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Many control applications require calculating an angular position when the Cartesian position data is given. The 
arctangent function makes this possible. A major setback to this is that the trigonometric functions supplied with the ‘C’ 
math library uses and returns float variables. Although very accurate, the processing overhead resulting from using the 
floating-point math routines can be prohibitive. Techniques are discussed to calculate an arctangent to a specific 
resolution. Software is presented using these techniques for an arctangent function that returns the calculated angle in 
100ths of a degree resolution using signed 8-bit X and Y values. 

 

Introduction 
You have Cartesian data and require an angular position. 
It may be a compass, calculating direction from magnetic 
field detectors or it may be to determine a shaft position 
using Hall Effect sensors. This is why arctangent (atan 
and atan2) functions supplied with the ‘C’ math library is 
included in PSoC Designer™. These functions have two 
major limitations. 

The first limitation is that they return the angle value in 
radians. Radians, although frequently used in math and 
physics, are not as useful to most engineers. 2 pi radians 
make up a circle, as opposed to 360 degrees. The second 
limitation is that the function uses floating point. This 
results in extremely accurate answers but at the cost of 
computation time. In embedded applications, most data 
comes out of an ADC in an integer format and the 
resolution required is on the order of 10°, 5°, 1°, or 0.1° 
degrees. 

The function developed for this Application Note uses 
signed 8-bit X position and Y position data. 

The angle is returned in integer format in hundredths of a 
degree resolution. It is a signed integer and has a range of 
±18000. The accuracy is ±0.25° (or 25 counts). 

Polar and Cartesian Coordinates 
Figure 1 shows a two-dimensional position in terms of its 
Cartesian and Polar parameters. 

Figure 1. Angular Geometry 
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Cartesian coordinates define the distance away from the 
origin x units horizontally and y units vertically. The polar 
coordinates define the position r units away from the origin 
at an angle θ above the horizontal axis. These values are 
different ways of defining the same unique position. Their 
relationship is shown in these equations. 

22 yxr +=   Equation 1 

( )yxf ,=θ   Equation 2 

The function f is defined as the arctangent and is usually 
defined as: 

( ) ( )xyyxf /atan, =   Equation 3 

y/x is defined as the slope. This function has two difficult 
characteristics. First, this slope can vary anywhere in the 
range of ±∞. This makes it hard to find angle close to the 
vertical axis. (atan(255/1) = 89.78°). Second, this function 
generates the same solution for two different positions 
(because y/x = -y/-x). 
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Another arctangent function is the atan2 function, which is 
defined below: 

( ) ( )yxyxf ,2atan, =   Equation 4 

Both difficulties with the first function do not exist with this 
new function. It does require two variables be passed to it. 
This is the function implemented in this Application Note. 

Vector Math 101 
If the position vector is expressed as a complex number 
then the following equation holds true: 

nnnnn ryixc θ∠=⋅+=   Equation 5 

If two vectors are multiplied, the result is: 

( ) ( )
( )mnmn

mnmnmnmnmn

rr
xyyxiyyxxcc

θθ +∠=
++−=

 Equation 6 

This equation shows that a vector can be moved by a 
specific angle. If a vector has an angle of 46°, multiplying it 
with a vector having an angle of -45° results in a vector 
with an angle of 1°. Clearly, a series of vector 
multiplication can be used to move the vector to the 
horizontal axis. The sum of all the applied vector angles 
equals the original vector angle and the arctangent 
calculation is complete. 

Quadrant Decoding and Translation 
Each X value and Y value has three possible states. They 
are: 

 Negative 

 Zero 

 Positive 

This allows for nine different combinations as shown in 
Figure 2. 

Figure 2. Nine States for X-Y Data 
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It is necessary to determine in which of the nine states the 
data falls. The following code shows how a state variable 
is generated. 

Code 1. Quadrant Encoding 

#define EAST     0x0d 
#define NORTH    0x07 
#define WEST     0x01 
#define SOUTH    0x04 
#define CENTER   0x05 
#define QUADI    0x0f 
#define QUADII   0x03 
#define QUADIII  0x00 
#define QUADIV   0x0c 
 
bStatus = 0; 
if(cXval >= 0) bStatus|= 0x08; 
if(cXval == 0) bStatus|= 0x04; 
if(cXval >= 0) bStatus|= 0x02; 
if(cXval == 0) bStatus|= 0x01; 
 
This status variable can be used to generate a jump table 
or switch statement. 

Of these nine states North, South, East, and West are 
easily calculated. Center value is indeterminate, but must 
receive some value. For this routine it is defined to be 
32,767. (The largest integer value, it is much larger than 
the maximum in-range value of 18,000.) Code to set the 
angle for these five states is shown below.  

Code 2. Quadrant Angle Offset 

if(bStatus == EAST)  iAngle =     0; 
if(bStatus == NORTH) iAngle =  9000; 
if(bStatus ==WEST)   iAngle =-18000; 
if(bStatus ==SOUTH)  iAngle = -9000; 
if(bStatus == CENTER)iAngle = 32767; 
 
For the remaining states it is necessary to move them to 
the Quad I state. Quad II vectors are rotated 90° counter 
clockwise to move into Quad I. Quad III vectors are 
rotated 180° to move into Quad I. Quad IV vectors are 
rotated 90° clockwise to move into Quad I. In each case, 
the Cartesian coordinates of the rotated vector only 
change in either polarity or swap values. This is shown in 
the figure below. 

Figure 3. Vector Position in Different Quadrants 
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For each quadrant, that vector must be moved into Quad I 
and the angle must be appropriately adjusted as shown in 
the following code.   
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Code 3. Vector Movement between Quadrants 

if(bStatus == QUADI) 
   iAngle = iATanRoutine( Xval, Yval); 
if(bStatus == QUADII) 
   iAngle = iATanRoutine(-Yval, Xval) + 
9000; 
if(bStatus == QUADIII) 
   iAngle = iATanRoutine(-Xval,-Yval) – 
18000; 
if(bStatus == QUADIV) 
   iAngle = iATanRoutine( Yval,-Xval)- 
9000; 

A Complete Arctangent Function 
Now that the vector has been moved into Quad I, it is 
necessary to write an efficient arctangent routine. 

For this algorithm, a series of vectors are used to move 
the vector to the horizontal position. If the vector rotation 
caused the Yval to become negative, the vector has 
moved into Quad IV and this rotation is ignored. If not, the 
rotated vector stayed in Quad I and the angle of the 
rotated vector is added to the accumulated angle value. 

Equation (6) shows the four simple multiplications required 
to perform a complex vector multiplication. To simplify this 
computation, the X and Y values of the rotation vectors 
selected will both be powers of two. This is shown in the 
equation below. 

n
n

n ic −= 2    Equation 7 

Using Equation (6) with Equation (7) the production of the 
rotation vector and the vector is shown in Equation (8) 
below: 

( ) ( )XvalYvaliYvalXval nn −++ 22  Equation 8 

Equation (8) shows that the rotation is necessary only if 
2nYval >= Xval. 

A table of the rotation vectors and calculated rotation 
angle is shown below. 

Table 1. Rotation Vectors and Calculated Angles 

n Xrot(2n) Yrot θ 
0 1 -1 45.0000° 
1 2 -1 26.5651° 
2 4 -1 14.0362° 
3 8 -1 7.1250° 
4 16 -1 3.5763° 
5 32 -1 1.7899° 
6 64 -1 0.8952° 
7 128 -1 0.4476° 
8 256 -1 0.2238° 
9 512 -1 0.1119° 

10 1024 -1 0.0560° 

This table shows that the greater the number of vectors, 
the greater the resolution. Conversely, a lower resolution 
answer requires fewer vectors. The specific number of 
vectors can be determined for each particular application. 
For this routine, nine vectors (0 through 8) are used. An 
implementation is shown in the following code. 

Code 4. Arctangent Calculation by Vector Rotation 

int const Theta[9]={4500,2657,1404,713 
                    ,358,179,90,45,33}; 
 
iAngle = 0; 
for(n = 0; n<9; n++){ 
   if(Yval <<n >= Xval){ 
      iAngle += Theta[n]; 
      Xtemp = Xval; 
      Ytemp = Yval; 
      Yval <<=n; 
      Xval <<=n; 
      Xval += Ytemp; 
      Yval -= Xtemp; 
      if( Xval > 65535){ 
        Xval = (Xval + 128)>>8; 
        Yval = (Yval + 128)>>8; 
      } 
   } 
} 
Note that when the calculated Xval exceeds 16 bits, it, and 
Yval, is shifted down by 8 bits. This keeps the maximum 
size of Xval to no larger than 24 bits, unconstrained it 
could get as large as 40 bits. This truncation adds an error 
in the range of ±0.06°, but is well worth the saved CPU 
overhead. 

iArcTanRoutine is the function included and can be found 
in the project associated with this application note. It is 
located in ArcTanFunction.asm. ArcTanFunction.h is also 
included to allow ‘C’ programs access this function. 

This function was written in assembly to minimize CPU 
overhead. It requires 414 byes of ROM and takes a 
maximum of 4071 CPU cycles to complete. For a 24 MHz 
CPU clock, this function takes no more than 170 µsec to 
complete. 

A Faster ArcTangent 
At present 170 µsec is a respectable number, but if a 
faster technique is needed, there are other methods. 

The code used to determine quadrant position stays the 
same while any improvements in time saving come from 
the actual arctangent function. 

For this new function, the data is going to be moved to the 
lower half of Quad I. It is done by multiplying the vector 
with 1-I whenever Yval >= Xval. 
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An implementation is shown in the code below. 

Code 5. 

If(Yval >= Xval){ 
   iAngle +=4500; 
   Ytemp = Yval; 
   Yval = Yval –Xval; 
   Xval = Xval + Ytemp; 
} 
Now it is guaranteed that Yval is less than Xval. The next 
step is to normalize Yval given the following equation: 

Xval
YvalYval 256⋅

=   Equation 9 

Yval is now an integer between 0 and 255. A lookup table 
can be generated to solve the arctangent for all 256 of 
these cases using the equation below: 

9
50

256
atan]Atantable[ ⋅






=

Yvaln   Equation 10 

The atan operation is multiplied by 50/9 to get a value that 
best fits in an 8-bit variable. (artan(255/256)*50/9 = 249). 
The answer is later multiplied by 18 to get the desired 
0.01° resolution. This truncation adds an error in the range 
of ±0.09°, but is well worth space saved in the lookup 
table. The normalization also contributes a truncation 
error. The combination of both these errors falls well within 
the ±0.25º requirement. An implementation is shown in the 
code below. 

Code 6. 

Extern int const Atantable[]; 
 
Yval = (Yval<<8 + Xval>>1)/Xval;  
iAngle += (Atantable[Yval] * 18); 
 
The function iArcTanRoutineTableLookup can be found in 
the project associated with this note. It is located in 
ArcTanFunctionLT.asm. ArcTanFunctionLT.h  is also 
included to allow ‘C’ programs access to this function. 

This function was written in assembly to minimize CPU 
overhead. It requires 526 byes of ROM and takes a 
maximum of 1710 CPU cycles to complete. For a 24 MHz 
CPU clock, this function takes no more than 72 µsec to 
complete. This is a significant improvement in speed for 
an additional 112 byes of ROM. 

An Even Faster ArcTangent 
As respectable as 72 µsec is, there are users that still 
want faster operation. This can be done by exploiting the 
relationship in the equation shown below:  

( ) ( )yxxy /atan90/atan o −=   Equation 11 

This means that it is only necessary to calculate the 
arctangent were Yval is less than Xval. 

The total range of Xval and Yval is -128 through 127. 
Moving the vector into Quad I now limits the range of both 
to 0 though 128. Limiting the calculation to the range in the 
lower half of Quad I, limits the range to: 

 0 < Xval ≤ 128 

 0 < Yval < Xval  

Also, whenever Xval is less the 65, Xval and Yval can be 
repeatedly doubled until: 

 65 < Xval ≤ 128  

 0 < Yval < Xval 

Given these ranges, there are 6176 different vectors. It is 
possible to build a lookup table to store the arctangent of 
each value. As with Equation (10), the atan operation is 
multiplied by 50/9 to get a best fit into an 8-bit variable. 
Again, this introduces a ±0.09º error.  

This table starts with 65 atan values for n/65, followed by 
66 atan values for n/66, followed by 67 values for n/67, 
followed by all the possible atan combinations ending with 
atan value for 127/128. Clearly, a lookup table is needed 
to determine the atan values for a particular Xval. The 
equation below shows how to develop this table: 

[ ] [ ] 65;11ArrayPos
65;0

ArrayPos
>−+−
≤

=
nnn
n

n  Equation 12 

An implementation is shown in the code example below. 

Code 7. ArcTangent Vector Table Approach 

fextern int ArrayPos[]; 
extern char aTanArray[]; 
 
if(Xval == Yval){ 
   iAngle += 4500; 
} 
else if(Xval>Yval){ 
   while(Xval <65){Xval<<=1; Yval<<=1;} 
   iAngle += 
18*aTanArray[ArrayPos[Xval]+Yval]; 
} 
else if(Xval<Yval){ 
   while(Yval <65){Yval<<=1; Xval<<=1;} 
   iAngle += 9000; 
   iAngle -= 18*aTanArray[ArrayPos[Yval]+Xval]; 
} 
 
The function iArcTanRoutineInsanelyFast can be found in 
the project associated with this note. It is located in 
ArcTanFunctionIF.asm. ArcTanFunctionIF.h is also 
included to allow ‘C’ programs access to this function. The 
6176-byte lookup table is located in 
WastefullyLargeTable.asm. 

This function was written in assembly to minimize CPU 
overhead. It takes a maximum of 591 CPU cycles to 
complete. For a 24 MHz CPU clock, this function takes no 
more than 25 µsec to complete. Although this is a 
significant speed improvement, it comes at the cost of a 
staggering 6,556 byes of ROM. 
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Although inefficient in code space, this implementation is 
useful for high-speed angular control applications. With 
this algorithm it is possible to read two sensors, determine 
the angular position, and perform some control code loop 
calculation all at an update rate of 10 ksps. 

Even Faster Potential ArcTangents 
Of the 591 CPU cycles used in the previous 
implementation, 202 were used to shift the data into 
range. It is possible to alter the lookup table to include 
values for Xval in the range of 1 to 128. This would 
increase the size of the lookup table to 8,256 bytes. It 
would now take no more than 389 CPU cycles to 
complete. For a 24 MHz CPU clock, this is less than 17 
µsec. The code overhead is 8750 bytes of ROM. 

Other Advantages 
The arctangent functions developed in this note are all 
designed to output a signed integer value in the range of 
±18000 100ths of a degree, with East = 0º and North = 90º. 
It would be easy to change this function so that North = 0º 
and East = -90º. There is no reason why the output has to 
be in degrees. Suppose your application requires 
calculating the angular position of a  
220-tooth gear. It may be desirable to output an unsigned 
integer in the range of 0 to21999 100ths of a tooth. This 
saves the extra step of converting degrees to teeth. Any 
time calculations can be moved from the embedded 
microcontroller to constant calculation before compilation, 
code execution time is reduced. 

Summary 
The arctangent function makes this possible to convert 
Cartesian position data to an angular format. For real time 
applications it must be carried out quickly and may rule out 
using the functions supplied with the ‘C’ math library. 
Vector multiplication gives an easy method to quickly 
determine the desired angle. Lookup tables allow even 
faster computation of the desired angle but at the cost of 
increased ROM usage. Of the four examples discussed, 
one should be perfect for your particular application. 
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