-34334 Rev. *E
2023-08-29

* continuously and produces a periodic interrupt on every terminal count
* event. The period is defined by the 'period' and 'compare_value' of the
* timer configuration structure 'led_blink_timer_cfg'. Without any changes,
* this application is designed to produce an interrupt every 1 second.
*
* Parameters:
* none
*
***/
 void timer_init(void)
 {
 cy_rslt_t result;

 const cyhal_timer_cfg_t led_blink_timer_cfg =
 {
 .compare_value = 0, /* Timer compare value, not used */
 .period = LED_BLINK_TIMER_PERIOD, /* Defines the timer period */
 .direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */
 .is_compare = false, /* Don't use compare mode */
 .is_continuous = true, /* Run timer indefinitely */
 .value = 0 /* Initial value of counter */
 };

 /* Initialize the timer object. Does not use input pin ('pin' is NC) and
 * does not use a pre-configured clock source ('clk' is NULL). */
 result = cyhal_timer_init(&led_blink_timer, NC, NULL);

 /* timer init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Configure timer period and operation mode such as count direction,
 duration */
 cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);

 /* Set the frequency of timer's clock source */
 cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);

 /* Assign the ISR to execute on timer interrupt */
 cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);

 /* Set the event on which timer interrupt occurs and enable it */
 cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,
 7, true);

 /* Start the timer with the configured settings */
 cyhal_timer_start(&led_blink_timer);
 }

/***

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 32 002-34334 Rev. *E
2023-08-29

* Function Name: isr_timer
**
* Summary:
* This is the interrupt handler function for the timer interrupt.
*
* Parameters:
* callback_arg Arguments passed to the interrupt callback
* event Timer/counter interrupt triggers
*
***/
static void isr_timer(void *callback_arg, cyhal_timer_event_t event)
{
 (void) callback_arg;
 (void) event;

 /* Set the interrupt flag and process it from the main while(1) loop */
 timer_interrupt_flag = true;
}

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 33 002-34334 Rev. *E
2023-08-29

START

Initialize retarget-io to use
BSP’s debug UART

Initialize clocks and
system resources

Print the message
“Hello World”

on to UART terminal

Is “Enter” key
pressed?

No

On timer Interrupt

Set the timer interrupt flag

Exit Interrupt
Handler

Is timer interrupt
flag set?

Clear timer interrupt flag
&

Toggle LED state

Start the timer

Initialize the user LED

Yes

Initialize and start the
timer, register callback –

LED starts blinking

Was LED
blinking earlier?

Stop the timer

Yes

Yes

No

No

Figure 19 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source
files for a deeper understanding.

4.7 Build the application
This section shows how to build the application.
1. Select the application project in the Project Explorer view.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 34 002-34334 Rev. *E
2023-08-29

2. Click Build Application shortcut under the <name> group in the Quick Panel.
It selects the build configuration from Makefile and compiles/links all projects that constitute the
application. By default, Debug configurations are selected.

3. The Console view lists the results of the build operation, as Figure 20 shows.

Figure 20 Build the application

If you encounter errors, revisit prior steps to ensure that you completed all the required tasks.

Note: You can also use the command line interface (CLI) to build the application. Please refer to the Build
system chapter in the ModusToolbox™ tools package user guide. This document is located in the /
docs_<version>/ folder in the ModusToolbox™ installation.

4.8 Program the device
This section shows how to program the XMC7000 MCU.
ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on XMC7000 MCUs.
For ModusToolbox™ software to identify the device on the kit, the kit must be running KitProg3. See
Programming/debugging using Eclipse IDE for details.
If you are using a development kit with a built-in programmer, connect the board to your computer using the
USB cable.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 35 002-34334 Rev. *E
2023-08-29

https://www.infineon.com/ModusToolboxUserGuide

If you are developing on your own hardware you may need a hardware programmer/debugger; for example, a
JLink or ULinkpro.
1. Program the application.

a. Connect to the board and perform the following.
b. Select the application project and click on the <application name> Program

(KitProg3_MiniProg4) shortcut under the Launches group in the Quick Panel, as Figure 21
shows. The IDE will select and run the appropriate run configuration. Note that this step will also
perform a build if any files have been modified since the last build.

Figure 21 Programming an application to a device

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 36 002-34334 Rev. *E
2023-08-29

https://www.segger.com/products/debug-probes/j-link/
https://www.keil.com/arm/ulinkpro/

The Console view lists the results of the programming operation, as Figure 22 shows.

Figure 22 Console – programming results

4.9 Test your design
This section describes how to test your design.
Follow the steps below to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results, but you can use any terminal of your choice to view the output.
1. Select the serial port

Launch Tera Term and select the USB-UART COM port as Figure 23 shows. Note that your COM port
number may be different.

Figure 23 Selecting the KitProg3 COM port in Tera Term
2. Set the baud rate

Set the baud rate to 115200 under Setup > Serial port as Figure 24 shows.

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 37 002-34334 Rev. *E
2023-08-29

Figure 24 Configuring the baud rate in Tera Term
3. Reset the device

Press the reset switch (SW1) on the kit. A message appears on the terminal as Figure 25 shows. The user
LED on the kit will start blinking.

Figure 25 Printed UART message

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 38 002-34334 Rev. *E
2023-08-29

4. Pause/resume LED blinking functionality
Press the Enter key to pause/resume blinking the LED. When the LED blinking is paused, a
corresponding message will be displayed on the terminal as Figure 26 shows.

Figure 26 Printed UART message

Getting started with XMC7000 MCU on ModusToolbox™ software

4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE

Application note 39 002-34334 Rev. *E
2023-08-29

5 Summary
This application note explored the XMC7000 MCU device architecture and the associated development tools.
XMC7000 MCU is a truly programmable embedded system-on-chip with configurable analog and digital
peripheral functions, memory, and a dual-core system on a single chip. The integrated features and low-power
modes make XMC7000 MCU an ideal choice for smart home, IoT gateways, and other related applications.

Getting started with XMC7000 MCU on ModusToolbox™ software

5 Summary

Application note 40 002-34334 Rev. *E
2023-08-29

6 References
For a complete and updated list of XMC7000 MCU code examples, please visit our GitHub. For more XMC7000
MCU-related documents, please visit our XMC7000 MCU product web page.
Table 3 lists the system-level and general application notes that are recommended for the next steps in learning
about XMC7000 MCU and ModusToolbox™.

Table 3 General and system-level application notes

Document Document name
AN234224 Hardware design guide for the XMC7000 family

AN225588 Using ModusToolbox™ software with a third-party IDE

AN234021 Low power mode procedure in XMC7000 family
Table 4 lists the application notes (AN) for specific peripherals and applications.

Table 4 Documents related to XMC7000 MCU features

Document Document name
System resources, CPU, and interrupts
AN234226 How to use interrupt in the XMC7000 family

AN234225 How to use DMA in the XMC7000 family

Peripherals
AN234127 How to use SCB in XMC7000 family

AN234380 How to use ethernet controller in XMC7000 family

AN234227 Using the SMIF in the XMC700 family

AN234197 How to use trigger multiplexer in XMC700 family

AN234022 How to use CAN FD in XMC7000 family

AN234119 Timer, Counter and PWM (TCPWM) usage in XMC7000 family

Device datasheet
002-33896 XMC7100 datasheet

002-33522 XMC7200 datasheet

Getting started with XMC7000 MCU on ModusToolbox™ software

6 References

Application note 41 002-34334 Rev. *E
2023-08-29

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/
https://www.infineon.com/dgdl/Infineon-AN234224_Hardware_design_guide_for_the_XMC7000_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d30184517f98ac4fea
https://www.infineon.com/dgdl/Infineon-AN225588_Using_ModusToolbox_Software_with_a_Third-Party_IDE-ApplicationNotes-v03_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d367dc666a9
https://www.infineon.com/dgdl/Infineon-AN234021_Low-power_mode_procedure_in_XMC7000_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d3018451117fa54ef6
https://www.infineon.com/dgdl/Infineon-AN234226_-_XMC7000_MCU_Usage_of_Interrupts-ApplicationNotes-v03_00-EN.pdf?fileId=8ac78c8c8412f8d3018451e417060290
https://www.infineon.com/dgdl/Infineon-AN234225-HOW_TO_USE_DIRECT_MEMORY_ACCESS_(DMA)_CONTROLLER_IN_THE_XMC7000_FAMILY-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d3018451e41ee202a5
https://www-blue.infineon.com/dgdl/Infineon-AN234127_How_to_use_Serial_Communications_Block_SCB_in_XMC7000_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d301845123eb974f5f#:~:text=This%20application%20note%20describes%20how%20to%20use%20a,serial%20communication%20protocols%3A%20SPI%2C%202UART%2C%20and%20I%20C
https://www.infineon.com/dgdl/Infineon-AN234380_How_to_use_Ethernet_controller_in_XMC7000_MCU_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d3018455f7bff70782
https://www.infineon.com/dgdl/Infineon-AN234227-USING_THE_SMIF_IN_XMC7000_MCU_FAMILY-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d3018451e40fe3027b
https://www.infineon.com/dgdl/Infineon-AN234197_How_to_use_Trigger_Multiplexer_in_XMC_7000_Family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d301845176440f4f81
https://www.infineon.com/dgdl/Infineon-AN234022_Controller_Area_Network_with_Flexible_Data_CAN_FD_usage_in_XMC7000_family-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8412f8d301845123c48e4f0b
https://www.infineon.com/dgdl/Infineon-AN234119_-_Timer_Counter_and_PWM_TCPWM_usage_in_XMC7000_family-ApplicationNotes-v03_00-EN.pdf?fileId=8ac78c8c8412f8d301845123daf24f35
https://www.infineon.com/dgdl/Infineon-XMC-7100-Datasheet-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c8412f8d30184443160ae4415
https://www.infineon.com/dgdl/Infineon-XMC-7200-Datasheet-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c8412f8d30184443173374425

7 Glossary
This section lists the most commonly used terms that you might encounter while working with XMC™ family of
devices.
• Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other

functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals.

• Hardware Abstraction Layer (HAL): The HAL wraps the lower level drivers (like MTB-PDL-CAT1) and provides
a high-level interface to the MCU. The interface is abstracted to work on any MCU.

• KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge
functionality. The KitProg is integrated onto most XMC™ development kits.

• MiniProg3/MiniProg4: Programming hardware for development that is used to program XMC™ devices on
your custom board or XMC™ development kits that do not support a built-in programmer.

• Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI, or I2C personalities.

• Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.
Some middleware may provide network protocols (e.g. MQTT), and some may provide high level software
interfaces to device features (e.g. USB, audio).

• ModusToolbox™: An Eclipse-based embedded design platform for embedded systems designers that
provides a single, coherent, and familiar design experience, combining the industry’s most deployed Wi-Fi
and Bluetooth® technologies, and the lowest power, most flexible MCUs with best-in-class sensing.

• Peripheral Driver Library: The peripheral driver library (PDL) simplifies software development for the
XMC7000 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus
easing software development for the extensive set of peripherals available.

Getting started with XMC7000 MCU on ModusToolbox™ software

7 Glossary

Application note 42 002-34334 Rev. *E
2023-08-29

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
http://www.infineon.com/modustoolbox
https://github.com/Infineon/mtb-pdl-cat1

Revision history
Document
version

Date of
release

Description of changes

** 2022-01-25 Initial release.

*A 2022-06-17 Updated Figure 8, Figure 9, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18,
Figure 20, and Figure 21.

*B 2023-01-26 Updated Section 4.5 according to MTB#8265.

*C 2023-05-24 Template update.
Updated XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE
section.

*D 2023-06-09 Updated content with the latest release of ModusToolbox™ 3.1

*E 2023-08-29 Added note in XMC7000 MCU design using ModusToolbox™ software and
Eclipse IDE section and updated other issues throughout the document.

Getting started with XMC7000 MCU on ModusToolbox™ software

Revision history

Application note 43 002-34334 Rev. *E
2023-08-29

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-29
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-ckr1674573825368

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Development ecosystem
	2.1 XMC7000 resources
	2.2 Firmware/application development
	2.2.1 Installing the ModusToolbox™ tools package
	2.2.2 Choosing an IDE
	2.2.3 ModusToolbox™ software
	2.2.4 ModusToolbox™ applications
	2.2.5 XMC7000 software resources
	2.2.5.1 Configurators
	2.2.5.2 Library management for XMC7000 MCU
	2.2.5.3 Software development for XMC7000 MCU

	2.3 Support for other IDEs
	2.4 FreeRTOS support with ModusToolbox™
	2.5 Programming/debugging using Eclipse IDE
	2.6 XMC7000 MCU development kits

	3 Device features
	4 XMC7000 MCU design using ModusToolbox™ software and Eclipse IDE
	4.1 Prerequisites
	4.1.1 Hardware
	4.1.2 Software

	4.2 Using these instructions
	4.3 About the design
	4.4 Create a new application
	4.5 View and modify the design
	4.5.1 Opening the Device Configurator
	4.5.2 Add retarget-io middleware
	4.5.3 Configuration of UART, timer peripherals, pins, and system clocks

	4.6 Write firmware
	4.7 Build the application
	4.8 Program the device
	4.9 Test your design

	5 Summary
	6 References
	7 Glossary
	Revision history
	Disclaimer

