
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 www.cypress.com Document No. 001-26179 Rev. *C 1

AN2341
ArcTangent in PSoC® 1 Assembler

Author: Dave Van Ess
Associated Project: Yes

Associated Part Family: Any PSoC 1 Device
Software Version: PSoC Designer™ 5.4

Related Application Notes: None

Many control applications require calculating an angular position when the Cartesian position data is given. The
arctangent function makes this possible. A major setback to this is that the trigonometric functions supplied with the ‘C’
math library uses and returns float variables. Although very accurate, the processing overhead resulting from using the
floating-point math routines can be prohibitive. Techniques are discussed to calculate an arctangent to a specific
resolution. Software is presented using these techniques for an arctangent function that returns the calculated angle in
100ths of a degree resolution using signed 8-bit X and Y values.

Introduction
You have Cartesian data and require an angular position.
It may be a compass, calculating direction from magnetic
field detectors or it may be to determine a shaft position
using Hall Effect sensors. This is why arctangent (atan
and atan2) functions supplied with the ‘C’ math library is
included in PSoC Designer™. These functions have two
major limitations.

The first limitation is that they return the angle value in
radians. Radians, although frequently used in math and
physics, are not as useful to most engineers. 2 pi radians
make up a circle, as opposed to 360 degrees. The second
limitation is that the function uses floating point. This
results in extremely accurate answers but at the cost of
computation time. In embedded applications, most data
comes out of an ADC in an integer format and the
resolution required is on the order of 10°, 5°, 1°, or 0.1°
degrees.

The function developed for this Application Note uses
signed 8-bit X position and Y position data.

The angle is returned in integer format in hundredths of a
degree resolution. It is a signed integer and has a range of
±18000. The accuracy is ±0.25° (or 25 counts).

Polar and Cartesian Coordinates
Figure 1 shows a two-dimensional position in terms of its
Cartesian and Polar parameters.

Figure 1. Angular Geometry

x,y
r

θ
X axis

Y axis

Cartesian coordinates define the distance away from the
origin x units horizontally and y units vertically. The polar
coordinates define the position r units away from the origin
at an angle θ above the horizontal axis. These values are
different ways of defining the same unique position. Their
relationship is shown in these equations.

22 yxr += Equation 1

()yxf ,=θ Equation 2

The function f is defined as the arctangent and is usually
defined as:

() ()xyyxf /atan, = Equation 3

y/x is defined as the slope. This function has two difficult
characteristics. First, this slope can vary anywhere in the
range of ±∞. This makes it hard to find angle close to the
vertical axis. (atan(255/1) = 89.78°). Second, this function
generates the same solution for two different positions
(because y/x = -y/-x).

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 2

Another arctangent function is the atan2 function, which is
defined below:

() ()yxyxf ,2atan, = Equation 4

Both difficulties with the first function do not exist with this
new function. It does require two variables be passed to it.
This is the function implemented in this Application Note.

Vector Math 101
If the position vector is expressed as a complex number
then the following equation holds true:

nnnnn ryixc θ∠=⋅+= Equation 5

If two vectors are multiplied, the result is:

() ()
()mnmn

mnmnmnmnmn

rr
xyyxiyyxxcc

θθ +∠=
++−=

 Equation 6

This equation shows that a vector can be moved by a
specific angle. If a vector has an angle of 46°, multiplying it
with a vector having an angle of -45° results in a vector
with an angle of 1°. Clearly, a series of vector
multiplication can be used to move the vector to the
horizontal axis. The sum of all the applied vector angles
equals the original vector angle and the arctangent
calculation is complete.

Quadrant Decoding and Translation
Each X value and Y value has three possible states. They
are:

 Negative

 Zero

 Positive

This allows for nine different combinations as shown in
Figure 2.

Figure 2. Nine States for X-Y Data

p,z

z,p

n,z

z,n

p,p

p,nn,n

n,p

EastWest

North

Quad I

South

z,z
Center

Quad II

Quad III Quad IV

It is necessary to determine in which of the nine states the
data falls. The following code shows how a state variable
is generated.

Code 1. Quadrant Encoding

#define EAST 0x0d
#define NORTH 0x07
#define WEST 0x01
#define SOUTH 0x04
#define CENTER 0x05
#define QUADI 0x0f
#define QUADII 0x03
#define QUADIII 0x00
#define QUADIV 0x0c

bStatus = 0;
if(cXval >= 0) bStatus|= 0x08;
if(cXval == 0) bStatus|= 0x04;
if(cXval >= 0) bStatus|= 0x02;
if(cXval == 0) bStatus|= 0x01;

This status variable can be used to generate a jump table
or switch statement.

Of these nine states North, South, East, and West are
easily calculated. Center value is indeterminate, but must
receive some value. For this routine it is defined to be
32,767. (The largest integer value, it is much larger than
the maximum in-range value of 18,000.) Code to set the
angle for these five states is shown below.

Code 2. Quadrant Angle Offset

if(bStatus == EAST) iAngle = 0;
if(bStatus == NORTH) iAngle = 9000;
if(bStatus ==WEST) iAngle =-18000;
if(bStatus ==SOUTH) iAngle = -9000;
if(bStatus == CENTER)iAngle = 32767;

For the remaining states it is necessary to move them to
the Quad I state. Quad II vectors are rotated 90° counter
clockwise to move into Quad I. Quad III vectors are
rotated 180° to move into Quad I. Quad IV vectors are
rotated 90° clockwise to move into Quad I. In each case,
the Cartesian coordinates of the rotated vector only
change in either polarity or swap values. This is shown in
the figure below.

Figure 3. Vector Position in Different Quadrants

Quad IQuad II

Quad III Quad IV

(10,35)

(-35,10)

(-10,-35)

(35,-10)

For each quadrant, that vector must be moved into Quad I
and the angle must be appropriately adjusted as shown in
the following code.

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 3

Code 3. Vector Movement between Quadrants

if(bStatus == QUADI)
 iAngle = iATanRoutine(Xval, Yval);
if(bStatus == QUADII)
 iAngle = iATanRoutine(-Yval, Xval) +
9000;
if(bStatus == QUADIII)
 iAngle = iATanRoutine(-Xval,-Yval) –
18000;
if(bStatus == QUADIV)
 iAngle = iATanRoutine(Yval,-Xval)-
9000;

A Complete Arctangent Function
Now that the vector has been moved into Quad I, it is
necessary to write an efficient arctangent routine.

For this algorithm, a series of vectors are used to move
the vector to the horizontal position. If the vector rotation
caused the Yval to become negative, the vector has
moved into Quad IV and this rotation is ignored. If not, the
rotated vector stayed in Quad I and the angle of the
rotated vector is added to the accumulated angle value.

Equation (6) shows the four simple multiplications required
to perform a complex vector multiplication. To simplify this
computation, the X and Y values of the rotation vectors
selected will both be powers of two. This is shown in the
equation below.

n
n

n ic −= 2 Equation 7

Using Equation (6) with Equation (7) the production of the
rotation vector and the vector is shown in Equation (8)
below:

() ()XvalYvaliYvalXval nn −++ 22 Equation 8

Equation (8) shows that the rotation is necessary only if
2nYval >= Xval.

A table of the rotation vectors and calculated rotation
angle is shown below.

Table 1. Rotation Vectors and Calculated Angles

n Xrot(2n) Yrot θ
0 1 -1 45.0000°
1 2 -1 26.5651°
2 4 -1 14.0362°
3 8 -1 7.1250°
4 16 -1 3.5763°
5 32 -1 1.7899°
6 64 -1 0.8952°
7 128 -1 0.4476°
8 256 -1 0.2238°
9 512 -1 0.1119°

10 1024 -1 0.0560°

This table shows that the greater the number of vectors,
the greater the resolution. Conversely, a lower resolution
answer requires fewer vectors. The specific number of
vectors can be determined for each particular application.
For this routine, nine vectors (0 through 8) are used. An
implementation is shown in the following code.

Code 4. Arctangent Calculation by Vector Rotation

int const Theta[9]={4500,2657,1404,713
 ,358,179,90,45,33};

iAngle = 0;
for(n = 0; n<9; n++){
 if(Yval <<n >= Xval){
 iAngle += Theta[n];
 Xtemp = Xval;
 Ytemp = Yval;
 Yval <<=n;
 Xval <<=n;
 Xval += Ytemp;
 Yval -= Xtemp;
 if(Xval > 65535){
 Xval = (Xval + 128)>>8;
 Yval = (Yval + 128)>>8;
 }
 }
}
Note that when the calculated Xval exceeds 16 bits, it, and
Yval, is shifted down by 8 bits. This keeps the maximum
size of Xval to no larger than 24 bits, unconstrained it
could get as large as 40 bits. This truncation adds an error
in the range of ±0.06°, but is well worth the saved CPU
overhead.

iArcTanRoutine is the function included and can be found
in the project associated with this application note. It is
located in ArcTanFunction.asm. ArcTanFunction.h is also
included to allow ‘C’ programs access this function.

This function was written in assembly to minimize CPU
overhead. It requires 414 byes of ROM and takes a
maximum of 4071 CPU cycles to complete. For a 24 MHz
CPU clock, this function takes no more than 170 µsec to
complete.

A Faster ArcTangent
At present 170 µsec is a respectable number, but if a
faster technique is needed, there are other methods.

The code used to determine quadrant position stays the
same while any improvements in time saving come from
the actual arctangent function.

For this new function, the data is going to be moved to the
lower half of Quad I. It is done by multiplying the vector
with 1-I whenever Yval >= Xval.

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 4

An implementation is shown in the code below.

Code 5.

If(Yval >= Xval){
 iAngle +=4500;
 Ytemp = Yval;
 Yval = Yval –Xval;
 Xval = Xval + Ytemp;
}
Now it is guaranteed that Yval is less than Xval. The next
step is to normalize Yval given the following equation:

Xval
YvalYval 256⋅

= Equation 9

Yval is now an integer between 0 and 255. A lookup table
can be generated to solve the arctangent for all 256 of
these cases using the equation below:

9
50

256
atan]Atantable[⋅






=

Yvaln Equation 10

The atan operation is multiplied by 50/9 to get a value that
best fits in an 8-bit variable. (artan(255/256)*50/9 = 249).
The answer is later multiplied by 18 to get the desired
0.01° resolution. This truncation adds an error in the range
of ±0.09°, but is well worth space saved in the lookup
table. The normalization also contributes a truncation
error. The combination of both these errors falls well within
the ±0.25º requirement. An implementation is shown in the
code below.

Code 6.

Extern int const Atantable[];

Yval = (Yval<<8 + Xval>>1)/Xval;
iAngle += (Atantable[Yval] * 18);

The function iArcTanRoutineTableLookup can be found in
the project associated with this note. It is located in
ArcTanFunctionLT.asm. ArcTanFunctionLT.h is also
included to allow ‘C’ programs access to this function.

This function was written in assembly to minimize CPU
overhead. It requires 526 byes of ROM and takes a
maximum of 1710 CPU cycles to complete. For a 24 MHz
CPU clock, this function takes no more than 72 µsec to
complete. This is a significant improvement in speed for
an additional 112 byes of ROM.

An Even Faster ArcTangent
As respectable as 72 µsec is, there are users that still
want faster operation. This can be done by exploiting the
relationship in the equation shown below:

() ()yxxy /atan90/atan o −= Equation 11

This means that it is only necessary to calculate the
arctangent were Yval is less than Xval.

The total range of Xval and Yval is -128 through 127.
Moving the vector into Quad I now limits the range of both
to 0 though 128. Limiting the calculation to the range in the
lower half of Quad I, limits the range to:

 0 < Xval ≤ 128

 0 < Yval < Xval

Also, whenever Xval is less the 65, Xval and Yval can be
repeatedly doubled until:

 65 < Xval ≤ 128

 0 < Yval < Xval

Given these ranges, there are 6176 different vectors. It is
possible to build a lookup table to store the arctangent of
each value. As with Equation (10), the atan operation is
multiplied by 50/9 to get a best fit into an 8-bit variable.
Again, this introduces a ±0.09º error.

This table starts with 65 atan values for n/65, followed by
66 atan values for n/66, followed by 67 values for n/67,
followed by all the possible atan combinations ending with
atan value for 127/128. Clearly, a lookup table is needed
to determine the atan values for a particular Xval. The
equation below shows how to develop this table:

[] [] 65;11ArrayPos
65;0

ArrayPos
>−+−
≤

=
nnn
n

n Equation 12

An implementation is shown in the code example below.

Code 7. ArcTangent Vector Table Approach

fextern int ArrayPos[];
extern char aTanArray[];

if(Xval == Yval){
 iAngle += 4500;
}
else if(Xval>Yval){
 while(Xval <65){Xval<<=1; Yval<<=1;}
 iAngle +=
18*aTanArray[ArrayPos[Xval]+Yval];
}
else if(Xval<Yval){
 while(Yval <65){Yval<<=1; Xval<<=1;}
 iAngle += 9000;
 iAngle -= 18*aTanArray[ArrayPos[Yval]+Xval];
}

The function iArcTanRoutineInsanelyFast can be found in
the project associated with this note. It is located in
ArcTanFunctionIF.asm. ArcTanFunctionIF.h is also
included to allow ‘C’ programs access to this function. The
6176-byte lookup table is located in
WastefullyLargeTable.asm.

This function was written in assembly to minimize CPU
overhead. It takes a maximum of 591 CPU cycles to
complete. For a 24 MHz CPU clock, this function takes no
more than 25 µsec to complete. Although this is a
significant speed improvement, it comes at the cost of a
staggering 6,556 byes of ROM.

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 5

Although inefficient in code space, this implementation is
useful for high-speed angular control applications. With
this algorithm it is possible to read two sensors, determine
the angular position, and perform some control code loop
calculation all at an update rate of 10 ksps.

Even Faster Potential ArcTangents
Of the 591 CPU cycles used in the previous
implementation, 202 were used to shift the data into
range. It is possible to alter the lookup table to include
values for Xval in the range of 1 to 128. This would
increase the size of the lookup table to 8,256 bytes. It
would now take no more than 389 CPU cycles to
complete. For a 24 MHz CPU clock, this is less than 17
µsec. The code overhead is 8750 bytes of ROM.

Other Advantages
The arctangent functions developed in this note are all
designed to output a signed integer value in the range of
±18000 100ths of a degree, with East = 0º and North = 90º.
It would be easy to change this function so that North = 0º
and East = -90º. There is no reason why the output has to
be in degrees. Suppose your application requires
calculating the angular position of a
220-tooth gear. It may be desirable to output an unsigned
integer in the range of 0 to21999 100ths of a tooth. This
saves the extra step of converting degrees to teeth. Any
time calculations can be moved from the embedded
microcontroller to constant calculation before compilation,
code execution time is reduced.

Summary
The arctangent function makes this possible to convert
Cartesian position data to an angular format. For real time
applications it must be carried out quickly and may rule out
using the functions supplied with the ‘C’ math library.
Vector multiplication gives an easy method to quickly
determine the desired angle. Lookup tables allow even
faster computation of the desired angle but at the cost of
increased ROM usage. Of the four examples discussed,
one should be perfect for your particular application.

About the Author
Name: Dave Van Ess

Title: Principal Application Engineer
Cypress Semiconductor

Background:

An Engineer by training, a poet by
temperament, and an outlaw in
Nebraska. Dave is capable of abstract
thought, concrete analysis, and
ruthless implementation. BSEE from
University of California, Berkeley. More
than 28 Years experience in circuit,
signal processing, digital, software,
analog, and system design. Holder of
six U.S. Patents (plus three pending)
for medical systems, signal processing,
and digital block enhancements.
Author of numerous Application Notes,
web casts, and technical articles.

Joined Cypress Semiconductor at the
dawn of the New Millennium.

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 6

Document History
Document Title: ArcTangent in PSoC® 1 Assembler – AN2341

Document Number: 001-26179

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1445383 MAXK 09/07/2007 New application note.

*A 3328685 MAXK 07/26/2011 Updated document title as “ArcTangent in PSoC® 1 Assembler - AN2341”.
Updated Software Version as “PSoC® Designer™ 5.1 SP1.1” in page 1.
 Updated attached associated project for PSoC Designer 5.1.

*B 4508004 MSUR 09/19/2014 Updated to new template.
Completing Sunset Review.

*C 4599724 ASRI 12/17/2014 Updated Software Version as “PSoC Designer™ 5.4” in page 1.
Removed reference of AN2101, AN2038 in Related Application Notes in page 1
as these application notes are obsolete.
Updated attached associated project for PSoC Designer 5.4.

http://www.cypress.com/

ArcTangent in PSoC® 1 Assembler

 www.cypress.com Document No. 001-26179 Rev. *C 7

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark and PSoC Designer is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/?id=1936&source=anxxxxx
http://www.cypress.com/?id=24&source=anxxxxx
http://www.cypress.com/?id=1933&source=anxxxxx
http://www.cypress.com/?id=2308&source=anxxxxx
http://www.cypress.com/?id=2330&source=anxxxxx
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1932&source=anxxxxx
http://www.cypress.com/?id=167&source=anxxxxx
http://www.cypress.com/?id=10&source=anxxxxx
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=anxxxxx
http://www.cypress.com/?app=forum&source=anxxxxx
http://www.cypress.com/?id=2200&source=anxxxxx
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=anxxxxx
http://www.cypress.com/?id=4&source=anxxxxx
http://www.cypress.com/

	Introduction
	Polar and Cartesian Coordinates
	Vector Math 101
	Quadrant Decoding and Translation
	A Complete Arctangent Function
	A Faster ArcTangent
	An Even Faster ArcTangent
	Even Faster Potential ArcTangents
	Other Advantages
	Summary
	About the Author
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

